You are here: Home Q&A Questions and Answers

Questions and Answers

Vragen en Antwoorden Nederlands Fragen und Antworten Deutsch

Is there something you have always wanted to know about language? We might have an answer! On this page we answer questions about various aspects of language asked by people outside of the language researcher community.

Show or Hide answerWhat's the link between language and programming in the brain
Link & Share

Siegmund et al (2014) were the first to empirically investigate the link between programming and other cognitive domains, such as language processing, at least using modern neuroimaging methods. They used functional magnetic resonance imaging (fMRI) which measures changes in local blood oxygenation, as a result of brain activity in different networks across the brain. Undergraduate students of computer science were scanned while reading code snippets for comprehension and while reading similar code, looking for syntax errors without comprehension. The results showed activation in the classical language networks, including activation in Broca's, Wernicke's and Geschwind's territories, more in the left hemisphere.

The code was made to enhance so called bottom-up comprehension, which means reading and understanding expression by expression and line by line, rather than browsing the overall structure of the code. This process can be compared to language processes such as clipping words together, according to syntax, to arrive at a coherent sentence meaning (as well as connection meaning across sentences in discourse). It is possible, and has been suggested in the computer science literature on the skill set needed to be a good programmer (Dijkstra, 1982), that people master their native language well are also more efficient software developers. A mechanistic explanation could be the strength of the connections between the mentioned brain regions, which changes from person to person. In summary, similar brain networks are found for programming and language comprehension.

Answer by: Julia Udden, Harald Hammarström and Rick Jansen

 

Siegmund, J., Kästner, C., Apel, S., Parnin, C., Bethmann, A., Leich, T., Saake, G. & Brechmann, A. (2014) Understanding Source Code with Functional Magnetic Resonance Imaging. In Proceedings of the ACM/IEEE International Conference on Software Engineering (ICSE).

Dijkstra. How Do We Tell Truths that Might Hurt? In Selected Writings on Computing: A Personal Perspective, 129–131. Springer, 1982.

Show or Hide answerWhy do bilingual stroke patients sometimes recover only one language?
Link & Share

When a person suffers from a stroke, the blood flow to certain areas is rapidly disturbed either because a blood vessel starts bleeding (haemorrhage) or because a blood vessel is blocked. If the stroke affects brain areas which are important for language, then the language functions can be partially or fully lost. This condition is called aphasia, but it is sometimes reversible at least to some degree with time, treatment and rehabilitation. Bilinguals, that is, people who speak more than one language, are known to recover from aphasia in a number of different ways. The most common case is when the bilingual patient similarly recovers both languages equally well as in parallel aphasia. In some cases, however, the recovery of bilingual is disproportionately favouring one of his/her languages and this type of recovery is called selective aphasia.

7_13_strokepatients

The case of selective aphasia made researchers initially believe that each language of a bilingual person must be located in a different brain area, given that one language recovers better than the other after the stroke. However, with the help of brain imaging scans we now know that this idea is not correct. On the contrary, when a person speaks many languages, they all activate a common network of brain areas. While the whole picture of how the brain generates multiple languages is still partly unclear, we do know a number of factors that seem to influence to what extent the languages of a bilingual patient will recover after a stroke. If a person is less proficient in one of the two languages, this language may not recover as good as the more proficient language. This means that the more automatic a skill is, the easier it is to recover it, whereas something that takes effort such as language that one only speaks rarely is harder to recover. Social factors and emotional involvement are also important if we want to understand which language will recover after a stroke, for instance how often a specific language is used, or what emotions are associated with a specific language. However, it is still unclear exactly how these factors interplay in predicting the recovery success.

One of the current theories on why bilingual aphasics may disproportionately recover one language better than the other suggests that this happens when the stroke damages specific control mechanisms in the brain. When a bilingual person knows two languages, he/she needs to suppress or ‘switch off’ one of the languages while using the other language. If the mechanisms that control this switch are damaged during the stroke, the aphasic patient may no longer be able to similarly recover both languages as the ability to control the language use has been lost. In this case the person may appear to have completely lost one of the languages, but the problem is actually one of control. Recently researchers found that the control mechanisms are more impaired in bilinguals with selective aphasia who recover only one language than in bilinguals with parallel aphasia who recover both languages. Interestingly, when languages recover after stroke, the connections between language and control areas in the brain are re-established. While this interesting finding supports the theory linking selective aphasia to impaired control mechanisms, it is only one of several theories and researchers are currently trying to better understand what other causes may also underlie the surprising recovery patterns that can be seen in bilingual aphasia.

Written by Diana Dimitrova and Annika Hulten

Further Reading

Fabbro, F. (2001). The bilingual brain: Bilingual aphasia. Brain and Language, 79(2), 201-210. pdf

Green, D. W., & Abutalebi, J. (2008). Understanding the link between bilingual aphasia and language control. Journal of Neurolinguistics, 21(6), 558-576.

Verreyt, N. (2013). The underlying mechanism of selective and differential recovery in bilingual aphasia. Department of Experimental psychology, Ghent, Belgium. pdf

Show or Hide answerHow do we form the sounds of speech?
Link & Share

The vast majority of speech sounds are produced by creating a stream of air which flows from the lungs through the mouth or nose. We use this stream of air to form specific sounds with our vocal folds and/or by changing the configuration of our mouths.

7.11 p b f v

When we produce consonants, a constriction is made somewhere in the mouth, either by stopping the air stream entirely (for example with our lips when saying 'p' or with our tongues when saying 't') or by leaving a very narrow gap which makes the air hiss as it passes (for example with our lips and teeth when saying 'f' or with our tongues when saying 's').

7.11 s z m

We also use our vocal-folds to differentiate consonants. When we bring our vocal folds close together, the stream of air makes them vibrate, which sounds like a hum; when they are apart, they do not vibrate. You can feel this difference by putting your finger on your Adam's apple when you say 'ssss' and 'zzzz' - can you feel how 'zzzz' is voiced and 'ssss' is not voiced? When we produce vowels, we change the shape of our mouths by moving our tongues, lips and jaw.

The different shapes of the vocal tract act as different acoustic filters, altering the hum produced by the vocal cords in different ways. For example, we move our tongues right to the front of our mouths and make our lips wide to make an 'ie' sound, and we move our tongues to the back of our mouths and make our lips round to make an 'oe' sound. For an 'aaa' sound, we move our tongue to the bottom of our mouth, lower the jaw and open our lips wide.

Finally, there are other specific ways of creating speech sounds, such as moving the stream of air through the nose to create nasal sounds like 'm', or creating a small pressure vacuum with the tongue before releasing it with a sharp popping sound, which is how people produce click sounds in some African languages.

 Written by Matthias Sjerps, Matthias Franken & Gwilym Lockwood 

Further reading:

Ladefoged, P. (1996). Elements of acoustic phonetics (second ed.) (link)

Show or Hide answerWhat is the difference between sleep-talking and talking while awake?
Link & Share

People do all kinds of things while sleeping. They move around, mumble, laugh, and some also sometimes whisper or produce speech while asleep. Sleep-talking (or: somniloquy) happens at all ages and may occur during all phases of sleep. But what exactly is the difference between sleep-talking and normal everyday speech?

7.09 sleep

Image: Paul Sapiano

Sleep-talk contains more speech errors than everyday speech. For instance, sleep-talkers can have trouble retrieving a word (word finding problems) or switch individual sounds when producing a word (for example beatag instead of teabag). While this of course also occurs during normal speech, it happens more frequently during sleep. Sleep-talk sometimes resembles speech produced by aphasic patients. In addition, sleep-talk resembles the speech that is sometimes produced by patients suffering from schizophrenia, in that there is less of a connection between utterances, which may lead to relatively incoherent discourse. Finally, sleep-talk may be less well articulated (mumbling) than everyday speech and contain incomprehensible words or newly invented words (neologisms).

However, perhaps the most striking thing is the similarity between sleep-talk and speech produced when awake. People produce full sentences while sleeping and the grammatical structure of their utterance is often perfectly correct. There are even some anecdotal reports describing people that would be more eloquent and creative during sleep compared to being awake, for instance when speaking a second language.

Sleep-talking does not necessarily indicate a psychological disorder or psychopathology. However, it may co-occur with sleep-disorder syndromes such as somnambulism (walking around while sleeping). Also, people that have encountered a traumatic event (such as soldiers who have fought in a war) are found to talk more in their sleep than non-traumatized control subjects. Besides such environmental factors, it has been found that there is also a genetic component to sleep-talking. If your parents are regular sleep-talkers, there is a higher chance that you are a sleep-talker yourself as well.

In conclusion, in linguistic terms sleep-talk differs less from talking while being awake than one may suspect. The main difference boils down to the popular belief that we have less control over what we say during sleep than during the day. Or as The Romantics put it in their 1984 hit: "I hear the secrets that you keep; When you're talking in your sleep; and I know that I’m right, cause I hear it in the night". Whether this is really the case has not been researched scientifically.

 Written by David Peeters and Roel M. Willems

Further reading:

Arkin, A. (1981). Sleep talking. Psychology and psychophysiology. Hillsdale, NJ: Lawrence Erlbaum Associates.

Show or Hide answerDo people who grow up speaking more than one language use more brain area for language processing? And, does the brain use more resources especially for languages of different structures?
Link & Share

People who speak more than one language are generally referred to as being bilingual, but there are many ways in which a person can become bilingual. Some grow up learning two languages at the same time, others learn them sequentially so that the mother tongue is learned first and a second language is learned later. However, in both cases the person may be equally fluent in each of the two languages. As it turns out, it is more important for the brain how fluent the person is, than how or when the languages are learnt. Current brain research studies suggest that when a person is equally good in both languages the brain uses the same areas, with the same level of activation and for the same reasons in both languages.

bilingual sign

In many cases bilinguals are not equally good at both languages. If one compares the brain activation when a person uses his or her native and second language and is not equally fluent in both languages, the second language usually activates the same general language areas as the native language but these areas are more active in the second language. The less fluent language may also recruit areas not related directly to language but to cognitive control and attention. This means that when something is more difficult more brain resources are needed to process it.

Many have asked us if languages with different structure are processed differently if they are spoken by the same person, as may be the case for a bilingual. Languages vary greatly in how they express the relations of words in a sentence (who did what to whom). Some languages like English, Dutch and Chinese change the position of words in a sentence (which we call ‘word order’) while other languages like Japanese and Korean include additional short words without meaning to express these relations (which we call ‘case particles’). If the two languages of the bilingual belong to different language families (like English and Japanese), it is conceivable that they are not processed similarly, even when the bilingual is equally fluent in both languages. Currently very few studies exist on this, but at least there is one study on native Chinese people and native Korean people who speak both English and Japanese as a second language. The study found that brain activations depended on how similar the grammars of the non-native language was to that of the native language. Using English as a second language activated the language system stronger for the Korean native group than for the Chinese native group, because English and Korean are more different. Using Japanese as a second language activated slightly more brain areas for Chinese native speakers than for Korean native speakers, also because the grammars of Chinese and Japanese differ more. An explanation may be that besides proficiency and age of acquisition, brain activations depend on the differences and similarities of the languages’ grammars. Sometimes reaching automaticity on the level of the brain may take longer than reaching a proficient behavioral performance, especially if the language has a very different structure from your native language. However, this remains an open question. It seems clear that whichever language is spoken, on the level of the brain the same regions underlie language processing.

Written by Annika Hulten & Diana Dimitrova

Further reading:

Abutalebi, J. (2008). Neural aspects of second language representation and language control. Acta Psychologica,128, 466-478.

Kotz, S. A. (2009). A critical review of ERP and fMRI evidence on L2 syntactic processing. Brain Language, 109, 68-74.

Jeong, H., Sugiura, M., Sassa, Y., Yokoyama, S., Horie, K., Sato, S., & Kawashima, R. (2007). Cross-linguistic influence on brain activation during second language processing: An fMRI study. Bilingualism Language and Cognition, 10(2), 175.

About MPI

This is the MPI

The Max Planck Institute for Psycholinguistics is an institute of the German Max Planck Society. Our mission is to undertake basic research into the psychological,social and biological foundations of language. The goal is to understand how our minds and brains process language, how language interacts with other aspects of mind, and how we can learn languages of quite different types.

The institute is situated on the campus of the Radboud University. We participate in the Donders Institute for Brain, Cognition and Behaviour, and have particularly close ties to that institute's Centre for Cognitive Neuroimaging. We also participate in the Centre for Language Studies. A joint graduate school, the IMPRS in Language Sciences, links the Donders Institute, the CLS and the MPI.

 
Questions and Answers

whiet question mark on MPG green 124pt, stroke 2pt

This project was coordinated by:

Katrien Segaert 
Katerina Kucera
Judith Holler

Sean Roberts
Agnieszka Konopka
Gwilym Lockwood
Elma Hilbrink
Joost Rommers
Mark Dingemanse
Connie de Vos