You are here: Home Publications Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance

Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance

Schreiweis, C., Bornschein, U., Burguière, E., Kerimoglu, C., Schreiter, S., Dannemann, M., Goyal, S., Rea, E., French, C. A., Puliyadi, R., Groszer, M., Fisher, S. E., Mundry, R., Winter, C., Hevers, W., Pääbo, S., Enard, W., & Graybiel, A. M. (2014). Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance. Proceedings of the National Academy of Sciences of the United States of America, 111, 14253-14258. doi:10.1073/pnas.1414542111.
The acquisition of language and speech is uniquely human, but how genetic changes might have adapted the nervous system to this capacity is not well understood. Two human-specific amino acid substitutions in the transcription factor forkhead box P2 (FOXP2) are outstanding mechanistic candidates, as they could have been positively selected during human evolution and as FOXP2 is the sole gene to date firmly linked to speech and language development. When these two substitutions are introduced into the endogenous Foxp2 gene of mice (Foxp2hum), cortico-basal ganglia circuits are specifically affected. Here we demonstrate marked effects of this humanization of Foxp2 on learning and striatal neuroplasticity. Foxp2hum/hum mice learn stimulus–response associations faster than their WT littermates in situations in which declarative (i.e., place-based) and procedural (i.e., response-based) forms of learning could compete during transitions toward proceduralization of action sequences. Striatal districts known to be differently related to these two modes of learning are affected differently in the Foxp2hum/hum mice, as judged by measures of dopamine levels, gene expression patterns, and synaptic plasticity, including an NMDA receptor-dependent form of long-term depression. These findings raise the possibility that the humanized Foxp2 phenotype reflects a different tuning of corticostriatal systems involved in declarative and procedural learning, a capacity potentially contributing to adapting the human brain for speech and language acquisition.
About MPI

This is the MPI

The Max Planck Institute for Psycholinguistics is an institute of the German Max Planck Society. Our mission is to undertake basic research into the psychological,social and biological foundations of language. The goal is to understand how our minds and brains process language, how language interacts with other aspects of mind, and how we can learn languages of quite different types.

The institute is situated on the campus of the Radboud University. We participate in the Donders Institute for Brain, Cognition and Behaviour, and have particularly close ties to that institute's Centre for Cognitive Neuroimaging. We also participate in the Centre for Language Studies. A joint graduate school, the IMPRS in Language Sciences, links the Donders Institute, the CLS and the MPI.

 

Street address
Wundtlaan 1
6525 XD Nijmegen
The Netherlands


Mailing address
P.O. Box 310
6500 AH Nijmegen
The Netherlands

Phone:   +31-24-3521911
Fax:        +31-24-3521213
E-mail:   


Public Outreach Officer
Charlotte Horn