Genetic stories behind village sign languages
– the co-evolution of deafness with sign language –

June, 2013
Minerva-Gentner Symposium on Emergent Languages and Cultural Evolution
Berg en Dal, The Netherlands

Dan Dediu
Language and Genetics
Max Planck Institute for Psycholinguistics
Nijmegen
The Netherlands
Overview

- Genetic mechanisms in hearing loss
- *DFNB1* (ABSL) and *DFNB3* (Kata Kolok)
- Models of genetic hearing loss and sign language
- The origins, evolution and stability of village sign languages
Genetic mechanisms in hearing loss

- Many types of hearing loss

- Acquired
 - Drugs
 - Infections
 - Head injury
 - Noise
 - Aging

- Congenital
 - Prenatal infections
 - Genetics
• Many types of hearing loss → **genetic role**
Some examples: TECTA

- Ear Canal
- Inner Ear
- Eustachian Tube
- Pinna
- Middle Ear
- Eardrum

The Organ of Corti

TECTA
Some examples: TECTA

- Tectorial membrane:
 → collagen
Some examples: \textit{TECTA}

- Tectorial membrane:
 - \rightarrow collagen
 - \rightarrow non-collagenous proteins
 - \rightarrow \textit{\textalpha-tectorin}

\textit{TECTA} gene (11q23.3)
Some examples: **TECTA**

- **Tectorial membrane:**
 - → collagen
 - → non-collagenous proteins
 - → *α-tectorin*

TECTA gene (11q23.3)
Some examples: TECTA

- Tectorial membrane:
 - → collagen
 - → non-collagenous proteins
 - → α-tectorin

TECTA gene

$DFNA12$ - dominant
Some examples: TECTA

- Tectorial membrane:
 - → collagen
 - → non-collagenous proteins
 - → α-tectorin

TECTA gene

→ DFNA12 - dominant
→ DFNB21 - recessive
Some examples: mitochondrial 12S rRNA
Some examples: mitochondrial 12S rRNA
Some examples: mitochondrial 12S rRNA

Own genetic code
→ own translation machinery
→ own ribosomes

Figure 1

Small subunit ribosomal RNA

MTRNR1
Some examples: mitochondrial 12S rRNA

Mitochondria → ancient bacteria (endosymbiotic theory)
Some examples: mitochondrial 12S rRNA

Mitochondria → ancient bacteria (endosymbiotic theory)
→ mitochondrial ribosomes are very similar to bacterial ribosomes

Mutations (e.g. A1555G)

even more similar

modifiers
Some examples: mitochondrial 12S rRNA

Hair cells are more affected by mitochondrial ribosomal impaired function more than other cells? → specific phenotype

Mutations (e.g. A1555G)

even more similar

modifiers
Congenital non-syndromic deafness

- Many loci (e.g., http://hereditaryhearingloss.org/main.aspx?c=.HHH&n=86163)
- Autosomal dominant: $DFNAnn$ (~25)
Congenital non-syndromic deafness

- Many loci (e.g., http://hereditaryhearingloss.org/main.aspx?c=.HHH&n=86163)

- Autosomal dominant: $DFNAnn$, recessive: $DFNBnn$ (~40)
DFNB1A/B (GJB2 and GJB6)

- Autosomal recessive
- 13q12.11
- **GJB2** (Gap junction beta-2; Connexin 26) and **GJB6** (Gap junction beta-6; Connexin 30)
• Autosomal recessive

• 13q12.11

• \textit{GJB2} (Gap junction beta-2; Connexin 26) and \textit{GJB6} (Gap junction beta-6; Connexin 30)

• \textit{GJB2}: \(\sim\)90 mutations \(\rightarrow\) non-syndromic deafness
 – other mutations: syndromes (skin + deafness)

• \textit{GJB6}: some mutations \(\rightarrow\) non-syndromic deafness
 – other mutations: skin disorders

\(\rightarrow\) potassium levels in the inner ear?
DFNB3 (MYO15A)

- Autosomal recessive
- 17p11.2
- MYO15A (unconventional myosin-15; myosin XVa)
 \rightarrow stereocilia

The Organ of Corti
DFNB3 (MYO15A)

- Autosomal recessive
- 17p11.2
- *MYO15A* (unconventional myosin-15; myosin XVa)
 → sterocilia
DFNB3 (MYO15A)

- Autosomal recessive
- 17p11.2
- **MYO15A** (unconventional myosin-15; myosin XVa)
 → sterocilia
DFNB3 (MYO15A)

- Autosomal recessive
- 17p11.2
- *MYO15A* (unconventional myosin-15; myosin XVa)
 - → sterocilia
 - → A2674T mutation → non-functional protein → abnormal stereocilia → hearing loss
ABSL: population & evolutionary genetics

- Al-Sayyid Bedouin community
- ~200 years ago
- 3rd generation
- ~3,500 members
- ~3.3% deaf members
- social integration
- ABSL – L2 for hearers
Kata Kolok: population & evolutionary genetics

- Bengkala village, Bali
- ~150-300(?) years ago
- ~10-20(?) generations
- ~2,200 members
- ~2.2% deaf
- social integration
- KK – L2 for hearers
ABSL & Kata Kolok

- **Recessive** → hard to predict
• Recessive → hard to predict
• Non-syndromic → no other ill effects
• Recessive → hard to predict
• Non-syndromic → no other ill effects
• Inbreeding → increasing frequency
ABSL & Kata Kolok

- Recessive → hard to predict
- Non-syndromic → no other ill effects
- Inbreeding → increasing frequency
- Social integration → increased biological fitness
• Recessive \rightarrow hard to predict
• Non-syndromic \rightarrow no other ill effects
• Inbreeding \rightarrow increasing frequency
• Social integration \rightarrow increased biological fitness

True gene-culture co-evolution
ABSL & Kata Kolok

What can we say about these parameters?

Emergent generalized sign language

Increased biological fitness of deafness mutation

Recessive deafness
long-term
high frequency

Emergent generalized sign language
Models of sign language genetics

- Gene-culture co-evolution tradition
- Genetic epidemiology approach
- Critique and perspective

→ see tomorrow Alessandro Gialluisi's talk
Series of papers:

Gene-culture co-evolution

• Basic ideas:
 – **Sign language**:
 • *monolithic* cultural trait
 • an individual has it or not
 • transmission: *vertical*, oblique, horizontal
 • learning:
 – both parents **sign** → prob. \(b \) and \(c \)
 – single parent signs → reduced by \(l \)
 – oblique: \(f \) and \(g \)
 – horizontal: \(h \) and \(i \)
 – maternal grandparents...
Gene-culture co-evolution

Basic ideas:

- Genetics:
 - diploid biallelic locus
 - genotypes \(AA\), \(Aa\) and \(aa\)
 - \(A\) dominant
 - \(aa\) → deaf from birth
 - allele frequencies: \(p\) (\(A\)) and \(q\) (\(a\))
 - fraction of assortative matings: \(m\)
 - by deafness
 - by sign language use
Gene-culture co-evolution

- Other assumptions:
 - equilibrium
 - $0 < p, q < 1$ (later, $q << 1$)
 - $0 \leq m < 1$
 - $0 \leq b \leq c \leq 1$
 - $0 < l \leq 1$
Gene-culture co-evolution

- **Conclusions:**
 - If sign language “cannot jump a generation”:
 - Assortment by deafness → helps persistence
 - Assortment by signing → hinders persistence
 - Dominant helps more than recessive
 - Horizontal & vertical → don't seem to matter
 - **Grandparental transmission** (language “can jump”):
 - Assortative mating high → grandparental transmission helps
Gene-culture co-evolution

- **Conclusions:**
 - If sign language “cannot jump a generation”:
 - Assortment by deafness → helps persistence
 - Assortment by signing → hinders persistence
 - Dominant helps more than recessive
 - Horizontal & vertical → don’t seem to matter
 - Grandparental transmission (language “can jump”):
 - Assortative mating high → grandparental transmission helps

 → **assortative mating** by deafness helps most!
Genetic epidemiology

• Series of papers:

Genetic epidemiology

- Basic ideas:
 - **Assortative mating** by deafness
 - **Relaxed selection** against deafness
Genetic epidemiology

- Compare E.A. Fay's 19th century data on deafness
- With 21st century data from a comparable sample
Genetic epidemiology

- Compare E.A. Fay's 19th century data on deafness
- With 21st century data from a comparable sample

→ dramatic increase (~5 times) over 100 years
→ linear increase over the last 60 years
→ not assortative mating for deafness per se but linguistic homogamy
Genetic epidemiology

- **Computer simulations:**
 - Agent-based, non-overlapping generations
 - 3 recessive loci
 - Deafness fitness, f
 - Assortative mating proportion, m
 - Fixed population size (200,000 agents)
 - Fixed sex ratio (1:1)
Genetic epidemiology

\[f = 0.0 \quad m = 0\% \quad f: 0 \rightarrow 1 \quad M: 0\% \rightarrow 90\% \quad f = 1.0 \quad m = 90\% \]
Genetic epidemiology

Frequent gene

Infrequent genes:
- linked to Cx
- unlinked to Cx

\[f = 0.0 \]
\[m = 0\% \]
\[f: 0 \rightarrow 1 \]
\[M: 0\% \rightarrow 90\% \]
\[f = 1.0 \]
\[m = 90\% \]
Genetic epidemiology

• **Conclusions:**
 - Assortative mating + relaxed selection → increase frequency
 - Linguistic homogamy
 - Initially higher freq. genes → disproportionately amplified
Conclusions:
- Assortative mating + relaxed selection → increase frequency
- Linguistic homogamy
- Initially higher genes disproportionately amplified

→ assortative mating for sign language/linguistic homogamy
The origins, evolution and stability of village sign languages

- Conditions & models → Alessandro

- Observation 1: many potential genes → why do so few get “used” ($DFNB1$, $DFNB3$...)?

- Observation 2: Endogamy/inbreeding is not infrequent → why so few village sign languages?

- Observation 3: Most seem relatively young → where are the old ones?
The origins, evolution and stability of village sign languages

→ probably the village sign languages are **fragile**:
 - **genetic** conditions (inbreeding, assortment)
 - **cultural** conditions (social acceptance)
 - **linguistic** conditions (“critical mass”)

→ most appear, flicker and disappear
→ **special conditions** for their long-term maintenance
→ if they are good models for language origins & evolution then maybe language appeared multiple times and died out
Thank you!

Questions?

Special thanks to Steve Levinson, Connie de Vos, Alessandro Gialuisi, Clyde Franks & Simon Fisher