
Convert from Toolbox into LEXUS

A guide to importing data

Original Author: Jacquelijn Ringersma

Updates for version 2.0: Konrad Rybka

Updates for version 3.0: Kasia Wojtylak

Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
May 2012

Convert from Toolbox into LEXUS
A guide to importing data
Original Author: Jacquelijn Ringersma

Updates for version 2.0: Konrad Rybka

Updates for version 3.0: Kasia Wojtylak

Published LEXUS Version 3.0

iii

Table of Contents
1. Introduction .. 5

1.1. Defining problematic areas ... 5
1.2. The structure file .. 5
1.3. The Data File ... 9

2. Problematic areas for import: Structure file .. 11
2.1. Defining markers and their hierarchies .. 11
2.2. Useful markers and useless markers ... 13
2.3. Double defining markers .. 13

3. Problematic areas for import: Data file .. 15
3.1. Data file inconsistent with the hierarchy of the structure file .. 15
3.2. Some practical advice .. 17

5

Chapter 1. Introduction
Importing data from Toolbox to LEXUS does not have to be a very complicated matter provided that some
requirements have been fulfilled. In the following chapters we discuss those features of Toolbox files and
LEXUS structures that might often make the transfer more time-consuming than expected. To take the best
advantage of the following manual, some knowledge of Toolbox is necessary, in particular of the idea of
a marker and markers’ hierarchy.

1.1. Defining problematic areas
When talking about Toolbox and LEXUS, we have to concentrate on two different types of files. The first
one is your structure file, the second one is your data file. The former one provides your Toolbox project
with a structure: it defines the markers you are using and the relations between them, that is their hierarchy.
The latter one will include your lexical information per se, that is the particular lexical entries together with
all the information you have about them. The two types of files entail different problems.

1.2. The structure file
Your structure file, also referred to as the .typ file here, consists of a list of markers and their definitions.
These definitions include the information about the relation between the markers. In fact, this is the most
important part of this file for the purpose of importing your lexicon into LEXUS. In Figure 1.1, you can see
an example of a typical structure file viewed in a text editor.

Figure 1.1. An example of a Toolbox .typ structure file

Introduction

6

As you can see, the structure file is divided into small sections, each defining a separate marker. The markers
are listed alphabetically. The first line of each of these sections identifies the marker, for instance the phrase:
\+mkr ps identifies the marker ps, that is part of speech. The next line gives the full name of the marker:
\nam Part of speech and yet the next one gives its description: \desc Classifies the part of speech...and
the language in which the values appear: \lng English. Most of this information will be copied to LEXUS
and therefore should be complete and correct. The \rngset line defines the possible values that this marker
can have (this applies only to markers that have such closed sets of values): \rngset -n ??? adj adv conj
dem... The few lines that are eclosed by: \+fnt and \-fnt contain the information about the font: type, size,
color etc.

The most important part of the marker definition for the purpose of importing data into LEXUS is the
line \+mkrOverThis which specifies which marker is above the currently discussed one in the hierarchical
structure. In this case, the marker that is directly above ps is lx, that is lexeme. That is how we know that
the hierarchical order of these two is the following: lx is directly above ps. Similarly, all other markers are
defined in the structure file, so that they all form one hierarchy. This hierarchy can be found not only in the
structure file, but also in the Toolbox project itself. If you open your Toolbox project, which runs on your
structure file, and go to View and from this menu choose Markers and Marker Hierarchy then in the left
part of your workspace all the markers for the particular entry you are looking at, will be listed and their
hierarchy will be visualized by the ‘stair-like’structure (See Figure 1.2):

Figure 1.2. Structure file in Toolbox

Here again you can see that ps, part of speech is found under lx, lexeme. We can also notice that it is not
only the marker ps, but also va that has been defined under lx. This visualization of the hierarchy however
is not completely clear as what we see is not the entire hierarchy that is in the structure file, but only the
markers used in the particular entry. Thus, we can see that the marker ge is lower in the hierarchy than ps
or va; this is apparent from the number of dots before it, as one dot separates nodes that are on different
levels in the structure. But we do not know what is the precise hierarchy. In fact it could be the case that ge
is linked under ps or va but not directly (the number of dots shows that there is another level between them)
or it could be linked indirectly under something else than ps or va. Similarly, it is not immediately clear
which marker is above ve: ps, va or a different marker that did not appear in this particular entry. Toolbox
shows here only the markers that have been inserted by you in this particular entry and not the underlying
hierarchical structure of the whole lexicon.

Only by looking at Figure 1.2 we cannot decide what the hierarchy really is. One way to check it is to look
again into the structure file, find the part that defines the relevant markers and see what is written there in
the line: \+mkrOverThis.

Another way to find this information in Toolbox is to right-click on the maker itself in the hierarchy. A
window will pop up with all the information about the marker:

Introduction

7

Figure 1.3. Marker information in Toolbox

Here we can see that ge is actually specified under pos, position in the hierarchy. This pop-up window is
very important as it contains information about the marker: its field name, its place in the hierarchy, language
encoding and definition. All these elements can be modified here. As for changing the place of a marker
in the hierarchy, you simply have to click on the roll-out menu next to Under what in the Hierarchy and
choose the marker you want from the list:

Introduction

8

Figure 1.4. Redefining the position of a marker in the structure in Toolbox

This change will be automatically saved in your structure file.

It is also possible to rearrange the marker hierarchy in the structure file itself. You simply have to substitute
the marker \mkrOverThis with another one. Compare the two screenshots in Figure 1.5:

Figure 1.5. Example: Redefining the position of the marker in the .typ structure file.
Before: defined under 'sf'. After: defined under 'lx'

It is important to remember to save your changes in the .typ structure file every time you do them.

Introduction

9

The last important option in Toolbox is the possibility to view a list of all the markers that you are using.
To do that, click on Database in the main Toolbox menu and choose Properties from the roll-out menu.
A window will pop-up with all the markers, See Figure 1.6:

Figure 1.6. List of markers in Toolbox

Here you can see all the markers with the information about their place in the hierarchy. This window also
shows which markers are actually in use (that is, which markers have at least one value specified somewhere
in the lexicon). It is easy to see which markers do not fulfill this criterion - they are not written in bold font
like the rest. These markers can be deleted by clicking on them and choosing the option Delete from the
right panel.

1.3. The Data File
Your data file usually consists of a number of entries. Each of them in turn consists of a series of markers
and their values. A typical entry in a data file will look like the following example Figure 1.7 (remember,
however that in your project you might additionally be using different markers as well):

Introduction

10

Figure 1.7. An example of an entry in a Data File.

Importantly, this flat text version of your lexicon, does not show the underlying hierarchy, which we have
been able to see in the Toolbox project. The data file only records the information about the markers used
in a particular entry and their values. LEXUS will make use of this file during the import process. It is,
therefore, important that it is consistent with the .typ file.

11

Chapter 2. Problematic areas for
import: Structure file

2.1. Defining markers and their hierarchies
As shown in the previous chapter, the structure file is a list of all the markers that you use in your project
and the definitions of the relations between them. Before embarking on any serious lexical enterprise, it is
worthwhile to think about the markers you will use in your lexicon and the relations between them. For
instance, in order to introduce examples into the lexicon, researchers very often use markers such as sfx
(sound file example), xv(example vernacular), xe(example English) and xn (example national language).
Obviously all these categories belong together. If you have more than one example per entry, you will want
it to be clear which sound file goes with which translation etc. In Toolbox you could simply list them one
under another, without arranging them hierarchically.

However, when transferring your data to other programs, in this case LEXUS, this information might be
lost. Therefore, you need to make the relation between them explicit by ordering them in a hierarchy. As
has been demonstrated above, this applies to all markers in your Toolbox project. Toolbox allows you to
view the markers together with their hierarchy. For the purpose of importing your data into LEXUS, in some
cases, you will need to change it. This is not difficult, however.

For every marker you specify under which other markers should be defined and save it in the .typ file. The
top marker is usually the lexeme marker (lx) but the position of the rest can be defined according to your
needs and the particularities of your lexicon. To come back to our example, you might, for instance, want
to define sfx, xe, xn under xv. In that case for each xv that you want to include, you will have a different
sets of sfx, xe, xn.

Let us now see what would happen if you imported such a hierarchy of markers into LEXUS. In general,
based on your .typ file, LEXUS will create a structure for your lexicon that will be used for your data. When
LEXUS encounters a structure in the .typ file such as given in Figure 2.1, it will take the top node and create
a group node out of it. LEXUS always turns markers that have other markers defined under them into group
nodes. Then it will put all the markers that were defined under the top nodetogether with the top node into
that group.

Problematic areas for
import: Structure file

12

Figure 2.1. Example of a marker hierarchy in Toolbox

The resulting structure in LEXUS will be the following:

Figure 2.2. The structure in LEXUS resulting from the .typ file

Problematic areas for
import: Structure file

13

Of course the names of the particular nodes and group nodes can be changed later on in LEXUS so that
xv group could be called example group and it would include in it all the necessary nodes: the sound file,
transcription and the translations. As you can see, in our example, we have already changed the definitions
of the markers in Spanish from the .typ file (i.e. "ejemplo Tsafiki", "ejemplo Espaol", "ejemplo Ingls") into
names in English ("example Tsafiki", "example Spanish", "example English"). As a rule, LEXUS will create
a group node out of everything that has at least one other marker defined under it in the .typ file.

2.2. Useful markers and useless markers
When using Toolbox for your project, you usually have a number of predefined markers to choose from.
The predefined set is called the MDF (Multi-Dictionary Formatter). It is very advisable to use them, so that
working with your lexicon is easier for people not that familiar with your project. It is simply a question
of uniformity and comparability between different lexica. Naturally, as your project might consists of
definitions of markers specific only to your lexicon, it might not always be possible to use the predefined
markers for all the elements.

It will more often be the case that you will actually not make use of some markers from the predefined list,
rather then add some of your own. In that case, when importing your data into LEXUS, it is advisable to
erase those markers that you are not using from the list of markers in Toolbox. Simply, keep in your .typ
structure file only markers that you actually make use of.

If you decide to include a marker in your project that you define on your own, make sure that it has not only
a symbol (e.g. lx), but also a name (e.g. lexeme). It is also highly advisable to give descriptions to your
markers, especially if you have introduced some new markers, potentially unknown to others. Giving a name
to your markers is not only a practical idea, but it is necessary for the import of the .typ file into LEXUS.
Although LEXUS will recognize these markers, they will be included in the structure without names. If there
are many of such markers, it might be difficult later to find out what the nameless markers are supposed to
stand for. If this happens, however, you can always turn to the LEXUS technical group to help you solve
this problem.

2.3. Double defining markers
A final step in making sure that the import into LEXUS will cause problems is to be aware of the possibility
of double-defining markers. As in Toolbox markers are defined under other markers, it happens often that
certain data categories seem to appear consistently in more than one place in the data file. Most often this
is the case for part of speech, ps. In the MDF file, it is defined under subentry. However, except for
appearing under the subentry marker, it will also be found throughout your lexicon also under lexeme.
The structure is actually in each case the same: part of speech appears under subentry which is under
lexeme. In those cases, where it is found under lexeme in the data file, the subentry marker (which is in
the structure between lexeme and part of speech) is simply not expressed explicitly. For Toolbox, as we
already know, this is not a problem.

In this case, however, LEXUS will have to create an empty subentry group between every lexeme and part
of speech. Importantly, part of speech in this place is very consistent throughout lexica and it is desirable
to have it there. To solve this problem, LEXUS allows to double define markers manually by simply copying
the definition of ps in the .typ file and changing in the copy of that definition the node under which it is
defined from subentry to lexeme. In that way, in the structure file we have two definitions of the marker ps:
one under lexeme and another under subentry. This double definition will not be recognized by Toolbox,
but LEXUS will be able to cope with it. There is no limitation as to the number of double-defined elements
in your .typ file but the general rule is: the fewer the better.

Problematic areas for
import: Structure file

14

Figure 2.3. Double defined markers in the .typ file.

Often, there are more than three markers that you would like to double-define. The only solution here is to
first order them in a hierarchy and to double define only the very top marker of that hierarchy. The markers
that are defined under it will automatically appear under the double-defined markers, both under lexeme
and subentry for instance.

15

Chapter 3. Problematic areas for
import: Data file

3.1. Data file inconsistent with the hierarchy
of the structure file

There are a few types of problems that might arise when importing your data into LEXUS from the .typ data
file. The size of a typical data file and numbering hundreds of entries makes it very important to think in
advance about the potential issues that you might deal with. The solution to all of them is simple: consistency.

In the previous chapters we have stressed the importance of having a clear idea of how you want to organize
your markers. Once that has been accomplished, it is crucial to keep that order consistent throughout your
data. It is clear that often, as the data is added to the lexicon, such order becomes less systematic. For Toolbox
keeping a certain hierarchy is not as important as it is for LEXUS.

When importing the data from Toolbox, problems usually begin when any of your entries contains a string
of markers and their values that is against the hierarchy defined in the .typ file. Let us come back to the
xv example. The black box in Figure 3.1 presents the structure of the .typ file with the relevant part of the
entry description:

Figure 3.1. Hierarchy of markers and an entry that follows this pattern

The translations xn and xe and the sound file sfx are placed under the appropriate example in Tsafiki - xv.
If all the entries follow this order, there will no problems. Notice that the order of xn, xe and sfx does not
matter - this is because they are all defined under the xv in the structure, and as long as they follow the xv
in the data file, their ordering is of no relevance.

Let us assume, however, that there is an entry in your data file in which the definition markers and their
values have a different order. In Figure 3.2 the structure of the .typ file is shown in the box together with
the relevant part of the entry:

Problematic areas
for import: Data file

16

Figure 3.2. Hierarchy of markers and an entry that does not follow the pattern

As LEXUS reads the entries linearly, line after line, and fills the structure that the .typ and the data files
provide, it will treat such an entry differently. Whenever it encounters a marker that has a certain value,
LEXUS checks under which marker this marker was defined in the .typ file. Subsequently, it looks back
through the part of the entry that has already been created to see whether this higher marker has already
appeared in the structure or not. If it has, then the currently analyzed marker will be linked under it.

For the purpose of our example, let us assume that (1) the .typ file and the data file follow the same structure,
(2) xv in our structure file is linked under rf (reference group), and (3) rf has already appeared in the file and
LEXUS has created a node for it. In this situation (see Figure 3.1) LEXUS will behave in the following way.

When encountering xv in the data file, LEXUS will check in the structure file where this definition marker
should be linked to – in this case it will be under rf. As rf already exists in the structure of this entry, xv will
be linked under rf. Remember, however, that xv has also other nodes linked under it in the structure file.
Therefore, first a group node will be created out of it (xv group). It will be linked under rf and xv will be
linked under that group node. The next marker that LEXUS will encounter will be xe. Here again LEXUS
will check if the marker (that in the hierarchy is above it - xv group) already exists in the structure. Since it
does as LEXUS has just created it, the xe marker will be linked under xv. This operation will be repeated until
all the relevant markers are linked under the xv group definition marker. As a result, the following structure
will be created for that entry in LEXUS. In this example, this is how we want our lexicon to look like:

Figure 3.3. LEXUS structure for the entry that follows the structure of the .typ file

However, when the order of the markers in the .typ file is as presented in Figure 3.2 above, the outcome will
be different. LEXUS will first encounter sfx , not xv. Then, it will check under which node sfx is defined
in the structure file. As we already know, it is defined under xv group. As the xv group definition marker
has not appeared in this entry yet (remember that xv is placed after sfx), LEXUS will create xv group and
link sfx under it. Then, LEXUS will encounter xv and create another xv group with xv, xn and xe linked
under it. Eventually, the following structure will be the outcome:

Problematic areas
for import: Data file

17

Figure 3.4. LEXUS structure for an entry that does not follow structure of the .typ file

This is problematic, because the information about the sound file (sfx) that goes with its translations (xv,
xe, xn) is now lost – it is distributed between two different xv groups: one missing a sound file, the other
missing the translation information. Such situations will always happen if a marker that is higher in the
hierarchy of the structure file, appears also placed on a lower level.

That is why, when you want to import your data into LEXUS, you have to make sure that such situation
does not occur in your data file. As a practical guideline, we suggest, therefore, to follow the hierarchy
of markers from your .typ file in your data file. This means manually placing a marker right under the
marker under which it was defined, and never above it.

3.2. Some practical advice
When importing data from Toolbox into Lexus we have not forget about the following.

(1) Remember that not all markers are used in every entry and it would be a waste of time to list all the
unnecessary markers just for the sake of keeping to the hierarchy. LEXUS reads only the markers that are
used in a particular entry, and makes a structure out of them according to the .typ file.

(2) LEXUS does not see, it does not include. That is to say, it is not enough for a marker to appear in
an entry for LEXUS to read it. It also has to have a value to be recognised by LEXUS. Whenever you
have a marker that has no value this marker will be simply omitted. In some cases, however, this can work
to your advantage, becaause LEXUS will always create a coherent minimal structure out of the lexical
entry according to the given .typ pattern. Therefore, an empty marker can never lead to the afore-mentioned
complications. Do not forget, however, that too many nameless markers can lead to problems addressed in
section 2.2 above.

In case you encounter problems, you can contact the LEXUS technical group at: lexus@mpi.nl.

The full online LEXUS manual is available at: http://tla.mpi.nl/tools/tla-tools/lexus

