You are here: Home Publications Age-related changes in predictive capacity versus internal model adaptability: Electrophysiological evidence that individual differences outweigh effects of age

Age-related changes in predictive capacity versus internal model adaptability: Electrophysiological evidence that individual differences outweigh effects of age

Bornkessel-Schlesewsky, I., Alday, P. M., Kretzschmar, F., Grewe, T., Gumpert, M., Schumacher, P. B., & Schlesewsky, M. (2015). Age-related changes in predictive capacity versus internal model adaptability: Electrophysiological evidence that individual differences outweigh effects of age. Frontiers in Aging Neuroscience, 7: 217. doi:10.3389/fnagi.2015.00217.
Hierarchical predictive coding has been identified as a possible unifying principle of brain function, and recent work in cognitive neuroscience has examined how it may be affected by age–related changes. Using language comprehension as a test case, the present study aimed to dissociate age-related changes in prediction generation versus internal model adaptation following a prediction error. Event-related brain potentials (ERPs) were measured in a group of older adults (60–81 years; n = 40) as they read sentences of the form “The opposite of black is white/yellow/nice.” Replicating previous work in young adults, results showed a target-related P300 for the expected antonym (“white”; an effect assumed to reflect a prediction match), and a graded N400 effect for the two incongruous conditions (i.e. a larger N400 amplitude for the incongruous continuation not related to the expected antonym, “nice,” versus the incongruous associated condition, “yellow”). These effects were followed by a late positivity, again with a larger amplitude in the incongruous non-associated versus incongruous associated condition. Analyses using linear mixed-effects models showed that the target-related P300 effect and the N400 effect for the incongruous non-associated condition were both modulated by age, thus suggesting that age-related changes affect both prediction generation and model adaptation. However, effects of age were outweighed by the interindividual variability of ERP responses, as reflected in the high proportion of variance captured by the inclusion of by-condition random slopes for participants and items. We thus argue that – at both a neurophysiological and a functional level – the notion of general differences between language processing in young and older adults may only be of limited use, and that future research should seek to better understand the causes of interindividual variability in the ERP responses of older adults and its relation to cognitive performance.
About MPI

This is the MPI

The Max Planck Institute for Psycholinguistics is an institute of the German Max Planck Society. Our mission is to undertake basic research into the psychological,social and biological foundations of language. The goal is to understand how our minds and brains process language, how language interacts with other aspects of mind, and how we can learn languages of quite different types.

The institute is situated on the campus of the Radboud University. We participate in the Donders Institute for Brain, Cognition and Behaviour, and have particularly close ties to that institute's Centre for Cognitive Neuroimaging. We also participate in the Centre for Language Studies. A joint graduate school, the IMPRS in Language Sciences, links the Donders Institute, the CLS and the MPI.

 

Street address
Wundtlaan 1
6525 XD Nijmegen
The Netherlands


Mailing address
P.O. Box 310
6500 AH Nijmegen
The Netherlands

Phone:   +31-24-3521911
Fax:        +31-24-3521213
E-mail:   


Public Outreach Officer
Charlotte Horn