
Common Infrastructure for Finite-State Based Methods and Linguistic
Descriptions

Anssi YLI-JYRÄ1,2 and Kimmo KOSKENNIEMI 2 and Krister LINDÉN 2

1 CSC - Scientific Computing Ltd., P.O. Box 405, FI-02101 Espoo, Finland
2 Department of General Linguistics, P.O. Box 9, FI-00014 University of Helsinki, Finland

{aylijyra,koskenni,klinden}@ling.helsinki.fi

Abstract
Finite-state methods have been adopted widely in computational morphology and related linguistic applications. To enable efficient
development of finite-state based linguistic descriptions, these methods should be a freely available resource for academic language
research and the language technology industry. The following needs can be identified: (i) a registry that maps the existing
approaches, implementations and descriptions, (ii) managing the incompatibilities of the existing tools, (iii) increasing synergy and
complementary functionality of the tools, (iv) persistent availability of the tools used to manipulate the archived descriptions, (v) an
archive for free finite-state based tools and linguistic descriptions. Addressing these challenges contributes to building a common
research infrastructure for advanced language technology

1. Introduction
Finite-state methods have been adopted widely in

computational morphology and related tasks of natural
language and speech processing, including segmentation,
tokenisation, shallow parsing, name entity recognition,
normalization etc. To enable efficient development of
finite-state based linguistic descriptions, the underlying
methods and the lexicons should be a freely available,
common and growing resource for academic language
research and the language technology industry. The idea
of a common finite-state based methodology is not new,
but it has not been easy to implement in large scale.

The purpose of this article is to identify some needs
that are faced when we try to reach this goal, and to
propose some helpful approaches to their satisfaction.
These needs are discussed in Sections 2 – 6.

2. Specialized Software Registry for Finite-
State Based Resources

We need to register finite-state tools and linguistic
resources. An open registry, FSMREG, currently located
at http://www.ling.helsinki.fi/users/aylijyra/FSMREG
will be pre-populated with the entries in our local
database. After the necessary extensions, this registry

- will be a locator service for commercial and non-
commercial finite-state based resources

- will map file formats and algorithms that are in
use in the existing resources

- will contain hypertext links to a distributed
collection of examples and stub grammars that
can be used as starting points for benchmarking,
testing and teaching.

According to our investigations, there are at least 70

languages to which some finite-state based methods have
already been applied. Moreover, we have constructed
partial registry entries about a few dozen finite-state based
tools (including ALE-RA, Amore, ASTL, BELLEx3,
Carmel, DFKI FSM, FIRE toolkits, FAdo, RWTH FSA,
FSA (Gdansk), FSA (Groningen), fskit, fsmlibrary,
GFSMNT, grmlibrary, ifsc, Intex, KIMMO, lexc, lextools,
MAP (Alvey), MIT FST, MMORPH, OMAC FSM, PC-
KIMMO, SFST, twolc, UCFSM, Unitex, Vaucanson, wfsc,
wfst, X2MORF, xfst).

We welcome contributions of new or corrected entries
in the registry. In the future, we plan to move the registry
to a collaboration environment using the wiki technology,
and to present a version of the registry as a survey article
or technical report.

3. Common Formats and Formalisms for
Finite-State Resources

We need to manage the divergence of the existing
finite-state tools. Different finite-state tools should be
capable of exchanging various types of data: finite-state
objects as well as grammar source files created in finite-
state based formalisms. Currently, many finite-state based
formalisms can be parsed only with a proprietary
compiler. To create interoperable tools and industry
standards, we need

- an open forum for reviewing idiosyncratic
features of finite-state based rule formalisms

- a generic XML-based exchange format for finite-
state based rule formalisms

- converters that rewrite formalisms into system
specific regular expressions (For example,
xfst2fsa (Cohen-Sygal and Wintner 2005)
converts a large subset of the Xerox finite-state
formalism in xfs, to expressions of the FSA
utilities from Rijksuniversiteit Groningen.)

- XML-formats (such as proposed by the
Vaucanson group http://www.lrde.epita.fr/cgi-
bin/twiki/view/Vaucanson/XML) for exchanging
small finite-state objects

- open libraries that can exchange huge finite-state
objects in various binary formats

4. Complementary Modules of Finite-State
Methods

We need to increase synergy in building new finite-
state tools. Earlier, proprietary and private
implementations of finite-state methods have been in-
house tools for building certain natural language and
speech processing applications. As a result, similar finite-
state toolkits have been reimplemented several times in
different places. Now that a few proprietary finite-state
toolkits are available under commercial licenses, there is a
great need for complementary tools that would help in
tasks where flexibility is more important than high
performance.

- We need open source tools that can be mutated
and exploited more freely

- We need compilers that can be linked with
different finite-state libraries:

a. a pre-compiler for compiling linguistic
descriptions into regular expressions

b. regular expressions would be compiled
by a separate program into finite-state
objects

It is surprising how little the flexibility and modularity

of widely available finite-state compilers has developed
during the course of last 20 years. Earlier, when finite-
state tools were written in the Lisp programming
language, it was convenient to implement rule compilers
and pre-compilers (see e.g. Karttunen et al. 1987) also in
Lisp. Today, some pre-compilers for regular expressions
have been implemented with XML-based techniques
(Piskorski et al. 2002). The software package fskit
developed by the first author employs a further pre-
compiler and macro expansion method.

5. Encouraging Open Source Development
of Finite-State Resources

We need an action plan that increases the free
availability of useful finite-state based methods and
descriptions. Currently, some tools for creating linguistic
resources are available under incompatible or closed-term
license models. The action plan would

- encourage compatibility with such research
networks that build free finite-state based
descriptions (including the RELEX network and
OpenOffice-related projects)

- encourage the use of open source or creative
commons licenses that allow linking to software
covered by GNU’s copyleft license as well as to
proprietary software

- recognize the need for a manageable negotiation
procedure in the exceptional cases where the
terms of the default license is not compatible
with a desirable combination

- discuss the possible need for joint copyright
systems

There is a trade-off between the commercial relevance

for widely spoken languages and the common good for
communities of less-studied languages and the research
community. This opposition has wide practical
implications that make it especially complicated to build a
common, standardized infrastructure for finite-state based
methods and applications.

For example, the free availability of some finite-state

based formalisms is perhaps not even possible due to
potential patent risks. In other words, patents and
proprietary programming languages are problematic from
the viewpoint of persistent archiving and sustainability.
They may involve risks if the value of the infrastructure of
language resources is dependent on the availability of the
software needed to maintain the resources.

6. Archiving
All the finite-state resources need to be archived and

stored somewhere. We believe that storage is not a

problem for open-source resources, but the main problem
is to keep the resources maintainable and exploitable.
This involves, in addition to the maintained finite-state
compilers for the resources, sufficient documentation on
the metadata and the used codes for each stored linguistic
finite-state resource.

7. Conclusion
The better interoperability of high-end proprietary

tools and freely available, sustainable tools is crucial
requirement for multi-lingual language technology
industry that would support diversity and development of
language technology for minority languages (Yli-Jyrä
2005, Koskenniemi 2006). Open source language
technology resources such as finite-state based methods
and finite-state based linguistic descriptions

- create a basis for further experimental research
on finite-state methods

- increase the availability of basic utilities needed
in many small language technology projects

- support the development of complex applications
on top of basic methods

- increase the efficiency and flexibility of
commercial and academic research and
development.

If the repeated investments in basic finite-state based

resources could be avoided, new development efforts
could concentrate on less-studied languages, research
collaboration, more complex applications and the
production of end-user products.

8. References
Beesley, K. R. (2004). Morphological analysis and

generation: a first-step in natural language processing.
In Proceedings of the SALTMIL Workshop at LREC
2004: First Steps in Language Documentation for
Minority Languages. Computational Linguistic Tools
for Morphology, Lexicon and Corpus Compilation,
Lisbon, Portugal, May.

Cohen-Sygal, Y and S. Wintner. (2005). XFST2FSA:
comparing two finite-state toolboxes. In Proceedings
of the ACL-2005 Workshop on Software, Ann Arbor,
MI, June 2005.

Karttunen, L., K. Koskenniemi and R. M. Kaplan. (1987).
A compiler for phonological rules. In M. Dalrymple, et
al. (eds). Tools for Morphological Analysis. Center for
the Study of Language and Information. Stanford
University, Palo Alto.

Koskenniemi, K. (2005). White paper: “Multilingual
Europe – How to get there?” Presented in the Workshop
“Machine Translation and Human Language Tech-
nologies”, European Commission, Luxembourg,
February.

Piskorski, J., W. Drożdżyński, O. Scherf and F. Xu.
(2002). A flexible XML-based regular compiler for
creation and conversion of linguistic resources. In
Proceedings of the 3rd International Conference on
Language Resources an Evaluation (LREC'02), Las
Palmas, Canary Islands, Spain.

Yli-Jyrä, A. (2005). Toward a widely usable finite-state
morphology workbench for less studied languages –
part I: desiderata. Nordic Journal of African Studies,
14(4): 479 – 491.

