You are here: Home Publications Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition

Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition

Rivero, O., Selten, M. M., Sich, S., Popp, S., Bacmeister, L., Amendola, E., Negwer, M., Schubert, D., Proft, F., Kiser, D., Schmitt, A. G., Gross, C., Kolk, S. M., Strekalova, T., van den Hove, D., Resink, T. J., Nadif Kasri, N., & Lesch, K. P. (2015). Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition. Translational Psychiatry, 5: e655. doi:10.1038/tp.2015.152.
Cadherin-13 (CDH13), a unique glycosylphosphatidylinositol-anchored member of the cadherin family of cell adhesion molecules, has been identified as a risk gene for attention-deficit/hyperactivity disorder (ADHD) and various comorbid neurodevelopmental and psychiatric conditions, including depression, substance abuse, autism spectrum disorder and violent behavior, while the mechanism whereby CDH13 dysfunction influences pathogenesis of neuropsychiatric disorders remains elusive. Here we explored the potential role of CDH13 in the inhibitory modulation of brain activity by investigating synaptic function of GABAergic interneurons. Cellular and subcellular distribution of CDH13 was analyzed in the murine hippocampus and a mouse model with a targeted inactivation of Cdh13 was generated to evaluate how CDH13 modulates synaptic activity of hippocampal interneurons and behavioral domains related to psychopathologic (endo)phenotypes. We show that CDH13 expression in the cornu ammonis (CA) region of the hippocampus is confined to distinct classes of interneurons. Specifically, CDH13 is expressed by numerous parvalbumin and somatostatin-expressing interneurons located in the stratum oriens, where it localizes to both the soma and the presynaptic compartment. Cdh13−/− mice show an increase in basal inhibitory, but not excitatory, synaptic transmission in CA1 pyramidal neurons. Associated with these alterations in hippocampal function, Cdh13−/− mice display deficits in learning and memory. Taken together, our results indicate that CDH13 is a negative regulator of inhibitory synapses in the hippocampus, and provide insights into how CDH13 dysfunction may contribute to the excitatory/inhibitory imbalance observed in neurodevelopmental disorders, such as ADHD and autism.
About MPI

This is the MPI

The Max Planck Institute for Psycholinguistics is an institute of the German Max Planck Society. Our mission is to undertake basic research into the psychological,social and biological foundations of language. The goal is to understand how our minds and brains process language, how language interacts with other aspects of mind, and how we can learn languages of quite different types.

The institute is situated on the campus of the Radboud University. We participate in the Donders Institute for Brain, Cognition and Behaviour, and have particularly close ties to that institute's Centre for Cognitive Neuroimaging. We also participate in the Centre for Language Studies. A joint graduate school, the IMPRS in Language Sciences, links the Donders Institute, the CLS and the MPI.

 

Street address
Wundtlaan 1
6525 XD Nijmegen
The Netherlands


Mailing address
P.O. Box 310
6500 AH Nijmegen
The Netherlands

Phone:   +31-24-3521911
Fax:        +31-24-3521213
E-mail:   


Public Outreach Officer
Charlotte Horn