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PREFACE 

In the latter half of the 1950's, Noam Chomsky began to develop 
mathematical models for the description of natural languages. 
Two disciplines originated in his work and have grown to maturity. 
The first of these is the theory of formal grammars, a branch of 
mathematics which has proven to be of great interest to informa
tion and computer sciences. The second is generative, or more 
specifically, transformational linguistics. Although these disciplines 
are independent and develop each according to its own aims and 
criteria, they remain closely interwoven. Without access to the 
theory of formal languages, for example, the contemporary study 
of the foundations of linguistics would be unthinkable. 

The collaboration of Chomsky and the psycholinguist, George 
Miller, around 1960 led to a considerable impact of transforma
tional linguistics on the psychology of language. During a period 
of near feverish experimental activity, psycholinguists studied the 
various ways in which the new linguistic notions might be used in 
the development of models for language user and language acquisi
tion. A good number of the original conceptions were naive and 
could not withstand critical test, but in spiteof this, transformational 
linguistics has greatly influenced modern psycholinguistics. 

The theory of formal languages, transformational linguistics, 
psycholinguistics, and their mutual relationships are the theme of 
this work. Volume I is an introduction to the theory of formal 
languages and automata; grammars are treated only as formal 
systems, and no application of the theory, linguistic or other, is 
made. Volume II in turn deals with applications of those mathe-
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matical models to linguistic theory. Volume III treats applications 
of grammatical systems to models of language user and language 
learner, as well as the formal questions which have arisen as a 
result of such applications. The material is cumulative: Volume II 
supposes a general understanding of Volume I, and Volume III 
refers to the subjects dealt with in Volumes I and II. Volumes II 
and III have their own preface, so we can now turn to some 
introductory remarks with respect to the present volume. 

Volume I, independent of the two following volumes, should 
be seen as an introduction to the theory of formal languages and 
automata. A number of similar introductions are available at the 
moment, but I have nevertheless undertaken the present work for 
three reasons. First, most available texts, because they suppose 
an acquaintance with sophisticated mathematical theories and 
methods, are beyond the reach of many students of linguistics 
and psychology. More often than not, Chomsky's and Miller's 
contributions to the Handbook of Mathematical Psychology prove 
too difficult for early graduate teaching. The present introduction 
is kept at a rather elementary level; a general knowledge of college 
mathematics will be sufficient to follow the text, although familiarity 
with the elements of set theory and statistics will certainly be an 
advantage. 

Second, existing introductions treat a number of subjects which 
have little obvious relation to linguistics or psychology. The 
linguist or the psychologist is obliged to make his own selection 
from among a series of topics which he does not yet understand, 
and he might search in vain for a treatment of topics which are 
especially relevant to his field. Probabilistic grammars and gram
matical inference, for example, are not treated in any of the 
existing introductions. Special attention has been paid to these 
topics in the present volume, but matters not directly relevant to 
linguistics or psychology have not been completely excluded, as a 
balanced presentation of the theory sets its own demands. 

The third reason for writing this introduction is to supply 
readers of the two following volumes with a concise survey of the 
main notions of formal language theory used there. The subject 
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index of this volume can be used to find definitions of technical 
terms: definitions are indicated by italicized page numbers. 

Without the help and cooperation of many, these three volumes 
could not have been realized. A first version was written during 
a sabbatical year at The Institute for Advanced Study in Princeton, 
New Jersey. I am deeply grateful to Professor Duncan Luce and 
to The Institute for the invitation which made my stay possible. 
Much in this work is due to the help and insights of Professor 
George Miller, former director of the Harvard Center for Cognitive 
Studies, where the new psychology of language originated under 
his guidance. Thanks to him I was granted a Research Fellowship 
at the Center in 1965, and by happy coincidence, he too was at the 
Institute for Advanced Study when I was composing the text. His 
attentive advice was most useful, especially in the writing of the 
third volume. Likewise, regular discussions with Dr. Philip Johnson-
Laird helped to clarify many of the psychological issues. Conver
sations with Professor Aravind Joshi on the subject matter of the 
first two volumes were also enormously stimulating and enjoyable; 
I profited almost daily from his erudition in the fields of both 
formal systems theory and mathematical linguistics. 

Finally, I wish to express my gratitude to all those who have 
contributed by critically reading the text in the original Dutch 
version: Professor L. Verbeek, Dr. H. Brandt Corstius, Mr. R. 
Brons, Dr. G. Kempen, Dr. A. van der Ven, Mr. E. Schils, Mr. 
L. Noordman, Dr. A. De Wachter-Schaerlaekens, and Professor 
A. Kraak. Their remarks not only prevented the printing of many 
disturbing errors, but also led to many enriching additions to the 
text. 

March 1973 W. J. M. Levelt 
Nijmegen 
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1 

GRAMMARS AS FORMAL SYSTEMS 

1.1. GRAMMARS, AUTOMATA, AND INFERENCE 

The theory of formal languages originated in the study of natural 
languages. The description of a natural language is traditionally 
called a GRAMMAR; it should indicate how the sentences of a 
language are composed of elements, how elements form larger 
units, and how these units are related within the context of the 
sentence. The theory of formal languages proceeds from the need 
to provide a formal mathematical basis for such descriptions. 

Chomsky, the founder of the theory, envisaged more than a 
simple refinement of traditional linguistic description. He was 
primarily concerned with a more thorough examination of the 
basis of linguistic theory. This involves such questions as "what 
are the goals of linguistic theory?", "what conditions must a 
grammar fulfill in order to be adequate in view of these goals?", 
and "what is the general form of a linguistic theory?" Without a 
formal basis, these and similar questions cannot be handled with 
sufficient precision. Volume II of this book will deal with these 
issues; it will be shown that a formal language can serve as a 
mathematical model for a natural language, while a formal gram
mar can act as a model for a linguistic theory. 

From a mathematical point of view, grammars are FORMAL 
SYSTEMS, like Turing machines, computer programs, prepositional 
logic, theories of inference, neural nets, and so forth. Formal 
systems characteristically transform a certain INPUT into a par
ticular OUTPUT by means of completely explicit, mechanically 
applicable rules. Input and output are strings of symbols taken 
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from a particular alphabet or VOCABULARY. For a formal grammar 
the input is an abstract START SYMBOL; the output is a string of 
"words" which constitutes a "sentence" of the formal "language". 
Therefore a grammar may be considered as a GENERATIVE system; 
this feature is often emphasized by the use of the term GENERATIVE 
GRAMMAR. The quotation marks around "word", "sentence", and 
"language" indicate that these terms are not used in their full 
linguistic sense, but rather are concepts which must be strictly 
defined within the formal system. In linguistic applications of 
formal language theory, as in Volume II of this book, care must 
be taken to establish the relationships between the formal and 
linguistic notions. In the present volume, however, we will no 
longer use the quotation marks, and will omit the adjective 
"formal" for both language and grammar where the context allows. 

A second type of formal system can use the sentences of a lan
guage as input; its output is generally an abstract stop symbol. 
Systems of this type are called AUTOMATA, and may be considered 
as ACCEPTING SYSTEMS. The theory of automata is older than that 
of formal language, and historically it was rather surprising that 
the two theories showed such close parallels that they often 
appeared to be mere notational variants. One can very well use 
an automaton rather than a formal grammar as a model for a 
theory of natural language, but although this has in fact been 
done, the generative grammar remains the preferred model. The 
interchangeability of grammars and automata indicates that the 
distinction between generative and accepting is less fundamental 
than it may at first appear. It is primarily a conceptual distinction; 
there are indeed automata with no "preferential direction" such 
as Turing machines, and grammars which are accepting rather 
than generative systems such as categorical grammars. However, 
from the point of view of presentation and application, the dicho
tomy has its merits. In psycholinguistics in particular it has a 
natural interpretation with reference to SPEAKER-HEARER models. 
Volume III of this book will offer several examples of such applica
tions. 

The third and last type of formal system which will be discussed 
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in this volume takes a sample of the sentences of a language as 
input; its output is a grammar which is in some way adequate 
for the language. Such systems are called GRAMMATICAL INFERENCE 
PROCEDURES. They can serve as models not only for linguistic 
discovery procedures (how can one find a grammar for a given 
corpus of sentences?) but also for theories of language acquisition. 

The mathematical growth of formal language theory has resulted 
in an enormous extension of its range of applications. Beyond its 
obvious applications in the analysis of computer languages, the 
theory is used for the formal description of visual patterns (see 
Volume III, paragraph 3.6.7. for such picture grammars), for 
subdivisions of logic, and for several other fields which deal with 
the formal representation of knowledge. 

Conversely, the integration of formal language theory into the 
theory of formal systems has made various mathematical tools, 
such as recursive function theory, available to the study of formal 
languages. 

The reader, however, need not be acquainted with such areas 
of mathematics in order to understand the present work which 
is meant to be an introduction. Our discussion will be limited to 
the relationship between formal language theory on the one hand 
and the theories of automata and inference on the other. Each of 
these has rather direct linguistic and psycholinguistic applications, 
and it is precisely the possibility of application which has served 
as the principal, though not only, criterion for selecting properties 
of the theories for discussion. This does not alter the fact that 
it is better to treat the structure of grammar, of automata, and of 
inference from an abstract than from an applied point of view. 
Such is the method which we shall follow here, beginning with a 
formal definition of the concept "grammar". 

1.2. THE DEFINITION OF "GRAMMAR" 

* For the formal definition of "grammar" we must introduce four 
concepts: terminal vocabulary, nonterminal vocabulary, produc
tion rule, and start symbol. 
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The TERMINAL VOCABULARY VT is the set of terminal elements 
with which the sentences of a language may be constructed. 
Elements of VT will be denoted by lower case letters from the 
beginning of the Latin alphabet. We write a e VT or a in VT when 
a belongs to the terminal vocabulary. 

The NONTERMINAL VOCABULARY VN consists of elements which 
are only used in the derivation of a sentence; they never occur 
as such in the sentences of the language. Elements of VN axe 
upper case Latin letters and are called VARIABLES or CATEGORY 
SYMBOLS. 

VN and VT are disjoint: their intersection, VN n VT, is empty. 
Together VN and VT form the vocabulary V of the grammar, 
thus V — VN U VT. A string of elements in V, regardless of 
whether they are variables, terminal elements, or both, will be 
denoted by a lower case letter of the Greek alphabet. A string 
may have 0, 1, or more elements; the string of 0 elements is called 
the NULL-STRING, and is represented by X. A string consisting 
exclusively of terminal elements may be denoted by a lower case 
letter from the end of the Latin alphabet. 

The symbol V*T is used to denote the set of all finite strings of 
elements from the terminal vocabulary. For example, if VT consists 
of two elements, a and b, i.e. VT = {a, b}, V? consists of X, a, b, 
aa, ab, bb, ba, aaa, aab, aba, bba,... If we wish explicitly to exclude 
the null-string X, we write F j , the set of all strings of positive 
length. Thus, V% = VT — X. Obviously, therefore, if VT is not 
empty, then V*T and F j contain an infinite number of elements 
(strings). Analogously one can define F* as the set of all possible 
strings of vocabulary elements, and V+ as the set of all possible 
strings of vocabulary elements except the null-string. The length 
of a string a is denoted by |a|; thus \a\ — 1, \aab\ = 3, and | A| = 0. 

The PRODUCTION RULES or productions of a grammar are ordered 
pairs of strings. They take the form a -> ft, where oc e V+ and 
P e V*. This means that string of elements a. of positive length can 
be replaced by, or rewritten as, string of elements fS, possibly X. 
Such rules apply in any context, i.e. if a is part of a longer string 
ya8, then yo& may be rewritten as yfi8 by the same rule. When a 
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string is rewritten as another string by a single application of a 
production rule, we use the symbol =>; thus ya.8 => yfiS. The latter 
string DERIVES DIRECTLY from the former. If there are productions 
such that a.y => <x2, a2 = a3, ... a„_! => a„, we may write o^ 4» a„, 
read "«i derives «„". The set of productions of a grammar is 
denoted by P; the set may also be described as a CARTESIAN 
PRODUCT. The set of all possible rules consists of all ordered pairs 
of strings which can be constructed in this manner; it may be 
denoted by V+ X V*, the cartesian product of V+ and V*. The 
productions of a grammar are a subset of this product: some 
strings of V+ may be replaced by some strings in V*. Thus P <= 
V+ X V\ 

The START SYMBOL of a grammar is denoted by S (originally 
for "sentence"); it is a particular element of VN. 

We can at this point define a grammar as follows. 
A GRAMMAR G = (VN, VT, P, S) is a system consisting of a 

nonterminal vocabulary VN, a terminal vocabulary VT, a set of 
productions P, and a start symbol S, with the following properties: 

(1) VN, VT and P are finite, nonempty sets. 
(2) VN n VT = 0. 
(3) P <= V+ x V. 
(4) S e VS. 

A SENTENCE generated by G is every element s of V*T for which 
S^s, i.e. it is a terminal string derivable from S by the produc
tions of P. 

The LANGUAGE JL(G) generated by G is the set of sentences 
generated by G. 

Two grammars Gi and Ga are (WEAKLY) EQUIVALENT if L(Gi) = 
L(G£), i.e. if they generate the same set of sentences. Another 
form of equivalence, STRONG EQUIVALENCE, will be discussed in 
Volume II, paragraph 2.1. 
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1.3. EXAMPLES 

EXAMPLE 1.1. Let G = (VN, VT, P, S), where VN = {£}, i.e. S is 
the only nonterminal symbol, Vp = {a, b}, P = {S1 -> tfS, S1 -> £}. 
Which language is generated by G? Repeated application of the 
first production gives S => aS => aa5 => aaaS, etc. None of these 
strings is a sentence, for all include the nonterminal symbol S. 
The only way to eliminate S is by use of the second production 
S -+ b. This will produce sentences such as b, ab, aab, aaab, etc. 
A sentence generated by G is thus a string of a's followed by a 
single b. A simple notation for language L(G) is {d*b}, where a* is 
any string of <z's of length ^ 0. 

EXAMPLE 1.2. Let G = (Fjr, Fy, P, S), where K^ = {S}, VT = 
{«, &}, P = {S -► «£«, 5 -* M*, S-*aa, S -> Z»i}. The first two 
rules may be applied and repeated in any order. This will produce 
such derivations as S * aSa => abSba =*• abbSbba => abbaSabba. 
The only way to derive sentences from such strings is by use of 
the third or fourth production; these replace S with aa or bb. In 
all cases the result is a string of a's and &'s, followed by the same 
string in reverse order. G is said to generate language {wwB}, 
where wR represents the reflection of w, and |w] > 1. L(G) is 
called a MIRROR IMAGE language. 

EXAMPLE 1.3. Let G = (VN, VT, P, S), where VN = {S,E,F}, 
VT = {a, £>, c, d}, P = {S -> £SF, S-* EF, E-* ab, F-* cd}. By 
applying the first production of P n — \ times, we obtain the string 
En-1SFn~1 (the exponent indicates the number of successive occur
rences of the element). By then using the second production once, 
one obtains EnFn. When, by application of the third and fourth 
productions respectively, all the E's are replaced by ab and all 
the F's by cd, the resulting string consists of n a&-pairs followed 
by n crf-pairs. Language L(G) consists of all sentences of the form 
(ab)n(cd)n, where n > 1. 

In this example a alternates with b, and c with d in the sentences 
of L(G). It is possible to modify the grammar in such a way that 
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the terminal elements will be neatly grouped in the sentences of L: 
first all a's, then all £>'s, etc. This will be the case in the following 
example. 

EXAMPLE 1.4. Language {anbncndn}, where n > 1, is generated by 
grammar G = (VN, VT, P, S), in which VN = {S, E, F, B, C}, 
VT = {a, b, c, d}, and P consists of the following productions: 

1. S -* ESF 4. F -> Cd 7. BC -* be 
2. S-+EF 5. Ba -> aB 8. Bb ->• bb 
3. E-*aB 6. dC -»■ Cd 9. cC ~* cc 

The first four productions are essentially the same as those of 
Example 1.3. They produce strings of the form {aB)n{Cd)n, where 
« > 1. The other five productions serve in the further grouping 
of the elements. By means of production 5 one can replace a string 
aBaBaB... of arbitrary length by a string of a's followed by a 
string ofB's. Production 6 acts similarly with respect to CdCdCd... 
sequences. We must now see to it that further rewriting in terminal 
symbols is possible only when these arrangements have in fact 
been performed; this is the purpose of rules 7 through 9. Rule 7 
serves to replace the pair BC in the center of the string with 
terminal elements, but it can be applied only if B and C are found 
in the right place in the center of the string. By means of produc
tion 8 the variables B are replaced by the terminal symbol b, on 
condition that each B is located directly to the left of a b. The 
process can be completed only when all the B's are already in the 
correct positions. Finally production 9 acts similarly in the right 
hand half of the string. The result is a string of the desired form, 
anbncndn; sentences of other forms cannot be generated by this 
grammar. 

EXAMPLE 1.5. It is possible to write a still more compact grammar 
for language {anbncndn}, namely G = (VN, VT, P, S), in which 
VM = {S, E, F}, VT = {a, b, c, d}, and P consists of the following 
productions: 
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1. S-+ESF 4. dF-^Fd 
2. S -» abed 5. Eb -► abb 
3. £a -»• aE 6. cf -> c«f 

The reader himself may now experiment with the operation of 
this grammar. 
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THE HIERARCHY OF GRAMMARS 

2.1. CLASSES OF GRAMMARS 

The definition of grammar given in the preceding chapter is abso
lutely general in the following intuitive sense: if a mechanical 
procedure can be contrived, according to which the sentences of 
language L can be enumerated in some order, then language L 
can be generated by a grammar in the defined form. We call this 
statement intuitive because the concept "mechanical procedure" 
has not yet been defined. One definition of it will be given in 
paragraph 7.4., but for the present one can roughly conceive of 
it as follows. Let us assume that we dispose of a general purpose 
computer with an unlimited memory. Let us further assume that 
a program can be written for this computer according to which 
each sentence of L, and only sentences of L, will appear in the 
output after a finite number of operations. (The program might, 
for example, produce the sentences in order of length: first X if it 
is in the language, then the sentences of length 1, followed by the 
sentences of length 2, etc.) We could then say that a procedure 
exists for the enumeration of the sentences of L, and that L is 
RECURSIVELY ENUMERABLE. Every recursively enumerable language 
can be generated by a grammar corresponding to the definition 
(we shall return to this matter in paragraph 7.4.). 

The class of recursively enumerable languages is large, but it is 
of little interest from a linguistic point of view. One would expect 
that natural languages have characteristic properties which would 
rather limit the range of possible syntactic structures in certain 
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respects. The class of recursively enumerable languages is therefore 
an unattractive model for natural languages because it is denned 
by procedures which may be completely arbitrary. Models of 
empirical interest will result only from the definition of more 
limited classes of grammars. It is better to reject too strong a 
model with good reason than to maintain a weak model and never 
discover the characteristic structure of a language. The class of 
recursively enumerable languages is the weakest conceivable model. 

Chomsky (1959 a, b) devised a schema for the classification of 
grammars which is now in general use. It is based on three in
creasingly restrictive conditions on the production rules. 

FIRST LIMITING CONDITION: For every production a-»j? in ? , 
|a| < \fi\. Thus the grammar contains no productions whose 
application would result in a decrease of string length. 

SECOND LIMITING CONDITION: For every production a -* fi in P, 
(1) a consists of only one variable, i.e. a e VN, and (2) /? # L The 
productions are of the form A -*■ /?, where /? e V+. 

THIRD LIMITING CONDITION: For every production a -*■ fi in P, 
(1) a e VN, and (2) /? has the form a or aB, where a e VT and 
B e VN- The rules are thus either of the form A -* a or of the form 
A -+aB. 

With these limiting conditions, grammars may be classified in 
the following way. 

TYPE-0 GRAMMARS are grammars which are not restricted by any 
of the limiting conditions. Their definition is simply that of "gram
mar"; they are also called UNRESTRICTED REWRITING SYSTEMS. 
Productions are of the form a -> /?. 

TYPE-1 GRAMMARS are grammars restricted by the first limiting 
condition. Productions have the form a -* f), where Ia| < |/?|. 
Type-1 grammars are also called CONTEXT-SENSITIVE GRAMMARS for 
reasons to be mentioned in paragraph 2.4. They obviously consti
tute a subclass of type-0 grammars. In fact they are a strict subset 
of the set of type-0 grammars, for there are type-0 grammars 
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which are not of type-1, namely, those grammars with at least one 
production where |a| > |/?|. The grammars given in Examples 1.1. 
through 1.5. satisfy this first condition and are therefore context-
sensitive. 

TYPE-2 GRAMMARS are grammars restricted by the second limiting 
condition. Productions have the form A -+ /? where fi # X. Gram
mars of this type are called CONTEXT-FREE GRAMMARS. The second 
condition implies the first: from \fi\ > 1 and \A\ = 1 it follows 
that \A\ < \p\. Context-free grammars are therefore context-sensi
tive, but the inverse is not true; the class of context-free grammars 
is a strict subset of the class of context-sensitive grammars. The 
grammars given in Examples 1.1., 1.2., and 1.3. are context-free. 

TYPE-3 GRAMMARS are grammars restricted by the third limiting 
condition. Productions have the form A ~* a or A -*■ aB. These 
are REGULAR GRAMMARS (in linguistic literature they are often called 
FINITE STATE GRAMMARS). In its turn the third limiting condition 
implies the second. Therefore the class of regular grammars is a 
subclass of the class of context-free grammars; in fact it is a strict 
subset. The grammar given in Example 1.1. is a regular grammar. 

Language types may be defined according to the various classes 
of grammars. A type-3 grammar generates a regular language (or 
finite state language), a type-2 grammar generates a context-free 
language, a type-1 grammar generates a context-sensitive language, 
and a type-0 grammar generates a (recursively enumerable) lan
guage. 

It does not follow, however, from the relations of inclusion 
which exist among the various types of grammars that corres
ponding languages are bound by the same relations of inclusion. 
We cannot exclude the possibility a priori that for every context-
free grammar there might exist an equivalent regular grammar. 
In that case all context-free languages might be generated by 
regular grammars, and consequently regular languages would not 
form a strict subset of context-free grammars. However in the 
following it will become apparent that the language types do show 
the same relations of strict inclusion as the grammar types: there 
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are type-0 languages which are not context-sensitive, context-
sensitive languages which are not context-free, and context-free 
languages which are not regular. Figure 2.1. illustrates this hierarch
ical relation, called the Chomsky Hierarchy. 

Fig. 2.1. The Chomsky Hierarchy of Languages. 

It is obvious that the null-string can be present only in type-0 
languages. Sometimes, however, it is convenient to add it to other 
languages as well. In the following we shall suppose in all cases, 
except in Chapter 3, that X has been added to the language, 
unless otherwise stated. 

In the remaining part of this chapter we shall deal with a few 
properties of each of the grammars. 

2.2. REGULAR GRAMMARS 

Most properties of regular grammars (RG's) can best be treated 
on the basis of the theory of automata (cf. chapter 4). Our discus
sion here will be limited to five theorems which will be needed in 
the remainder of the present chapter; four of them can easily be 
explained without reference to automata theory. 

We must first introduce a means of visual representation of 
grammatical derivations, called DERIVATION TREES, TREE DIAGRAMS, 
or PHRASE MARKERS (P-markers). The procedure is a general one 
which may be used not only for regular grammars, but also for 
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context-free grammars and some context-sensitive grammars. An 
example will illustrate the procedure. 

EXAMPLE 2.1. Let G = (VN, VT, P, S), where VN = {£5}, VT = 
{a, b}, and P = {S -» aB, B-»bS, B-»b}. G is thus a regular 
grammar. The sentences in L(G) consist of alternating a's and fe's, 
beginning with a and ending with b. Thus L(G) = {(ah)*} (by 
convention X e £((?)). 

Let us examine the derivation of the sentence ababab; it can 
be generated only in the following way: S => aB =>■ abS => a£a.B => 
ababS => ababaB =*- ababab. Figure 2.2.a. gives the tree diagram 
for this derivation, clearly illustrating each step. Beginning at S 
(at the top of the diagram), the tree divides into two branches, 
one leading to a, the other to B; this is the first step in the deriva
tion. From B two further branches lead to b and to S respectively, 
showing the second step. The remaining steps in the derivation 
may be discovered by inspection. 

Formally speaking, a (derivation) tree is a system of nodes and 
branches (or edges). Branches are directed connections between 
nodes, i.e. branches enter and leave the nodes. A tree has only 
one node which no branch enters; it is called the root or origin 
of the tree. Exactly one branch enters each of the remaining nodes. 
Moreover, a path may be found from each node to the root of the 
tree. Finally, each node bears a label. 

s b . s 

a B 

y 
Fig. 2.2. a. Derivation Tree for the Sentence ababab (Example 2.1.). 

b. Incomplete Derivation Tree. 
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A derivation in a context-free grammar can be represented by 
a tree diagram, all the nodes of which are labeled with elements 
of V. The root is the start symbol S, nodes from which branches 
leave are elements of VN, and nodes from which no branches leave 
are elements of VT. Each of these features can easily be verified 
in Figure 2.2.a. 

Sometimes it is considered unnecessary to show the entire deri
vation, and only the first few steps are given in an incomplete 
tree, as in Figure 2.2.b. In such a case it is possible that nodes 
from which no branches leave may be labeled as elements of VR. 

We can now return to the subject of regular grammars. It is 
evident that each string in a regular grammar derivation contains 
at most one variable, and that this variable is the last element of 
the string. Consequently, tree diagrams for such derivations branch 
to the right, i.e. at each step it is the rightmost node which further 
divides into two branches. 

The definition given for regular grammars is in some sense 
economical. It is possible that the class of languages generated 
by regular grammars be generated also by grammars with a more 
complicated rule structure. While this fact is not interesting in 
itself, it should caution us against concluding on the class to 
which a language might belong solely on the basis of the type of 
grammar by which it is generated. An example will serve to 
illustrate this. 

EXAMPLE 2.2. Let G = (VN, VT, P, S), with VN = {S}, VT = {a}, 
and P = {S -y aSa, S -> aa, S -* a}. This is obviously a context-
free grammar; the productions are not of the form of those of 
regular grammars. But L(G) is a regular language, for there is 
also a regular grammar by which it can be generated. L(G) consists 
of all possible strings of a's; it can likewise be generated by gram
mar G' with P' = {S -* aS, S -> a}. G' is thus a regular grammar 
equivalent to G, and consequently L(G) is a regular language. 

A grammar is called RIGHT-LINEAR if all its productions are of 
the form A -> xB or A -» x (notice that x represents a string of 
terminal elements). 
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THEOREM 2.1. The class of right-linear grammars generates pre
cisely the class of regular languages. 

PROOF. All regular grammars are right-linear, and therefore all 
regular languages can be generated by right-linear grammars. The 
inverse, that each right-linear grammar has an equivalent regular 
grammar, must also be shown to be true. Let G = (VN, VF, P, S) 
be a right-linear grammar. We must show that there is a regular 
grammar G such that L(G') = L(G). Take G' = (V'N, V'T, P', S) 
with the following composition. For every production A -> x in P, 
where x = ayai... an, P' contains the following set of productions: 
A -» a\A\, A\ -* a^Az,..., An_^ -* an-iAn-i and An_i ~* an. These 
productions are clearly of the prescribed regular form, and A 
generates x. If we see to it that the variables A\, A2, ..., An-i do 
not occur in any other production of P', G' will generate only x. 
Likewise for each production of the type A -*■ xB in P, where 
x = 6162 ••• bm, let P' contain a set of productions A -> b\Bi, 
Bi -*■ b%Bz, ..., Bm_i -»bmB, also taking care that the new varia
bles Bi, B%, ..., Bm_\ appear only in these productions. Further, 
let the nonterminal vocabulary V'N contain VN plus all the new 
variables introduced in the above way, and V'T = VT. It follows 
from the construction that L(G') = L(G). 

THEOREM 2.2. A context-free grammar, with productions such that 
all derivations are either of the form xB or of the form x, generates 
a regular language. The same holds if all derivations are of the 
form Bx or x. 

PROOF (summarized). If all the derivations of a context-free 
grammar must be of the form xB or x, then all the productions 
must have the form A -* xB or A -* x. It follows from Theorem 
2.1. that such grammars only generate regular languages. A similar 
argument holds for grammars, all the derivations of which have 
the form Bx or x, but it must be shown that grammars with pro
ductions exclusively of the form A -> Ba or A -* a generate only 
regular languages. 
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THEOREM 2.3. All finite languages are regular. 

PROOF. Let L be the finite set {s\, s%, ..., sn}, where st — aacitz ... 
aihi- One can generate st by a finite set of regular productions, 
namely S -> anAn, An -* ai2Ai2, ..., /!«,_! -» aiht, following the 
construction used in the proof of Theorem 2.1. The combination 
of all sets of productions for all Si gives a finite regular grammar 
which generates L. 

THEOREM 2.4. The union of two regular languages is regular. 

PROOF. Let L\ and £2 be regular languages. We must show that 
Ls, where l 3 = L i U L% (i.e. Lz consists of all the sentences of L\ 
and all the sentences of L2), is also regular. Let Gt = (V^, V\, 
P1, S1) be a regular grammar which generates Lu and G2 = 
(Ti> VT> P2> S2) be a regular grammar which generates L2, taking 
care that Vj) n V% = 0 (this is always possible). We compose 
grammar G3 = (Vf,, V\, P3, S) as follows. (1) Vl = 7^ u Vj, u S, 
i.e. F^ contains the variables of Gx and G2 plus a new variable S, 
which will also serve as the start symbol of G3. (2) F | = V\ u V\. 
(3) P 3 contains all productions P1 and P2 as well as all possible 
productions S -> a such that either S1 -> a is a production in P1 , 
or S2 -+ a is a production in P2 . Thus S => a in G3 in precisely 
the cases where S1 => a in Gi and 5 2 => a in G2. Therefore 
Lz = LiV L%. Because all the productions of G3 are of the required 
regular form, Ls is regular. 

L$ may be called the PRODUCT of Li and £2 if L3 consists of 
all strings xy with x in L\ and y in Lz. 

THEOREM 2.5. The product of two regular languages is regular. 
(This theorem will be proven in paragraph 4.4. in connection with 
the discussion of finite automata.) 

2.3. CONTEXT-FREE GRAMMARS 

The definition of context-free grammars (CFG) is less economical 
than that of regular grammars. Any production of the form 
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A -* P, where \p\ ^ 0, is allowed; p can therefore be any string 
of terminal and nonterminal elements. However, one can greatly 
simplify the form of productions without diminishing the gene
rative capacity of the grammars. Such simplified forms of grammars 
are called NORMAL-FORMS. The most important normal-forms of 
context-free grammars are the CHOMSKY NORMAL-FORM and the 
GREIBACH NORMAL-FORM. We shall discuss each of these, and will 
likewise prove that every context-free grammar is equivalent to a 
grammar of the Chomsky normal-form. 

2.3.1. The Chomsky Normal-Form 

A grammar is said to be of the Chomsky normal-form if all 
productions have the form A -»• BC or A -> a. 

THEOREM 2.6. Any context-free language can be generated by a 
grammar of the Chomsky normal-form. 
PROOF. By definition a context-free language can be generated by 
a grammar with productions of the form A -* p. We can distin
guish three possibilities for such productions: (1) PeVr(2)pe VN, 
(3) all other cases. In order to construct a grammar G' in 
Chomsky normal-form and equivalent to context-free grammar G, 
we must see if production forms (1), (2), and (3) can be replaced 
by the appropriate normal production forms. (1) Productions 
A -* p, where P — a, are of the required form and call for no 
further discussion. (2) If A -* B is a production of G, there are 
two possibilities: (a) G contains no productions of the form B -» x, 
i.e. B cannot be further rewritten; in this case we can simply ignore 
the production A - »B in the construction of G'. (b) B can be 
further rewritten in G, for instance by the productions B -» pi, 
B -*-fii, ••-, B -> pn. Without diminishing the generative capacity 
of the grammar we can now replace these productions, as well as 
A ~* B with the set of productions A -* fiu A -*Pz, ..., A -* /?„. 
In spite of rewriting, one or more of these new productions may 
retain the same form, for instance A -> C. In that case we can 
repeat the procedure and replace A -* C by the productions A -* >>< 
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for every yt for which C -» y*. This can in its turn lead to the 
same problem, but, as G contains a finite number of variables, 
the process will reach an end, except if the replacement chain 
contains a loop (for example A -» B, B -> C, C -* A). But in that 
case, the variables in the loop are interchangeable, and one of 
them, A for instance, can replace the others in all the productions 
of the grammar. The result is that all the newly constructed 
productions are of form (1) or (3). Those of form (1) are of the 
Chomsky normal-form. Both the new productions of form (3) and 
the original form (3) productions from G can be treated as follows. 
(3) In the remaining productions A -»/?, /? consists of terminal 
and/or nonterminal elements. We replace all the terminal elements 
with new variables. Assume that the itb element of fi is a terminal 
element bt; we replace it with a new variable Bi, and add the 
production Bi -» bt, which is of the required normal form. By 
repeating the operation for all terminal elements in /?, we replace 
the production A -* B by a production A ~> B1B2 ... Bn and a 
terminal production of the form mentioned above. Finally we must 
replace nonterminal productions with productions of the form 
A -> BC. Here we again apply the construction used in the proof 
of theorem 2.1., replacing production A -*• £1-82 ... Bn with a set 
of productions A -»■ B1D1, Di -* B2D2, ... Dns -> Bn~\Bn, which 
are all of the required form. It follows from the construction that 
grammar G' thus obtained is equivalent to G and in the Chomsky 
normal-form. 

EXAMPLE 2.3. Let G = (VN, VT, P, S), where VN = {S,A,B}, 
VT = {a,b}, and P contains the following productions: 

1. S-»aSB 3. A ->ab 
2. S -> A 4. B -y b 

G generates all strings of the form anbn (n > 1 when X is excluded). 
Sentence asb3, for example, has the following derivation: S => 
aSB => aaSBB => aaSBb => aaSbb => aaabbb. We shall now con
struct a grammar G' in the Chomsky normal-form and equivalent 
toG. 
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The only production in the required form is production 4; all 
others must be replaced. Beginning with production 1, we replace 
S -*■ aSB with two productions S -*■ CSB and C -> a, as in (2) in 
the above proof. S -* CSB can in turn be replaced by S -* CD 
and D -» SB, as in (1). 

In production 2 we first replace A with the strings as which it 
can be directly rewritten. In the present case, the only such string 
is ab (cf. production 3), and production 2 is thus replaced by 
A -* ab. The normal-form can be obtained by the replacement 
of a and b with new variables and the addition of two terminal 
productions. As we already dispose of terminal productions C -* a 
(from production 1) and B -*b (production 4), it is sufficient to 
replace production 2 with S -* CB. Production 3 is at the same 
time replaced by productions of the required form. Thus G 
contains the following productions: 

1. S -* CB 3. S -* CD 
2. D -*• SB 4. C -* a 

5. B-*b 
The derivation of sentence a?b3 in G' is therefore S => CD =*■ 
aD => aSB => aCDb => aaDb => aaSBb => aaSbb => aaabbb. 

Although grammars G and G' are equivalent, the derivations 
differ. This can easily be observed from the derivation trees for 
sentence a3b3 given in Figure 2.3.a. (derivation in G) and Figure 
2.3.b. (derivation in G'). 

2.3.2. The Greibach Normal-Form 

A grammar is in the Greibach normal-form if all the productions 
are of the form A -*■ afi, where fi is a string of 0 or more variables 
(fi 6 V'N). 

THEOREM 2.7. Any context-free language can be generated by a 
grammar in the Greibach normal-form. 
For the proof of this theorem we refer the reader to Greibach 
(1965). Our discussion here will be limited to the following example. 
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a . S b. s c. S 

a SB C D a D 

a SB. b / s X </DB. 

\ / \ \ /N\ 
A b C D b a BB. b 

/ \ / / ^ \ \ 
a b a S B v 6 6 

a ' 2> 
Fig. 2.3. Derivation Trees for e?b3. 

a. Derivation Tree in G. 
b. Derivation Tree in G' (Chomsky normal-form). 
c. Derivation Tree in G" (Greibach normal-form). 

EXAMPLE 2.4. Let us once again consider grammar G of Example 
2.3. In order to find a grammar G" in Greibach normal-form 
which is equivalent to it, we may use grammar G' in Chomsky 
normal-form as starting point. The variables of G' are S, B, C, 
and D. We number these in an arbitrary order, indicating the 
number by subscript: thus, Si, B%, C3, D4. We shall at this point 
change the productions in such a way that the direct rewriting of 
a variable has as its first element either a terminal element or a 
variable with a higher number. Production 1 (Si -»■ C3B4) and 
production 3 (Si -* C2-D4) already have this form. Production 2 
(Z>4 ->• S1B2) can be adapted by first replacing Si with the strings 
as which it can be directly rewritten, namely C3.B2 and C3-D4, 
giving D4 -> CsBzBz and D4 -> C3D452. It remains the case that 
the subscripts decrease (from 4 to 3), but the required form can 
be obtained by replacing Cz in both productions with the only 
string as which it can be rewritten, a (see production 4). This gives 
the productions D4 -> aBiB% and D4 -> aDiBz. Productions 4 
(C -*■ a) and 5 (B -* b) are already of the required form. Recapi
tulating, at this point we have the following productions: Si -* 
CSB2, Si -> C3D4, D4 -> aDiBz, 2>4 -* aB2B2, C 3 -> a, B* -*• £.* 
1 This example is relatively simple, as the case where the two subscripts are 
equal does not occur. In that case a special procedure is applied, and it is this 
which is the heart of Greibach's proof. We refer the reader to her original 
article, or to Hopcroft and UUman (1969). 
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The first two productions are not yet of the Greibach normal-
form; we thus replace the variable Cs in these two productions 
with the only string as which it can be rewritten, a, thus also 
eliminating the need for the production C% -*■ a. In this way we 
arrive at the following productions for grammar G" in Greibach 
normal-form (the subscripts are no longer necessary): 

1. S^aB 3. D-*aBB 
2. S -» aD 4. D -> aDB 

5. B-*b 

Grammar G" will thus generate sentence a3bz as follows: S => 
aD => aaDB => aaaBBB => aaaBBb => oaaBbb => aaabbb. The tree 
diagram for this derivation is given in Figure 2.3.C. 

2.3.3. Self-embedding 

The economical production forms for context-free languages, 
especially the Chomsky normal-form (A -ya,A -* BC), show the 
minute difference in type of production which distinguishes 
context-free and regular languages (the regular form is A -*■ a or 
A -*■ bC). What is the characteristic difference between these two 
classes of languages? One important property characterizing all 
nonregular context-free languages and absent in regular languages 
is t h a t Of SELF-EMBEDDING. 

A context-free grammar G = (VN, VT, P, S) is called self-
embedding if there is a variable B in VN, and elements a and y in V+ 
such that B =4- ccBy. 

Thus there is a variable B which, by application of the produc
tions, can be rewritten as a string in which B itself occurs, but 
neither at the beginning nor at the end. The definition implies that 
a regular grammar is not self-embedding, since nonterminal 
symbols occur in regular derivations only at the end of a string. 

A language is self-embedding if all grammars generating it are 
self-embedding. 

It is therefore not sufficient that one of its grammars be self-
embedding, as some self-embedding grammars merely generate 
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regular languages. This is the case with the grammar of Example 
2.2. Its productions are S ~* aSa S -*■ aa, S -» a, generating the 
language {an\n > 1}. The language is regular, but the grammar is 
self-embedding because S => aSa. The same example showed that 
G', with productions S -* aS and S -» a, generates the same 
language. Grammar G' is not self-embedding, and generates L(G), 
and consequently, by definition, L(G) is not self-embedding. 

THEOREM 2.8. All nonregular context-free languages are self-
embedding, and all self-embedding languages are nonregular. 
PROOF. The second member of this theorem follows directly from 
the definitions. A self-embedding language is generated exclusively 
by self-embedding grammars; a self-embedding grammar is, as 
we have seen, nonregular. Therefore a self-embedding language is 
nonregular. 

The first member of the theorem can be otherwise formulated. 
It must be shown that all grammars of a nonregular context-free 
language are self-embedding. This can be done by proving that if 
a language L is generated by a non-self-embedding grammar, 
it is necessarily a regular language. To do this, however, we shall 
have to refer to a lemma which in turn will be easy to prove after 
the discussion of finite automata in Chapter 4. 
Lemma. Let Lx and L% be regular languages, and a be a terminal 
element of Lx. Let Lz be a language consisting of all sentences 
in L% in which the element a does not occur, as well as all strings 
which can be obtained by replacing the element a in the remaining 
sentences of Lx with a sentence of £2 (if Lz is infinite, this can be 
done in an infinite number of ways). £3 is then a regular language. 

We shall now prove that a language generated by a grammar 
which is not self-embedding is a regular language. Let language L 
be generated by a grammar G which is not self-embedding and 
which contains the variables Ax, At, ..., An. 

Let us assume that grammar G is connected: a grammar is 
CONNECTED if for each pair of variables Ai, Aj (i,i — 1,2,..., n, 
where n is the number of variables in the grammar), there are 
strings aj and a2 in V* such that At =5> a.xAfl2. Let Au Aj be an 
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arbitrary pair of variables in G. Since G is connected, we have 
At 4> y^A^i for some pair q>u <p2. Let us further assume that 
l ^ l > 0. Let Ak, Ax also be an arbitrary pair of variables in G, 
with Ak =S> i^l^4;^2, and assume that \ij/2\ > 0. Let us examine 
the consequences of the two conditions \<pi\ > 0 and |^a| > 0. It 
follows from the fact that G is connected that strings coi and <»2 
exist such that Aj 4> (0^0)2 and that one can therefore make 
the following derivation in G: At=> (piAj(p2 =*■ (p1co1Ak(D2<p2 =*■ 
<P\Q>$\A$2(n2<p2. But it follows from the same fact that At 4> 
£,xA£2. Therefore we have the following derivation in G: 
At =S- (p1<o1ij/1i;1A£2il/2(D2(p2- It follows from the two additional 
conditions that Ai is self-embedding in G. But G is not self-embed
ding. At least one of the additional conditions must not be valid 
for a grammar to be connected, i.e. if a connected grammar has 
a pair of variables At, Aj, for which At => <x±Ap.2 with lo ]̂ > 0, 
then there is no pair of variables for which |<X2| > 0, including 
the pair At, A). Therefore all the derivations in G are either all 
of the forms xA and x, or all of the forms Ax and x. It follows 
from Theorem 2.2. that G is regular. Theorem 2.8. is thus valid 
for connected grammars. We must show that the theorem also 
holds for grammars which are not connected. 

A nonconnected grammar has at least one pair of variables Ai, 
Aj, for which it is not the case that A; =*■ <X1AJX2 for some pair 
<xi, «2- We shall prove the theorem for such cases by Mathematical 
induction, in two steps: (i) we must first show that the theorem 
is valid for grammars with only one variable, S; (ii) then we assume 
that it holds for all grammars with less than n variables (the 
induction-hypothesis) and prove that in that case the theorem also 
holds for grammars with n variables. It follows from (i) and (ii) 
that the theorem holds for all grammars with one or more variables. 
(i) G has only one variable, S. The only possible pair of variables 
is thus S,S, and consequently there is no pair ai and 1x2 such that 
S 4- ajSc^. Since all productions are of the form S -*■ x, language 
L(G) is finite; on the basis of Theorem 2.3. it is regular. The theo
rem is thus valid for nonconnected grammars with one variable. 
(ii) Let us assume that the theorem is valid for all grammars with 
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less than n variables (the induction-hypothesis). Take grammar G 
with n variables Ax, A%, ..., An, where 5" = A\. Because S is the 
start symbol, it is true for all variables which may occur in the 
derivation of a sentence (we suppose without loss of generality 
that G contains no "dummy" variables from which no derivation 
is possible) that S 4 tp^^ (j > 1) and for strings <px and <pz 

in V*. Because G is not connected, there must be a variable At such 
that it is not true that At 4 a^Sa.2 for a pair al9 a2. Otherwise we 
would have A t => <x1<p1AJ(p20i2> D u t we know that there is at least 
one pair Ai; Aj for which this is not the case. 

Let us first examine the case where i > 1, that is, where At ^ S. 
We can construct a grammar G' with » — 1 variables by removing 
all productions of the form At ->■ y/ from G, and by replacing A% 
in all productions with a new terminal element a. From the 
induction-hypothesis it follows that L(G') is regular. Next let us 
examine the set K of terminal strings x for which At 4 x in G, 
K = {x\Ai 4 x}. This set can be generated by a grammar G" 
which includes all the productions of G except those containing S 
(At =S- axSoLx is impossible), and with At as start symbol. Because 
G" has fewer than n variables, K is regular (by the induction-
hypothesis). L(G), however, is precisely the language which results 
from the replacement of the element a in the strings of L(G') with 
strings x from K. It follows from the lemma that L(G) is regular. 

Let us now consider the case where At = S. Take the produc
tions in G of the form S -* a; an arbitrary a* can be rewritten as 
a string of terminal and/or nonterminal elements £i, £,%, ..., <?fm. 
For each <̂  in on we can define a set of strings Lj for which 
£j- 4 x on the basis of the productions in G. Thus Lj = {x\%j 4- x}. 
From the induction-hypothesis it follows that Lj is regular for 
all j ' s . Let K{ be the set of strings y for which a; 4 y, i.e. 
JCj = {y\«i 4 y}. From the composition of a, it follows that each 
y consists of a sequence of x's respectively taken from L\, Lz, ..., 
Lm, all of which are regular. From Theorem 2.5. it then follows 
that Kt is regular. L{G) is the union of all Kt's. As a consequence 
of Theorem 2.4., therefore, L(G) is itself regular. This completes 
the proof of Theorem 2.8. 
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2.3.4. Ambiguity 

The generation of a sentence by a context-free grammar can be 
represented by a tree diagram. This however does not mean that 
a given tree diagram corresponds to only one way in which a 
sentence can be derived. 

EXAMPLE 2.5. Let G be a context-free grammar with the following 
productions: 

1. S-+AB 5. B-+Sd 
2. S-+CD 6. C-*aS 
3. S -► be 7. D->d 
4. A -*■ a 

The sentence abed can be derived from this grammar as follows: 
S => AB => aB => aSd => abed. The corresponding derivation tree 
is shown in Figure 2.4. There are, however, other derivations of 
abed which correspond to the same tree, for example, the deriva
tion 5 => AB => ASd => Abed => abed, where the productions are 
applied in a different order. This cannot be detected in the tree 
diagram, which fact corresponds to our intuition that the two 
derivations determine the same syntactic structure. Therefore we 
cannot consider this to be a case of real ambiguity. 

In order to define ambiguity in terms of derivations, we must 
introduce the concept of LEFTMOST DERIVATION. We can speak of 
a leftmost derivation of x if at each step in the derivation S =S- x 
it is the variable farthest to the left of the string which is rewritten. 
A leftmost derivation of the sentence abed can begin with S =f AB. 
At this stage the leftmost variable is A; thus the following step 
will be AB => aB. The leftmost variable is now B, and the next 

s 

A 8 

/ S A 

> / \ 
Fig. 2.4. Derivation Tree for the Sentence abed (Example 2.5.). 
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step is aB => aSd, and the final step, aSd => abed. The first deriva
tion given in this example was in fact a leftmost derivation. It is 
clear that every tree diagram corresponds to no more than one 
leftmost derivation, and every leftmost derivation with only one 
tree diagram. 

A grammar G is AMBIGUOUS if there is a sentence in L(G) for 
which there are two or more leftmost derivations. 

The grammar given in Example 2.5. is ambiguous, for sentence 
abed has another leftmost derivation: S => CD => aSD =>- abcD => 
abed. The tree diagram for this derivation is shown in Figure 2.5. 

s 

Fig. 2.5. Alternative Derivation Tree for the Sentence abed (Example 2.5.). 

A language L is (inherently) ambiguous if all grammars which 
generate it are ambiguous. 

Although grammar G of Example 2.5. is ambiguous, L{G) is 
not. Language L(G) consists of sentences abed*, which can be 
generated by grammar G' with productions S -» aSd and 5 -> be; 
G' is not ambiguous. Languages exist, however, which are in
herently ambiguous. An example is the union of {aWcl} and 
{aWcl}, briefly noted L = {a*#c*|i = j or j = k, where /, j , 
k > 1}. Any grammar for L will generate sentences with i = j by 
a different process than sentences with j = k. But then sentences 
with i — j = k can be generated by both processes. 

2.3.5. Linear Grammars 

A production is called LINEAR if it is of the form A -> xBy, i.e. if 
the string derived contains only one variable. A SIGHT-LINEAR 
production has the form A -*■ xB; a LEFT-LINEAR production has 
the form A ~* Bx. 
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A grammar is linear if each of its productions is either linear 
or of the form A -* x; a grammar is right-linear if each of its 
productions is either right-linear or of the form A -*■ x; a grammar 
is left-linear if each of its productions is either left-linear or of 
the form A -» x. 

It follows from Theorem 2.1. that a right-linear grammar 
generates a regular language. Left-linear grammars also generate 
only regular languages. 

An example of a linear grammar is G' mentioned in the preceding 
paragraph, with productions S -*• aSd and S -» be. The language 
generated by it, {a bed*}, is not regular; it is therefore self-embed
ding. Although the class of linear grammars has a greater gene
rative capacity than the class of regular grammars, it does not 
coincide with the class of context-free languages. 

THEOREM 2.9. There are context-free languages for which no linear 
grammar exists. 

For proof of this theorem we refer the reader to Chomsky and 
Schutzenberger (1963). An example of a context-free language for 
which no linear grammar can be found is language L with sentences 
a""16"V26"'2 ... am*6m*6, where m > 1 and k > 1, thus strings 
of alternating sequences of a's and b's, where each sequence of 
b's is as long as the sequence of a's which precedes it, and ending 
in a single b. A grammar for this language has the productions 
S -* aSS, S -* b. The first of these productions is not linear. All 
other grammars for this language likewise have at least one non
linear production. 

2.4. CONTEXT-SENSITIVE GRAMMARS 

2.4.1. Context-sensitive Productions 

The definition of context-sensitive grammars (grammars in which 
all productions are of the form a -+ fi, where |a| < |/?|) does not 
indicate in what way such grammars are "sensitive to context". 
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The original definition given by Chomsky (1959a) was in fact 
different from the present one. He defined context-sensitive gram
mars (CSG) as grammars the productions of which have the form 
<X\AOL2 -* ttip<X2, where <*i and ot2 are elements of V, and ft is an 
element of V+. Thus A can be replaced by ft only if A appears 
in the context <x\— az. This type of context-sensitive production 
can also be written as A -> ft/ai—<xz. In spite of the change of 
definition, the following theorem remains valid. 

THEOREM 2.10. The class of languages generated by grammars 
exclusively containing context-sensitive productions is the class of 
type-1 languages. 

PROOF. Let Gi be a type-1 grammar, and Ge be a grammar exclu
sively containing context-sensitive productions. Every Gc is evi
dently also a G\, because for all productions a -* ft in Ge it is true 
that |«| < \ft\. However it must likewise be shown that for every 
Gi there is an equivalent Gc. 

Let Gi — (VN, VT, P, S) be a type-1 grammar. There is a 
grammar G' — (V'N, V'T, P', S') equivalent to it, where all the 
productions a -» ft in P' have the following "normal-form": either 
both a. and ft are strings exclusively containing variables, or a 
and ft are of the forms A and a respectively (i.e. the productions 
are of the type A -*■ a). This will become evident from the following. 
Let V'N consist of all the elements in VN as well as an additional 
variable Xa for each element a in VT, thus FjJ = VN u {Xa\a e VT}. 
To compose P' we must change the productions of P in such a 
way that every terminal element a in them is replaced by Xa, then 
add productions Xa -» a for every a in VT- Thus all productions 
in P' are of the "normal-form" (note that this normal-form can 
also be used for all type-0 grammars), and L(G') = L(Gi). 

We must now find a grammar G" which contains only context-
sensitive productions, and is equivalent to G'. Let a -»ft be a 
production in P', with a = Ax Az ... Am, and ft — Bi Bz ... Bn, 
where n^m. We replace this production with the following set 
of equivalent context-sensitive productions in P": 
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A1 - A't / — A2A3...Am A\ -* Bx 

A2-*A2j A\ —A3...Am and A'2 -* B2 

Am-*A'ml A\ ... A'm+1 — A'm-+ BmBm+1...B„ j 

The first group of context-sensitive productions (Ai though Am) 
replaces a = A^A2 ... Am to a string of new variables A\A\...A'm. 
This can in turn be replaced by B\B% ... Bnby way of the second 
group of context-sensitive productions (A[ through A'm) if n > m. 
When all the productions of P' have been replaced in this way 
by sets of context-sensitive productions, and V^ includes V# and 
the newly introduced variables, then G" is equivalent to G' and 
consequently also to G'. G", however, is a Gc. 

EXAMPLE 2.6. The production CD -» DC is of type-1 form. 
Application of the procedure mentioned above yields the following 
set of context-sensitive productions equivalent to CD -» DC: 

1. C -* C'l—D 3. C -+D 
2. D -+ D'/C— 4. D' -»■ C 

An advantage of a type-1 grammar in context-sensitive form 
(that is, containing productions exclusively in context-sensitive 
form) is that the derivation of a sentence in it can be represented 
by means of a tree diagram. Context-sensitive productions, in 
effect, replace only one variable in the string at each step; each 
step, therefore, corresponds to the branches leaving only one node. 
This will be illustrated by the following example. 

EXAMPLE 2.7. Let us examine the derivation of sentence aabbccdd 
in grammar G of Example 1.5. G contains the following produc
tions: 

1. S-*ESF 4. dF^Fd 
2. S -* abed 5. Eb -► abb 
3. Ea-+aE 6. cF-*ccd 

29 
1 
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As a first step we replace grammar G with grammar G', containing 
the following "normal form" productions, obtained by application 
of the procedure explained in the proof of Theorem 2.10.: 

1. S -> ESF 6. Z e ->• b 
2. 
3. 
4. 
5. 

o —> Xa-Ab-XcXfi 
MXa ~~* XaE 
Xa-*a 
XdF -*■ FXa 

7. EXb -» XaXbXi 
8. XCF —*■ XcXeXg, 
9. Xc-*c 

10. Xa -»• d 

The productions are now replaced by context-sensitive produc
tions where necessary by application of the procedure given in 
Example 2.6. This yields the following productions; productions 
3-6 and 8-11 were obtained by means of this procedure: 

1. S -> ESF 
2. S -* XaXbXcXd 

3. £ - > £ ' l—Xa 

4. Xtt -> X'a 1 E'-
5. E' -» Xa 

6.X'a-+E 
7. X„ -> « 
S. F-*F' / Xa— 

9.Xd-+X'dl-F' 
10. F' -* Xa 

11. X'd-+F 
12. Z t -► fc 
13. J B - ^ I A / - ^ 
14. J ? ^ Z A / I « -
15. Z c ->• c 
16. X„ -> d 

These productions can be used to derive the sentence aabbccdd 
in the following way (the numbers over the arrows refer to the 
productions applied): 

S i ESF X EX„XbXcXdF X E'XaXbXcXdF 

4 E'X'aXbXcXdF 4> XaX'aXbXcXdF X XaEXbXcXdF 
o g j o 
=> XaEXbXcXdF => XaEXbXcXdF => XaEXbXcXdXd 

=*• XaEXbXcFXd => XaXaXbXbXcFXd =*• XaXaXbXbXcXcXdXd 

7 , 1 2 , 1 5 , 1 6 . , , , 
;> aabbccdd. 

All sixteen productions have been used in this derivation. Figure 
2.6., gives the corresponding tree diagram. 
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Fig. 2.6. Derivation Tree for the Sentence aabbccdd (Example 2.7.). 

Nevertheless, tree diagrams for derivations in context-sensitive 
grammars are less exhaustive in illustrating the precise steps of 
derivation than tree diagrams for derivations in context-free 
grammars. More specifically, the diagrams do not show the 
contextual restrictions operative at the various steps of rewriting 
in a context-sensitive grammar, and it is possible that two deriva
tions, based on different sets of productions, will be represented 
by the same tree diagram. For a context-sensitive derivation, as 
opposed to a context-free derivation, the "ambiguity of x" does 
not correspond to "more than one possible tree diagram for x". 

2.4.2. The Kuroda Normal-Form 

In the preceding paragraph two restricted forms of context-sensi
tive productions were discussed; they may be called normal-forms. 
The first of them contains two types of production, a -* fi with 
a and /? in V% and |a| < |/?j, and A->a. The second is the context-
sensitive form A -*fi/xi—oc2, with a,\ and a2 in V* and p in K+. 
We shall now introduce a third normal-form, developed by 
Kuroda, which is relevant not only to the discussion of the relation
ship between context-sensitive grammars and automata (chapter 6), 
but also to the proof of certain essential properties of trans
formational grammars (Volume II, chapter 5). 

THEOREM 2.11. Every context-sensitive grammar is equivalent to 
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a context-sensitive grammar with productions exclusively in the 
following forms: 

(i) 5 -» SB, (ii) CD -» EF, (iii) G -> H, (iv) A -*• a, where the 
variables .4, J?, C, Z>, F, F, and H are different from the start symbol 
5 (G may be identical to S). 

PROOF. It is striking that no string in these production forms has 
more than two elements. We shall first show that if G is context-
sensitive, there exists a grammar G' equivalent to it, in which 
for each production a -* fi, |a| < 2, and ]/?| < 2. In the second 
place we will prove that there is a grammar Gn in the Kuroda 
normal-form which is equivalent to G'. 

Let G = (VN, VT, P, S) be a context-sensitive grammar. We 
already know that there is an equivalent grammar G" of the first 
normal-form, i.e. with production types A -* a and a -*■ /?, where 
a and /? are strings of variables such that \f}\ ^ \<x\ > 0. Suppose 
that the maximum length of any string of a production of G" is n. 
We must construct a grammar G'" = (V%, VT, P'", S) equivalent 
to G" (and thus also to G), for which the maximum string length 
for any production is not greater than n — 1. To do so, we let Pm 

include all the productions of P" where the string length is no 
greater than 2; the remaining productions have string lengths of 
3 or more. (If n — 1 or n = 2, G" already conforms to the limita
tion on string length and this step may be omitted.) Let a -> 0 
be such a production; we write it then as 

Aa' -> BCDp' (where |«'| > 0 and \?\ > 0). 

If a' = X, we create two new variables A\ and A2, and add the 
following productions to Pm: 

A —y A\Az 
A\ -*BC 
A2 -> Dfi' 

If |a'| > 0, a' can be replaced by Fa*. In that case we add the 
following productions to P'": 
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AE -> A'E' 
A' ->J? 
E'a" -> CDp' 

It is clear that in both cases no string length is greater than n — J. 
If we follow this procedure for all the productions of P" and add 
the resulting productions to Pm, in virtue of the construction G" 
will be equivalent to G", and consequently also to G. By induction 
on n it follows that there is a grammar G' = (V^, VT, P', S) in 
which the length of the strings in productions is limited to 2, and 
which is equivalent to G. 

At this point we must show that there is a grammar Gn which 
is equivalent to G' and G, and which contains only productions 
of types (i) through (iv). Take grammar Gn = (*$, VT, P", S'), 
where F ^ f ^ u S ' u Q}. Thus we have added two new varia
bles, one of which, S", is a new start symbol. The productions 
in Pn are the following: 

1. S' -» S'Q 
2. S' ->S 

■ for all variables A in G' 3. QA -* AQ 
4. AQ^QA 
5. A -» B for all productions A -» B in G' 
6. A -* b for all productions A -*■ b m G' 
7. AB -> CZ) for all productions AB -» CD in G' 
8. ^(g -» BC for all productions /( -+ BC in G" 

It is clear that the productions of Gn are subject to the same 
restriction of string length as the productions of C ; all strings in 
productions are of a length no greater than 2. Productions 1 
through 8, moreover, are all of types (i) through (iv). (Note that 
the start symbol is S', while S is an ordinary variable.) 

Finally, we must prove that Gn is equivalent to G"; to do so it 
will be necessary to show that if x £ L(Gn), it is also true that 
x e L(G'), as well as the inverse. (1) If x e L(Gn), then S' =S> x. 
When every 5 ' in the derivation is replaced by S and all Q's are 
omitted, every step of the derivation is in G'. This may be seen 
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when the same operation is performed on the eight productions 
of Gn. The first and second productions become S -+ S (which 
adds nothing essential); the third and fourth productions become 
A - »A (which is equally uninteresting); the fifth, sixth, and 
seventh productions remain unchanged, and the eighth production 
becomes A ~* BC. Thus if S' => x, each step in the derivation of x 
can be simulated by the application of the productions of G', and 
therefore it is true that x e L(G'). 
(2) Let x e L(G'); then S =*• x. It is true of every production 
a -» ft in G' that it is either contained in Gn or has been replaced 
by a production of type 8, AQ -*■ BC. Therefore, in order to ge
nerate x in Gn we must see to it that there is exactly one Q available 
for each step of derivation in which a production of the type 
A -*■ BC is involved. The Q must be placed directly to the right 
of the variable A to be rewritten. This can easily be done in Gn: 
we first count the number of steps in the derivation S =*■ x in 
which the situation occurs, for instance n times. We then begin 
the derivation of x in G„ by applying the first production n times; 
this may be written as S" => S'Q". Next we replace S" with S by 
means of the second production, thus S'Q" =*■ SQn. The rest of the 
derivation can proceed in the same way as the derivation S 4> x, 
except where the eighth type of production is involved. In this 
latter case we must move one Q to the position directly to the 
right of the variable to be rewritten; this is done by application 
of productions of the third and fourth types. The Q is then eli
minated upon application of a production of the eighth type. In 
this way Gn can generate x. 

It follows from (1) and (2) that L(Gn) = L(G'). Since G' is 
equivalent to G, Gn in the Kuroda normal-form is also equivalent 
to G. This concludes the proof of Theorem 2.11. 

We would note in conclusion that Kuroda called his normal-form 
a "linear bounded grammar", analogous to the equivalent auto
maton of the same name (cf. chapter 6). 
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PROBABILISTIC GRAMMARS 

3.1. DEFINITIONS AND CONCEPTS 

Until now we have limited the concept of grammar to a system 
of rules according to which the sentences of a language may be 
generated. On the basis of such a concept one can distinguish 
differences in the sentences of a language only in their derivation, 
also called their STRUCTURAL DESCRIPTION. However one might 
also consider the differences in frequency with which sentence 
types occur in a language. One reason for doing so, as we shall 
see in chapter 8, is to facilitate the choice between two or more 
grammars which generate the same language. One might determine 
the efficiency of a grammar on the basis of the frequencies with 
which particular derivations or sentence types occur in a language. 
But the concept "efficiency" has not been clearly defined, and the 
usefulness of a probabilistic interpretation of it will have to be 
considered in each concrete situation. We shall return to this 
subject in chapter 8. 

We shall limit our discussion in the present chapter to an exten
sion of the concept "grammar" which will enable us to describe 
the probability of occurrence of sentences in a language. There
fore, we shall first define the concept of a probabilistic grammar. 

A PROBABILISTIC GRAMMAR G is a system {VN, VT, P, S) in which: 

(1) VN (the nonterminal vocabulary), V? (the terminal vocabul
ary), and P (the productions) are finite, nonempty sets. 
(2) VNnVT = 0. 
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(3) Let VN U VT = V; P is composed of ordered groups of 

three elements (a;, ftp py), ordinarily written otj 5> J3,, where 
a* e V+, Pi e F*, and pa is a real number indicating the pro
bability that a given string on will be rewritten as fa. The number 
Pij is called the PRODUCTION PROBABILITY of v.% -* /fy. 
(4) S e K*. 

This definition differs from the original definition of grammar 
only in that a probability is assigned to every production. 

A probabilistic grammar is NORMALIZED if for every production 
a i ~* Pj> it is true that ]T p = 1 for every a£ in the productions. 

J 
This means that if on occurs in a derivation, the total chance that 
on will be rewritten by means of some production is equal to 1. 
A production whose probability is equal to 0 cannot be used; it 
can simply be excluded from P. The reason for allowing the possi
bility that p = 0 is only of practical interest in some calculations. 
In the following, however, we shall suppose that every pa > 0 
unless otherwise mentioned. 

p 

We use the notation a 4- p for a derivation a => £j => {2 ... =** P, 
where each step is the result of the application of one production, 
and where p =f(pi,pz, ■■-,pn)- The analogy with standard nota
tion is obvious, but to avoid crowding symbols above the arrow, 
we shall omit the asterisk, except where doing so might lead to 
confusion, and write x=> p. 

Function / is determined by the interdependence, or lack of it, 
between the various steps of the derivation. A probabilistic gram
mar is called UNRESTRICTED if the steps of a derivation in it are 
mutually independent; in this case p ~ pi -p2 •... • pn- As no 
considerable literature exists on the subject of restricted probabil
istic grammars, we shall limit our discussion to unrestricted 
probabilistic grammars. In applications of the theory, however, it 
will be necessary to estimate the validity of the presupposition 
that the productions are mutually independent. 

A SENTENCE generated by a probabilistic grammar is a finite 
string s of terminal elements, where S => s and p > 0. 
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A probabilistic grammar G is AMBIGUOUS if at least one sentence 

can be derived in it in more than one way. A sentence is &-times 
ambiguous if there are k derivations S Q s, S S- s, ..., S S- s. 

A PROBABILISTIC LANGUAGE L, generated by a probabilistic gram
mar G, is the set of pairs (s,p(s)), where: (1) s is a sentence generated 

k 

by G, and (2) p(s) = £ Pi(s) where k is the number of different 

ways in which s can be derived from S. We call p(s) the PROBABILITY 
of s in L. A probabilistic language can also be defined, without 
reference to a grammar, as a subset of V^ for which a probability 
distribution has been defined (VT is any finite vocabulary). 

Two probabilistic grammars G\ and Gz are EQUIVALENT if they 
generate the same probabilistic language L, i.e. the same set of 
pairs (s, p(s)). Notice that equivalence here requires also that the 
probabilities of the sentences be the same. 

A probabilistic language L = {(s, p(s))j is NORMALIZED if 
Z Ks) = !• This means that the language has a total probability 

set 
of 1. We shall see later that a normalized probabilistic grammar 
need not generate a normalized probabilistic language. 

3.2. CLASSIFICATION 

Probabilistic grammars may be classified as follows in a way 
completely analogous to that used in Chapter 2. 

Type-0 probabilistic grammars are all probabilistic grammars 
which satisfythe definition given above. Type-1 or CONTEXT-SENSITIVE 
probabilistic grammars are those probabilistic grammars in which, 
for all productions ak ™ pj, it is true that Jaj| < J/J,J. Type-2 or 
CONTEXT-FREE probabilistic grammars are those probabilistic gram
mars in which, for all productions a, +̂ pp it is true that a; = 
A, e VN. Type-3 or REGULAR probabilistic grammars are type-2 
probabilistic grammars whose productions are exclusively of the 
forms A -* aB and A -* a. 

It is obvious that this classification is completely independent 
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of the probabilistic aspect of the grammars. This is also true of 
the classification of probabilistic LANGUAGES generated by probabil
istic grammars. Thus we have type-0 probabilistic languages, 
type-1 or context-sensitive probabilistic languages, type-2 or 
context-free probabilistic languages, and type-3 or regular proba
bilistic languages. 

In the present chapter only regular and context-free probabilistic 
grammars will be treated, as no results on the other two types are 
yet available. 

3.3. REGULAR PROBABILISTIC GRAMMARS 

Three theorems will be treated in this paragraph. The first of them 
is of direct practical interest. The second, on the other hand, 
appears to be somewhat alarming from a practical point of view, 
but the third, which has not as yet been proven, suggests that 
things might not be as problematic as they seem. 

THEOREM 3.1. Every normalized regular probabilistic grammar 
generates a normalized regular probabilistic language. 

In such a case, the probabilistic grammar is said to be CONSISTENT, 
and the theorem is therefore called a CONSISTENCY-THEOREM. 

The theorem is of practical interest in determining the frequen
cies of sentences in a language. To do so one would wish to be 
certain that the sum of the corresponding probabilisties is equal 
to 1. The theorem states that this is guaranteed if the regular 
grammar in question is normalized. 

The proof of this theorem supposes some acquaintance with 
matrix algebra. For readers who prefer to omit it we shall first 
present an example which holds the essence of the proof without 
requiring knowledge of matrix algebra. The general proof will be 
given later. 

EXAMPLE 3.1. Let (7 be a regular probabilistic grammar with the 
following productions: 
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1. S X a 3. B X bA 

2. S -4- aB 4. B Xb 

5. A -* a 

G is normalized because for every variable the total chance of 
being rewritten is equal to 1. Only three sentences can be generated 
by G: a, ab, aba. The derivations with their respective probabilities 
are as follows: 

S => a p(a) = \ 

S^aB^ab P(a&) = l - f = | 

S => aB => abA => aba p(aba) — \ • \ • 1 = \ 

L(G) is evidently normalized, because £ p(s) = -| + ^ + i = l . 
sei( f f ) 

On the basis of this example we shall now show that there is a 
simple method for determining the chance that a regular probabil
istic grammar will generate sentences up to a certain length. To 
do so we present the probabilities of the productions in G in matrix 
form1 as follows: 

S A B VT 

S 0 0 -§• -§• 

A 0 0 0 1 

B 0 i 0 f 

Fr 0 0 0 1 

Let us examine the first row (row-element S). It shows the chances 
for the respective column-elements to appear in direct or "one-

1 A matrix is a rectangular grid with one or more rows and one or more 
columns. Each row is denoted by a ROW-ELEMENT XU and each column by a 
COLUMN-ELEMENT yt. At the intersection of row /* and column/ is the MATRIX-
ELEMENT aa. 
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step" derivations from S. There are only two productions for 
rewriting S, S -*■ aB and S -* a. The matrix-element under B in 
row S has the value -§■ because of the first of these productions, 
and the matrix-element under VT in the same row has the value \ 
because of the second production. Column VT thus serves for all 
productions in which a variable is rewritten as a terminal element, 
regardless of which terminal element it is. Row A shows how the 
variable A can be rewritten in one step, and with what probability, 
thus A can be rewritten only as a terminal element, with probability 
1. Row B shows to which elements the variable B can be rewritten, 
and with what probability, thus it can be rewritten as A with 
probability ■§- and as a terminal element with probability •§-. The 
fourth row, row VT, is added to the matrix for further calculations; 
it is composed of zeros, except the rightmost element which has 
the value 1. 

This matrix, which we shall call matrix C, has a pleasant property 
which may be explained as follows. We know that by definition 
sentences are derived from 5". If we wish to know the chance for 
a sentence with length 1, we look at row S under VT, and find the 
value \. What then is the chance for a sentence of length 1 or 2? 
Such sentences are derived by going from 51 to VT by two steps 
at most. The variables S, A, or B may be present in the first 
derived string. Consequently there are four possibilities of arriving 
at a sentence with a length of 2: 

(1) From S a string is derived in which S is present, then £ is 
replaced by a terminal element. One can immediately see in the 
matrix that these two steps have respective probabilities of 0 
and •§-. The total chance of such a derivation is thus 0 • |- = 0. 

(2) From S the variable A is first derived, then a terminal element 
is derived from A. The chance for this is 0 • 1 = 0 . 

(3) From S a string is derived with the variable B, then a terminal 
element is derived from B. The chance for this is \ • § = ■§■. 

(4) A terminal element is directly derived from S. The chance for 
this is \. The total chance for a sentence with length 1 or 2 is the 
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sum of these four probabilities, 0 + 0 + i + i = | . This is pre
cisely the chance for the sentence a (§) plus the chance for the 
sentence ab (4), the only two sentences of the grammar in this 
category. 

This operation can also be carried out systematically by means 
of MATRIX-MULTIPLICATION. The four steps which we have just 
performed correspond to the multiplication in pairs of the elements 
in row S with the elements in column VT, followed by the addition 
of the four products: (0 • | ) + (0 • 1) + ( | • f) + ( | • 1) = | . We 
say then that the row-vector S is multiplied by the column-vector VT. 
Let us make a new matrix C2, and put the result -§ at the inter
section of row & and column VT- The remaining matrix-elements 
of C2 are obtained in a similar way, that is the multiplication of 
a given row-vector in C with a given column-vector in C yields 
the matrix-element in C2 for the intersection of the row and 
column in question. For example, the matrix-element in C2 for 
the intersection of row S and column A is i . This is obtained 
by multiplying the row-vector S in C by the column-vector A: 
(0 • 0) + (0 • 0) + ( I • | ) + (i • 0) = i. The value £ means that 
there is one chance out of six of deriving a string with A from S 
in no more than two steps. Matrix C2 is called the square of matrix C. 

S A B Vr 

S 0 i 0 | 
A 0 0 0 1 = C2 

B 0 0 0 1 
VT 0 0 0 1 

By multiplying C by C2 (multiplying the row-vectors in C by the 
column-vectors in C%) we obtain matrix C3: 

S A B VT 

S 0 0 0 1 
A 0 0 0 1 = C3 

B 0 0 0 1 
VT 0 0 0 1 
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In row S under VT we find the value 1. This means that the chance 
of obtaining a sentence the length of which is three or smaller is 
equal to 1. The grammar, as we have observed, generates no longer 
sentences. 

In this example we see that the critical matrix-element in row S 
under VT increases with the power of the matrix from \ to \ to 1. 
The proof of Theorem 3.1 consists of showing that this is a 
generally valid theorem for matrices such as matrix C. By increasing 
the power of the matrix, i.e. the sentence length, the critical 
element approaches the value 1. The sum of the chances for all 
sentences, i.e. for the sentences of all lengths, is thus equal to 1, 
and L(G) is normalized. 

PROOF. Let G be a normalized regular probabilistic grammar. We 
suppose that G has no redundant variables, i.e. for each As Vu 
there is at least one production A -̂ - a, a e VT, for which p > 0. 
This supposition implies no loss of generality (cf. Huang and Fu 
1971). Let us define a matrix C — [cij\, i,j = 1, 2, ..., n + 1, as 
follows: 

ctJ — £ p(Ai -> aAj) for i,j < » , and where ^ is the pro-
"£VT duction probability of At -» aAj. 

cu = £ P(Ai -* ") f o r »' <n,j = n + l 
aeVx 

ctj = 0 for i = n +1, j < n 
C B+1,B+1 = 1 

C is a stochastic matrix1 because for each row the sum of the 
elements is equal to 1, and G is normalized. The right hand column-
vector in matrix Ck shows the probability that a string of k or 
fewer elements will be derived from the variable Ai. If A\ = S, 
then c\,„+i is the probability that the grammar generates a sentence 
of k or fewer elements. We are interested in the value of c\ jB+1 

when k -* oo, i.e. the sum of the probabilities of all sentences 
1 A STOCHASTIC MATRIX is a square matrix, the matrix-elements of which 
are not negative, and the sums of the rows of which are equal to 1 (cf. Feller 
1968). 
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generated by the grammar. We have supposed that it is true of 
every variable A that £ p{A -» a) > 0, that is, that there are no 

aeVr 
YA IB 

redundant variables. C may therefore be written as C = ! L0 I 1 
where all the elements of column-vector B have a value > 0. Then 

A2\AB+B~\ __, , , „k n<4*P*~1+4*~2-40)fl" - 0 o 
and in general, C = 

Loli-

0 ! 1 

. But for each of the row-vectors in A, the sum of the 

row-elements is smaller than 1, and consequently lim A = 0. 
k-*co 

But Cn is a stochastic matrix because C is a stochastic matrix (this 
theorem is treated in Feller 1968), and thus for every row in Ck 

the sum of the row elements is also equal to 1. The limit of each of 
the row-vectors in C* is thus [0 0 ... 0 1], and thus lim clt„+1 = 1 

k->oo 

is what we set out to prove. 
A normalized regular grammar generates a normalized regular 

language. But let us examine the situation from the other side. 
Let L be a regular language for which a probability distribution 
has been defined. There is thus a value p(s) for every s in L. Let us 
suppose that L is normalized, i.e. that £ P(s) — 1- I s there a 

seL 
regular probabilistic grammar which generates precisely the pairs 
0, p(s))l This is known as the PROBLEM OF REPRESENTATION. We 
have the following theorem. 
THEOREM 3.2. There is a regular language L, and a probability 
distribution for the sentences in Lwith the property £ p(s) = 1, 
for which no regular probabilistic grammar exists. s e L 

There are thus normalized regular probabilistic languages for 
which no normalized regular probabilistic grammar exists. The 
practical implication seems to be that not every sample (corpus) 
of sentences of a regular language can be described by a regular 
probabilistic grammar. However, the proof of this theorem, for 
which reference is made to Ellis (1969), is based on an argument 
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which is completely without practical implications. It is shown, 
in effect, that one can assign a normalized probability distribution 
to a regular language such that for some sentences s, p(s) cannot 
be the product of any production probabilities whatsoever. The 
argument is based on the consideration that there are real numbers 
which are not rational. It supposes that some sentences of L have 
nonrational probabilities, and shows that in certain circumstances 
it is impossible to represent those probabilities as the product of 
production probabilities. 

In every empirical situation, however, we have to do with 
samples of the sentences of a language L, and can therefore write 
the estimates of p(s) as fractions. On the basis of this considera
tion, Suppes (1970) suggests the following general representation 
theorem for probabilistic languages; the theorem has not yet been 
proven. 

THEOREM 3.3. If L is a type-i language, and a normalized pro
bability distribution p(s) has been defined for the sentences of L, 
then there is a type-i normalized probabilistic grammar which 
generates a probability distribution p(s) for the sentences of L, 
and for every finite sample S of L the null-hypothesis that S is 
drawn from (L, p(s)) cannot be rejected. 

In other words, we can find a probabilistic grammar for every 
sample (corpus) of sentences, according to which the original 
probability distribution can be approached so closely that it is 
impossible to decide (on the basis of a statistical test) if we are 
dealing with L(p') or with L(p). 

3.4. CONTEXT-FREE PROBABILISTIC GRAMMARS 

Two normal-forms for context-free grammars were introduced in 
chapter 2, and it was shown that every context-free grammar is 
equivalent to a grammar in the Chomsky normal-form and to a 
grammar in the Greibach normal-form. In the present paragraph 
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we shall show that these equivalences are also valid for context-
free probabilistic grammars. Afterwards we shall discuss the 
consistency-problem for context-free probabilistic grammars. 

3.4.1. Normal-Forms 

Normal-forms pose an additional problem for context-free 
probabilistic grammars, for not only must the normal-form 
grammar be equivalent to the original one with respect to the 
sentences generated, but it must also be equivalent to the original 
grammar with respect to the probability of the sentences generated. 
This can be done only by giving the production probabilities in 
the normal-form grammar a certain relation to those of the 
original grammar. It is not certain in advance that this can always 
be done. For the Chomsky normal-form we shall state and derive 
the relations. The Greibach normal-form will only be mentioned. 

THEOREM 3.4. (Chomsky normal-form). Every normalized context-
free probabilistic grammar G is equivalent to a normalized context-
free grammar, the productions of which are exclusively of the 
forms A -*■ BC and A -*■ a. 

PROOF. The proof is carried out in three steps. We first construct 
a grammar G' equivalent to G, and in which no productions of 
the form A -^ B occur. Next we compose a grammar G" equivalent 
to G', and in which the productions are exclusively of the forms 
A 4- a and A -4 BXB2 •■• Bn (n 5=2). Finally we compose Gn in 
the normal-form, equivalent to G", and consequently also to G. 

(i) Let there be such productions in G of the form A i B that 
derivations of the form A => Bx => B2 ... =*■ B„=^> a., where 
a £ VN. We can replace every derivation of this kind by adding 
a production to P' in the form A 4- a, where 

(0 P = Pi • n • - •/>»+! 

This is only possible where there are no "loops" in such a deriva-
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tion chain. For these cases we do the following. We speak of a 
loop when productions of the following form occur in P1: 

A -> a; i = l,...,n 

B%Bj j = l,...,m 

These productions can be replaced by the following productions 
in P': 

A 3- Bj j = l,...,m 

J3 -*■ a; i = 1,...,« 

A -4 ojj i = l,...,n 

^ -► #,- jr = l,.-.,m 

where, 

( 2) r = _M^_, t i = — ? < _ , Sj „ « £ ^ _ ; u = _ « £ _ _ 
J 1 - £„«,- !-!>.«<. 1 ~ Polo } 1 - JP0«0 

To show this, let us examine in detail the productions A -> B3 in 
G'\ the derivation for the other three types follows the same 
pattern, pj can be derived in G in an infinite number of ways when 
there is a loop of the form A-* B and B -? A, thus: 

A => B => Bj 

A£B£A£B%BJ 

AZB&A&B&A&BUPJ, etc. 

The total probability that fij be derived from A is thus 
1 Notation: In the following probabilities p always corresponds to produc
tions where A occurs to the left of the arrow, and q corresponds to productions 
where B occurs to the left of the arrow. 
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Vol J + Po(<loPo)<lj + PotioPofqj + . . . = 
CO 

PA, I iloPoT = y ^ f - p 
11 = 0 l PoHo 

By the same procedure we can deal with U, Si, and Uj. 
By eliminating all loops in this way, we obtain grammar G', 

equivalent to G, and in which there are no productions of the 
form A -» B. 

(ii) Grammar G" will contain all the productions of G' except 
those of the form A -* /?, where /? consists of terminal elements 
and possibly also variables (|/?| > 2). All these productions are 
rewritten as productions which contain only variables; there will 
also be a set of terminal productions. If bt is a terminal element 
in the string /?, we introduce a new variable Bi in G", and a new 
terminal production #,- -* Z>,-. In this way all the productions of 
the form A -S- /? are replaced by productions of the form A -* BlB2 
... Bn. It is clear that with this set of productions A => /?,• in G", 
and in general that G" is equivalent to G'. 

(iii) At this point all productions in G" which are not of the form 
A -> a or A -* BC must be reduced to the form A -» BC. The only 
productions in question here are those of the form A -* BtB2 ■■■ Bn 
(n > 2). We replace each of these productions by a set of new 
productions as follows: 

A 4- BiPi 

Dt X B2D2 

A1-2 -*■ ^«-i^« 

where A is a new variable (i = 1, ... n — 2). 
When G„ contains these new productions and these new variables 

as well as the productions of G" of the form A -*■ fi with \B\ < 2, 
then Gn is obviously equivalent to G" and therefore also to G, and 
moreover Gn is of the Chomsky normal-form. 



48 PROBABILISTIC GRAMMARS 

This proof also shows what the relations must be between the 
production probabilities of the grammar in the Chomsky normal-
form and those of the original grammar. They are found in the 
proof under (1) and (2). 

EXAMPLE 3.2. Let G = (VN, VT, P, S) be a context-free probabil
istic grammar where VN — {S, A, B}, VT = {a,b}, and P consists 
of the following productions: 

l . s -^U 
2. S ^ 

3.A^> 

4.A^> 

aS 

ABb 

B (p. = 0.5) 

a (Pl = 0.4) 

5. A ±U aA 
6.B±^A 

7. B-^* Bb 

S.B^^b 

(p2= 0.1) 

(a. = 0.4) 

(<?! = 0.2) 

(q2 = 0.4) 

Grammar G is clearly normalized. To find an equivalent grammar 
in Chomsky normal-form, we must first construct a grammar G', 
equivalent to G, and in which the loop A -^-> B, B - ^ » A no 
longer occurs. To do so, we replace productions 3 to 8 with the 
following eight productions (cf. Proof (i)): 

A -4 aA 

A -* a 

B%Bb 

B %b 

In order to calculate the values of/-, s, t, and w, we use the following 
formulas: 

r _ IWi 

A 

A 

B 

B 

—* 
rz 

si 
—* 
S2 

—> 

Bb 

b 

aA 

a 

1 - PWo 

loPz 
1-Polo 0.8 

0.5 x 0.2 0.1 
1-0 .5x0 .4 ~ 0.8 - 0 J 2 5 

p„q2 0.5 x 0.4 
' l-p0q0 ' 0.8 

°A101 - 0.05 

= 0.25 
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. _ 9oPi _ 0-4 x 0 . 4 _ f t , 

tx = * i _ = <" = 0.125 
1 - p0 ? 0 0.8 

«! 0.2 

* - Pl - ° '4 0 5 

1 - p0go 0.8 
= 0.25 

-a - , ' 2 - "Sr - 0L5 1 - p0q0 0.8 

If we add the first and second productions of G to G', grammar G' 
is equivalent to G. 

Grammar G" is obtained by replacing the productions in G with 
productions exclusively of the forms A ~* a and A -^ p, where 
every fi is made up only of variables. This yields the following 
productions in G": 

o 0.8 , o , 0.125 „„ . 1 . 0.5 

A 1 D ! I. D 0.2 D 0.25 D D 

^4t -»• a 2?2 -* o B —* a B —~* BB3 

S^^ABB, A ^ b A°-^A3A B3 4 6 

B l h b B^A2A A3±a B^,b 

Finally, grammar Gn in Chomsky normal-form can be obtained 
by replacing the production S —'-* ABBl with S —'—* AC and 
C -4 BBV 

The grammar in Chomsky normal-form will then contain the 
seventeen following productions: 

l.S-22*AtS 6. A ^ b 
2. S - ^ AC 7. At 4 a 

3.A°-^BB2 S.Aa±a 

4. A -—> A*A 9. A* -* a 

10. 

11. 

12. 

13. 

B ^ 

B ^ 

B-±2* 

S-24 

BB3 

;M 
b 

a 

14. 

15. 

16. 

17. 

B, 4 fe 
B24& 
B 3 -U 

C^BL 
5. A —> a 
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This grammar is clearly normalized. But one cannot immediately 
see that a sentence generated by G has the same probability as a 
sentence generated by Gn. This is because every sentence generated 
by G has an infinity of possible leftmost derivations as a result 
of the loop. This emphasizes the advantage of a grammar in the 
Chomsky normal-form, since such a grammar has only a finite 
number of leftmost derivations for each sentence. 

THEOREM 3.5. (Greibach normal-form) Every normalized context-
free probabilistic grammar G is equivalent to a normalized context-
free probabilistic grammar G', in which all productions are of the 
form A -> ax, where a e V^. 

For proof of this theorem, as well as for the derivation of the 
production probabilities, we refer the reader to Huang and Fu 
(1971). 

3.4.2. Consistency Conditions for Context-free Probabilistic Gram
mars 

The theorems on the normal-forms tell us something of equi
valence for normalized probabilistic grammars. But it is of interest 
to recall the definition: two normalized grammars may well 
generate the same probabilistic language, but that need not mean 
that the language is also normalized. The following theorem shows 
that one may not take it for granted that a normalized context-free 
grammar generates a normalized language. Context-free probabil
istic grammars are not necessarily consistent. 

THEOREM 3.6. (Inconsistency theorem) There are normalized con
text-free probabilistic grammars which do not generate normalized 
probabilistic languages. 

PROOF. For proof of this theorem it is sufficient to show an example 
of such a grammar. Let G = ({S}, {a}, P, S) be a grammar with 
the following productions in P: 

1. S X SS 2. S X a. 
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This grammar is normalized (and moreover in Chomsky normal-
form); it generates the language L = {an}, where n > 1. The 
respective derivations of sentences a and aa are as follows: 

S X a p(a) = 1/3 

S 4 SS =* aS =t aa p(a2) = 2/27 

For the sentence aaa, there are two leftmost derivations possible: 

S^SSXSSSX aSS X aaS X aaa 

S =*■ SS => aS => aSS => aaS =*• aaa 

The reader will notice here that these derivations correspond to 
two different tree diagrams; G is therefore ambiguous. For p(a3) 
wefind(f-|-i-i-|) + ( | - l - f44) = 2-(|)2-®3=T |T. 
In general we can state that p(a") = (n - 1) (D" - 1 (4)", where 

7i > 1 . After some calculation it appears that £ p(a") = -|> instead 
n = l 

of the 1 required for normalization. G is therefore inconsistent. 
It is possible, however, to pose conditions under which a normal

ized context-free probabilistic grammar will be consistent. For the 
following discussion of such conditions, some acquaintance with 
matrix algebra will again be required. We would advise readers 
who wish to omit the remainder of this paragraph that in any case 
every nonambiguous normalized context-free probabilistic gram
mar is consistent. 

The conditions of consistency for a context-free grammar can 
best be discussed on the basis of the «Xn matrix A = [at}]. Before 
defining the elements aij, we must first indicate what they are to 
represent. The value ay must be the total chance that the variable 
At generates at least one A] in a derivation. Take the following 
productions for Ai and the corresponding probabilities: 

Ai -* cci p(Ai -» «i) 
At -»• 0t2 , , . , . . . p(Af -*■ OE2) 

with probabilities 

At -► a* p(At -+ a*) 
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and suppose that in the hih production At ->■ «h, the element Aj 
appears in the derivation rriijh times. The production will thus be 
as follows: 

A -* hA-sPzAj ... pmtJhAjPmtJh+1, 
where |j?,| > 0 for / = 1, ..., miJh+l. 

We define aijh as follows: a^h = miju • p(A -+ «»). The defini-
k 

tion of au is then: atJ — £ aIJh, with i,,/ = 1,2,..., JV, where N 
* = i 

is the number of variables in Vs. 
In order to construct a consistent context-free probabilistic 

grammar, we must see to it that lim A" = 0. This means that 
H~*00 

finally every variable, and consequently also A\ = S, is rewritten 
as a terminal element. From this point of \iew, matrix A here 
fulfills precisely the same function as matrix C in the proof of 
Theorem 3.1. It is established (cf. Booth 1969, for example) that 
the limit is equal to the null-matrix 0, when the eigenvalue of A, 
with the highest absolute value Imax, is smaller than 1. If Amax > 1, 
the grammar is inconsistent; Imax = 1 produces various special 
problems which we will leave out of our discussion. 

Let us again consider grammar G of Theorem 3.6., with pro
ductions S -* SS and S -* a. Let p(S -* SS) = p, and p(S -» a) = 
1 — p. Under what conditions will G be consistent? In this case 
matrix A has one cell: A = [2p], because S occurs twice to the 
right of the arrow in the production S -* SS with probability p. 
The only eigenvalue of A is then 2p, and the grammar is conse
quently consistent when 2p < 1 or p < ^. It is inconsistent if p>\ 
(as was the case in the original example where p = f). In this 
case the grammar is also consistent when p = ^. 
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FINITE AUTOMATA 

In the present chapter we shall regard that which generative 
systems give as output, as the input of accepting systems. By 
definition, grammars are finite systems of rules by which poten
tially infinite sets of sentences can be generated. In this and the 
following chapters we shall show that for every language-type a 
mechanism can be constructed which is able to accept precisely 
the sentences of a language. In other words, given a language L 
of type-i, an automaton can be devised which can decide, after 
a finite number of operations, for the sentences of L and for no 
other string, that a sentence belongs to L. In generating a sentence, 
a grammar ascribes a structural description to it in passing; in a 
similar way, when an equivalent automaton accepts a sentence, 
an equivalent structural description unfolds. 

It would, however, be incorrect to conclude from this symmetry 
that a mechanism finite in size can accept anything which is 
generated by a finite grammar. Such a mechanism can indeed be 
of finite description, but in most cases it will have to contain an 
infinite number of parts. In fact, only one of the language types 
which we have treated — the class of regular languages — is 
recognizable through finite means. 

In this chapter we shall present a survey of the theory of finite 
automata, and we shall show (1) that there is a finite recognition-
automaton for every regular language, and (2) that for every set 
of strings which is accepted by a given finite automaton, a regular 
grammar can be found which generates precisely the same strings. 
Some special types of finite automata, such as nondeterministic and 
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fc-limited automata, will also be briefly discussed. In the final 
paragraph we shall mention some of the properties of probabilistic 
finite automata. 

4.1. DEFINITIONS AND CONCEPTS 

A FINITE AUTOMATON, FA, is a system (S, I, d, s0, F) in which 
(1) S is a finite nonempty set of STATES. At any given moment 

the automaton must be in one of these states. Individual states 
are generally denoted by the letters s or t, with subscripts when 
needed. 

(2) / is a finite nonempty (INPUT) VOCABULARY. Its elements 
("words") are represented by letters from the beginning of the 
Latin alphabet. /* is the set of strings, finite in length, composed 
of the elements of/, including the null-string X, Elements of/* may 
be represented by letters from the end of the Latin alphabet. 

(3) 5 is a (STATE) TRANSITION FUNCTION which indicates how the 
automaton changes states under the influence of an input word. 
The notation is as follows: S(s, a) = t means that the automaton 
in state s changes to state t at the insertion of word a, where s and 
t are elements of S. The transformation function is defined for 
every possible pair of state and input-element: for every s e S and 
every a el, d(s, a) is either a state in S, or q>, where q> means that 
the automaton blocks and no further step is possible. The transi
tion function is also said to MAP the cartesian product S X / in 
S U f Because S x lis finite, the transition function consists of 
a finite set of rules called TRANSITION RULES. 

(4) So is a particular element of S, called the INITIAL STATE. It is 
the state of the automaton when the input process begins. 

(5) F is a nonempty set of FINAL STATES in S. 
A finite automaton FA — (S, I, 5, s0, F) is said to ACCEPT a string 

x e/*, if FA, first operating in the initial state s0, passes through 
a sequence of states, the last of which is a final state in F, under 
the influence of the successive elements of x. 

Ordinarily the <5-notation is not limited to the input of individual 
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elements of J, but is also used for the input of strings from /*. 
If x = aifl2 ... an, and FA contains the following transition rules: 
d(si, ai) = S2, S(s2, a%) = ss, ■ ■■, d(s„, an) = sn+i, where si = s 
and J B + I = t, we may write 5(s, x) = /. Thus d(s, xd) = d(S(s, x), a). 
By convention S(s, 1) = s. Expanded in this way, the transition 
function maps S x / * i n S U f We may also say that the auto
maton ACCEPTS x e /* if S(s0, x) e F. 

The LANGUAGE T accepted by the finite automaton FA is 
{x\S(s0, x) e F}, the set of strings accepted by the automaton. Such 
strings are also called SENTENCES. 

Two finite automata are EQUIVALENT if they accept the same 
language. 

Finite automata can be pictured as in Figure 4.1. They consist 
of a CONTROL-UNIT and a READING HEAD along which an INPUT 
TAPE runs from right to left. A string of input symbols appears 
on the tape (in the figure x = a\a% ... a»). The control-unit can be 
in only one of a finite number of states at a time. When the reading 

Initial Phase 

In initial 
state SQ 

n-1 

Reading head 

Control-unit 

n-1 

~N 

In final 
state £ F 

Final Phase 

Fig. 4.1. The Accepting of a String x —aiaz ... att by a Finite Automaton. 
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head begins to read the first symbol, the control-unit is in the initial 
state s0. When the first element (fli in the figure) is read, the state 
of the control-unit can change (according to the transition rule 
concerned). The tape then moves one space to the left. The next 
input symbol (az in the figure) is read in the new state, and a 
second change of state may take place, according to the respective 
transition rule. The tape again moves one space to the left. This 
process continues until the control-unit arrives at a final state in F. 
The string of symbols read up to that point is then said to have 
been accepted by the automaton. Figure 4.1. shows the initial and 
final phases. 
It is also possible visually to represent what occurs in the control-
unit during reading; this is done by means of a TRANSITION-
DIAGRAM. We shall illustrate this with a few examples. 

EXAMPLE 4.1. Let FA — (S, I, 3, s0, F) be a finite automaton with 
JS = {s0, si}, I = {a, b}, F = {si}, and where 3 contains the 
following transition rules: 

8(s0, a) = sx S(s0, b) = <p 
S(si, b) = s0 S(si, a) = <p 

The transition-diagram for this automaton is given in Figure 4.2. 

Fig. 4.2. Transition-Diagram for Finite Automaton FA (Example 4.1.). 
initial state is So 
final state (circled twice) is si 

Such a diagram should be read in the following terms. Every state 
is shown by means of a circle in which the name of the state is 
given. For every nonblocking transition rule S(s, a) — t, there is 
an arrow in the diagram going from the circle labeled s to the circle 
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labeled t; the input symbol a is written near the arrow. In Figure 
4.2. it is clear that the automaton in question has two states, that 
it passes from state s0 to state si when a is read, and that it returns 
from state si to state s0 when b is read. String a is obviously 
accepted by this automaton, because beginning in the initial state 
s0, it passes to the (only) final state s\ when a is read. Another way 
of coming to the final state sx is by reading the string aba: the 
automaton passes successively from s0 to si, then back to s0, and 
again to si; because s0 is an initial state and si is a final state, the 
string aba, by definition, is accepted. This automaton accepts all 
strings a, aba, ababa, ... The language is T = {a{bdf}. 

EXAMPLE 4.2. Let FA = (S, I, 5, s0, F) be a finite automaton with 
S = {s0, su j 2 } , / = {a, b, c, d, e,f}, F = {s0}, and with the 
following transition rules in 3: 

S(s0, a) = si S(s2, e) = s0 
S(si, b) = J I S{si,f) = so 
S(si, c) = S2 5 (—,-—) = <p for all other pairs 
3(si, d) — s2 

The transition-diagram for this automaton is given in Figure 4.3. 

Fig. 4.3. Transition-Diagram for Finite Automaton FA (Example 4.2.). 

Here s0 is both an initial and a final state. One can easily see from 
the diagram that the automaton will accept all strings which bring 
it from the initial state s0 back to the final state s0; these are such 
strings as adf, ace, ade, dbdf, abbce, etc. Each of these strings is 
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composed of first an a, then a string of 0 or more &'s, then either 
a d or a c (d v c), and finally either an e or an / (e v / ) , thus 
strings of the form ab* (c v d)(e v f). As in the preceding example, 
however, after returning to the final state s0, one can make still 
another turn in the automaton, returning once again to s0, and 
continue doing so. The language accepted by this automaton is 
T = {(ab*(c v d) (e v /))*}. The machine also accepts X, because 
by definition 5 (s0, X) = s0, bringing the automaton from the initial 
to the final state. 

Beside the fact that initial and final states are identical, this 
automaton has the peculiarity of allowing LOOPS, by which a state 
sx can be transformed into itself again. Moreover, there are two 
pairs of EQUIVALENT INITIAL SYMBOLS, d and c, and e and/, which 
under all circumstances have the same effect on the operation of 
the automaton. 

Instead of a transition-diagram, one can also use a TRANSITION-
TABLE to show the structure of an automaton. A transition-table 
is a matrix in which the row-elements represent the states of an 
automaton, and the column-elements represent the possible input 
symbols. Every matrix-element shows a state (or <p) which is 
reached from a given state (row-element) and a given input symbol 
(column-element). An example of such a matrix is the following 
transition-table for finite automaton FA of Example 4.2. 

input elements 
a b c d e f 

So si <p q> <p (f q> 
si g> si S2 S2 g> f 
S2, <P <p f <p So So 

Ordinarily the <p is omitted in such a matrix. A transition-table 
contains precisely the same information as a transition-diagram. 

Some finite automata are K-LIMITED. A ^-limited automaton is 
a finite automaton the state of which is determined at every 
moment by the last k (or fewer) accepted input symbols. The 
automaton of Example 4.2. is 1-limited. As is clear from the 



FINITE AUTOMATA 59 

transition-diagram (Figure 4.3.), the automaton, after having 
accepted a, can be only in state si', after accepting b, only in state si; 
after accepting c, only in state s%; after accepting d, only in state sz; 
after accepting e, only in state s0; and after accepting/, only in 
state s0. Likewise in each column of the transition-table, only one 
state is mentioned. 

A 2-limited automaton is shown in Figure 4.4., both in dia
grammatic and in tabular form. It is clear that immediately after 
accepting an a, the machine can be in one of two states, either si 
or s%. The automaton is therefore not 1-limited, but 2-limited, for 
after accepting aa, it is in state s%; after accepting ab it is in s0, 
and after ba, in si. It can never accept bb. 

8 i 

82 

Fig. 4.4. Transition-Diagram and Transition-Table for a 2-limited Automaton. 

Figure 4.5. shows that not all finite automata are ^-limited; it 
represents an automaton which is A>limited for no finite k. Even 
when this automaton has accepted an arbitrarily long string of b's, 
we do not know if it is in state s0 or in state si. 

Fig. 4.5. Transition-Diagram and Transition-Table for an Automaton which 
is fc-limited for no Finite k. 

If So is the initial state and s\ the final state, then the language 
which the automaton accepts is T = {b*ab*}. The fc-limited auto-
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maton is of some interest in dealing with Markov processes (cf. 
Volume II, 6.1., and Volume HI, 3.2.). 

4.2. NONDETERMINISTIC FINITE AUTOMATA 

The finite automaton defined in the preceding paragraph has the 
property that for every state and input symbol, the state which 
follows (or g>) is unambiguously determined. Such an automaton 
is therefore called a DETERMINISTIC automaton. But, for two 
reasons, it remains necessary to define the nondeterministic variant 
of finite automata here. The first reason is that such a definition 
will allow us more easily to establish the relationship between 
finite automata and regular grammars. The second reason is that 
the probabilistic automaton (cf. paragraph 4.4.) is in turn a 
generalization of the finite automaton. 

A NONDETERMINISTIC FINITE AUTOMATON NFA is a system 
(S, J, S, So, F) which is in every way equal to a deterministic finite 
automaton, except for the transition rules 8. The transition rules 
of a nondeterministic finite automaton have the following form: 
S(s, a) = {tu tz, ..., tn} = D, where 0 < k < oo; 5, u e S, and 
D <= S. In other words, for every pair of state and input symbols, 
there is a finite set of states at which the automaton can arrive. 
d is said to be a mapping of S x / in the subset of S (where q> is 
the empty subset). A deterministic finite automaton is actually a 
particular case of nondeterministic finite automata: it covers those 
cases where for all transition rules k = 1 or k = 0. 

When can one say that x e I* is accepted by a nondeterministic 
finite automaton? Suppose that x ~ a\az ... an, and that the finite 
automaton FA contains the following transition rules: S(s0, en) = 
Du st e Dr, S(si,a2) = Dz, s2 e D2; ...; 8(s„^i,a„) = D„, 
sn e D„ and sn e F, then x is said to be accepted by the auto
maton. Thus, if there is some succession of states allowed by the 
transition rules, according to which x brings the automaton from 
s0 to a final state, the nondeterministic finite automaton is said to 
accept x. 
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The operation of a nondeterministic finite automaton is also 
easy to represent by way of a transition diagram, as becomes 
apparent in the following example. 

EXAMPLE 4.3. Let NFA = (S, f, S, .?„, F) be a nondeterministic 
finite automaton where v = {s0, s\,sz\, I \a,h), F {.vaj, 
and 6 contains the following transition rules: 

5{s0, a) = {.So, si} 
S(su a) = {s2} 
S(si,b) = {sus2} 
S (—, —) = for all other pairs. 

Figure 4.6. shows the transition-diagram for this automaton, 
Among the strings which can bring the automaton from the initial 
state So to the final state s» are the following: aa, ah, aaa, aab, 
aba, abb, and so forth. In general, the language accepted by this 
automaton is T = {a'ab'(a v b)}. 

Fig. 4.6. Transition-Diagram for the Nondetcrmmistic Finite Automaton 
NFA (Example 4,3.). The final state sj is circled twice. 

The following important theorem is valid for nondefcrmirmfic 
finite automata. 

THEOREM 4.1. For every nondeterministic finite automaton there 
exists an equivalent deterministic finite automaton 

The proof of this theorem, for which we refer the reader to Rabin 
and Scott (1959), will be briefly discussed later. Wc shall first 
illustrate it by returning to Example 4.3. We can construct a finite 
automaton FA equivalent to the nondeterministic finite automaton 
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NFA of that example in the following way. NFA had three states, 
i.e. S = {s„, si, sz}; the corresponding FA will have seven states, 
namely, [sB], |>i], |>2], [s0, sx], [s0, sz], [sx, s2], and [s0, sx, s2]. These 
states are thus called after all possible nonempty subsets of S. We 
maintain the input vocabulary, and in order to establish the new 
set of transition rules we proceed as follows. Let us begin with 
S'([s0], a). In NFA d(s0, a) = {s0, sx}; in FA let d'([s„], a) = [s0, sx]. 
Notice that this latter is one state and not two. Further let 
<5'(M>a) = M because S(si, a) = {52}, and ^'(M, a) = q> because 
S(s2, a) = q>. For d'{[s0, sx], a) we proceed as follows. In NFA 
S(s0, a) = {s0, si} and 5(si, a) = {$2}. The union of S(s0, a) and 
S(si, a) is thus {s0, sx, s2}, and in FA we let S'([s0, sx], a) = [s0, sx, S2]. 
Again the latter is a single state. Similarly we construct 8'([so, £2], a) 
= [s<>, si], etc. This procedure leads to the establishment of the 
following list of transition rules: 

S'&So], a) = [so, si] 
nisila) = [s2\ 
S'dsi], b) = [sx,s2] 
#([so, si], a) = [s0, si, sz] 
#([so, si], b) = [sx, sz] 

S'([so, sz], a) = [so, si] 
#([si, sz], a) = [sz] 
d'([sx, sz], b) = [si, s2] 
S'([So, Si, Sz], a) = [So, Sx, Sz] 
d'dso, si, sz], b) = [sx, sz] 

For all other S' ( - , - ) , S' ( - , - ) = 

Fig. 4.7. Deterministic Finite Automaton Equivalent to the Nondeterministic 
Finite Automaton in Figure 4.6. 
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The set of final states F' in FA is defined as consisting of those 
states in which the label of a final state of NFA occurs. The only 
final state in NFA is ss, and therefore F' = {[52], [s0, s2], [si, s%], 
[s0, si, S2]}. Finally we take [s0] as the initial state in FA, and we 
affirm that FA is equivalent to NFA. 

The transition-diagram for FA is given in Figure 4.7. The final 
states in the diagram are circled twice. The reader should notice 
that states [si\ and [s0, s%] do not appear in the figure; this is 
because neither of them serves as the output of any transition rule. 
They are superfluous and consequently omitted. The diagram shows 
that FA accepts precisely the language {dab*(a v b)}. 

PROOF OF THEOREM 4.1. (resume). The proof follows the construc
tion which we have just described. The states of FA correspond 
to the nonempty subsets of S in NFA. The transition rules are 
constructed as we have shown, and the set of final states F' in FA 
consists of those states which have one or more elements of F in 
their labels. By induction on the length of the string of input 
symbols it can be shown that FA is equivalent to NFA. 

Because, inversely, deterministic finite automata are special cases 
of nondeterministic finite automata, we can conclude that the class 
of finite automata is equivalent to the class of nondeterministic 
finite automata; they accept the same class of languages. 

4.3. FINITE AUTOMATA AND REGULAR GRAMMARS 

In this paragraph we shall give proof of the equivalence of finite 
automata and regular grammars. The languages accepted by finite 
automata are exactly the same as those generated by regular 
grammars, and vice versa. 

THEOREM 4.2. For every finite automaton FA there exists a regular 
grammar G such that T(FA) = L(G). 

PROOF. Let FA = (S, /, S, s0, F) be a finite automaton. We must 
construct a regular grammar G = (V&, VT, P, S) such that 
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(0 VN = S 
(ii) VT = I 
(iii) S = So 
(iv) A -* CJB is in P as <5(.4, a) = B 

A -* a is in P as <5(y4, a) = C, where C e F 
(notice that B and C are used here as labels for states) 

We shall now show that G is equivalent to FA. For this, two condi
tions must be fulfilled: (1) If x e T(FA), then x e L(G), and (2) if 
x e L(G), then x e T(FA). 

(1) x E T(FA). If this is so, then by definition S(s0, x) in F. We 
write x as aiC2 ... a«. We presuppose that 1 <£ T(FA), and that 
therefore n > 0. In that case S(s0, x) = <5(<5(s0, aia2 ••■ an-i), an) 
(cf. paragraph 4.1. (5)), and continuing in the same way d(s0, x) = 
d(d(... (s0, ai), 02), ...), an). Because 5{s0, x) in F, there is a sequence 
of states s0, si, ..., sn fa e S; st and S} are not necessarily different) 
such that 8(so, #1) = si, S(si, a£) — d(S(s0, a{), 02) = sz, ..., 
S(sn-i, an) = %, where sn e P. But then there are also productions 
S = so -> cisi, si -» CI2S2, ..., J»_I -> an in P, on the basis of the 
construction of G. It is then clear that S =*■ a ^ ... a„ = x. 

(2) x e L{G). By definition S =S> x. Let x be written as ata2 ... an. 
Then there are productions S = s0-* aisi, si -» 02*2, ..., s»_a -> 
an-iSn-i and J»_I -»a» in P for certain J« in VN. But that means that 
FA contains the following transition rules: d(s0, «i) = si, 3(si, a£) 
= 52, ..., d(sn-.2, a»-i) = Sn-u 8(sn-i,an) = s„ with j» in F (this 
follows from the definition of G). It is evident that with these 
transition rules FA accepts the string a\a% ... an = x. 

It follows from (1) and (2) that FA and G are equivalent for 
sentences of length > 0. If FA also accepts i , the theorem holds 
only if we maintain the convention of paragraph 2.1., i.e. that by 
definition G also generates X. 

EXAMPLE 4.4. Let us construct a grammar equivalent to the finite 
automaton FA in Example 4.1. We recall that FA — (S, 1,5, s0, F), 
where S = {s0, si}, I = {a, b}, F = {s±}, and with the following 
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transition rules: 8(s0, a) = si and S(si, b) = s0 (for all other pairs 
S ( - , - ) = *»• 

The construction as shown in the proof is as follows: G = 
{VN, VT, P, S), with VN = {s0 = S, Sl}, VT = {a, b}, and P = 
{s0 -»• asi, % -> a, si -> fe»}. Notice that on the basis of (iv), the 
transition rule 3(s0, a) = si leads to two productions in G: s0 -*■ asi 
and So -»• a. 

THEOREM 4.3. For every regular grammar G there exists a finite 
automaton FA such that T(FA) = L(G). 

PROOF. We shall prove that a nondeterministic finite automaton 
NFA can be found so that T(NFA) = L(G). The theorem is then 
valid because for every nondeterministic finite automaton NFA 
there exists an equivalent finite automaton FA (Theorem 4.1.). 

Let G = (VN, VT, P, S) be a regular grammar. We construct 
NFA = (S, I, S, s0, F) as follows: 

(i) S=VK\JX 
(ii) I=VT 
(iii) S(A, a) contains X {inter alia) if A -* a in P 

S(A, a) contains every B for which A -»• aB in P 
d(X, a) — <p for every a in VT 

(iv) s0 = 5 
(v) F = {X}, if X $ L(G); F = {X, S}, if A e L(<?) 

Once again the proof of equivalence takes place in two steps. 
First it must be shown that if x £ L(G), where x — aias ... an, 
then x e T(NFA). Afterward the inverse must be shown. 

(1) x e L(G). If x e L(G) and |x| > 0, then there is a derivation 
S => aiAi =>...=> aiaz ... an-iAn-i=> aia* ... an for some se
quence A\, ..., An-i of variables in Vn. P thus contains the pro
ductions S -y aiAi, A\ -* azAs, ... An_\ -*• an. It appears, then, 
from the construction of NFA that A\ e 8{S, a{), A% e S(Ai, 02),... 
X e S(An-i, ««). But if the transition rules are valid, x = aiaz ... an 
is in T(NFA). If X e L(G), then SeF (see (v)), and because 8 (S, X) 
contains S by definition, A e T(NFA). 
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(2) x e T(NFA). If |JC| > 0 and x is accepted by NFA, then there 
are states S, Ai, ..., An-i, X, where A\ e 8{S, m), A2 e d(A 1,02), 
..., Z e J(^4»_i, a»). But from the construction of NFA it appears 
that P must also have productions S -> ai^4i, ..., ^ _ i -» an. It 
follows from this that S 4- a ta 2 ... a„ = x. If A e T(NFA), then 
S e F. But 5 e F only if A e £(G) (see (v)). 

The equivalence of G and iVi^ follows from arguments (1) and 
(2). It follows from Theorem 4.1. that there must also exist an FA 
equivalent to G. 

EXAMPLE 4.5. Let us construct a nondeterministic finite auto
maton NFA which accepts the language generated by regular 
grammar G in Example 2.1. We recall that G = (VN, VT, P, S) 
where VN = {S, B}, VT = {a, b}, and P = {S -* aB, B -* bS, 
B -> b}, and that L(G) = {(ah)*}. We shall now construct NFA = 
(S, I, 5, So, F) according to the procedure given in the proof. Thus 
S = {S, B, X}, I — {a,b}, S contains the following transition 
rules: S(S, a) = {B}, S(B, b) = {X, S}, 3 ( - , - ) = q>for all other 
pairs; finally, F= {X, S}. The transition-diagram for automaton 
NFA is given in Figure 4.8. 

Kf?j) 
b 

Fig. 4.8. Transition-Diagram for Nondeterministic Finite Automaton NFA 
which accepts language {(ab)*}. 

Together Theorems 4.2. and 4.3. show the equivalence of finite 
automata and regular grammars. We can employ this equivalence 
in order to prove certain theorems concerning regular grammars 
by means of theorems concerning finite automata, and vice-versa. 
Theorem 2.5. is a good example of this. 

THEOREM 2.5. The product of two regular languages is regular. 

PROOF. Let L\ and L% be regular languages; let L% consist of the 

:© 
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strings xy where x e Li and y e Lz. There is a regular grammar 
for Li, and therefore we know, on the basis of the equivalency 
theorem, that there is also a finite automaton which accepts Li. 
We shall call this finite automaton FAi — (S, h, di, s0, Fi). Like
wise there is a finite automaton FAz = (T, h, 82, t0, F2) which 
precisely accepts La. Fi and F2 can always be chosen such that they 
have no states in common. We must now construct a nondeter-
ministic finite automaton NFA = (U, I3, 83, u0, F3), which, in a 
way, connects FAi and FAz "in series". We define NFA as follows: 

(i) U= SuT 
(ii) Zj = / i U h 
(iii) 83(11, a) = {Si(s, a)} for every s in S — Fi. In this way NFA 

can begin with a given input as if it were FAi. 

83(14, a) = {8i(s, a), 82(10, a)} for every s in Fi. If NFA 
arrives at a final state of FAi, it can freely (nondeterministic-
ally) either continue to another state of FAi (if this is also 
possible for FAi) or pass on to FA2. This latter is possible 
only when NFA has already reached a final state of Fi (the 
transition rule is applicable only if s is in Fi) and when a 
can be the first symbol of a sentence of L2 (notice that the 
initial state of FA% is t0). 
83(11, a) — {82(t, a)} for every t in T. This guarantees that 
once NFA has "transferred" to FAz it will continue to 
operate as FA%. 

(iv) u0 = s0 
(v) F3 = jFa if 2 $ Lz. This guarantees that NFA accepts the 
input when the end of a sentence of Lz is reached. 
F3 — Fi u F2 if 2 e 1,2. If i^4a accepts the null-string, it accepts 
all sentences xX = x, i.e. the sentences of Li. The automaton 
must be able to accept in each of the final states of Fi. 

The construction of NFA guarantees that it will accept precisely 
the sentences xy e L3. But, on the basis of Theorem 4.1., there is 
also a deterministic finite automaton FA which does the same. 



68 FINITE AUTOMATA 

It follows from Theorem 4.2. that there is a regular grammar for 
1,3, and that Lz is consequently regular. 

The reader may now himself prove the lemma which was used 
at the proof of Theorem 2.8., with the help of finite automata.1 

4.4. PROBABILISTIC FINITE AUTOMATA 

We shall mention probabilistic automata only in the present 
paragraph. It is only on the subject of probabilistic finite automata 
that literature of any considerable size is available. 

The probabilistic finite automaton (PFA) is a generalization of 
the nondeterministic finite automaton; a probability is assigned 
to every possible transition. Before presenting a formal definition 
of probabilistic finite automata, we shall discuss the manner, step 
by step, in which the generalization is made. 

If it is true for a nondeterministic finite automaton NFA that 
d(s, a) = {si, sz, ...,sn}, we can define pi(s, a) for a probabilistic 
finite automaton PFA as the chance that the automaton will pass 
from state s to state st, given the input symbol a. We shall suppose 
that every probabilistic finite automaton is normalized, i.e. 

R 

£ pt(s, a) — 1. In other words, the total chance for a state transi
ts i 
tion under the influence of a given input is 1. We shall return to 
the merits of this convention at the end of this paragraph. There 
is no reason why the chance for transition to a particular state 
could not be zero. In general we shall suppose that 1 > pi(s, a) > 0. 
Because transitions which cannot take place in a nondeterministic 
finite automaton can in a probabilistic finite automaton be con
sidered as transitions where p = 0, we may give a more general 
definition of the transition function S in a probabilistic finite auto
maton. If such an automaton PFA has n states, then S(s, a) can 
1 To do so one should construct a nondeterministic finite automaton NFA 
which normally operates as FAi (which accepts Li) except with transitions 
3(s, a) where a is the critical terminal element. In such cases FAi. (which 
accepts £2) should be made to "take over" until a state in F2 is reached. This 
should then act as S(s, a), in order for NFA to be able to go on functioning 
as FAi. 
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unambiguously be regarded as a row (vector) (pi, p%, ..., pn), 
where pi = pi(s, a). For impossible transitions/>« = 0; for all other 
transitions pt is the transition probability. Thus for every pair 
(s, a) where s e S and a e 7, 8 is a vector of n numbers. If, for an 
element a, we wish to represent all the vectors, we can show them 
in matrix form as follows: 

8(JI, a) 
8(s2, a) 

8(si, a) 

5(*», a) 

si 

Pu 
Pai 

Pa 

Pnl 

S2 

Pa ■ 
P22 . 

Pii ■ 

Pn2 ■ 

. S) 

■ Pu ■ 
. Pi} . 

. Pi] . 

.. Pi . 

Sn 

■ ■ Pin 

■ Pzn 

Pin 

Pnn 

For the sake of brevity we shall call this entire matrix M(a), the 
TRANSITION-MATRIX for element a. Matrix-element /># in M(a) means 
that if the automaton is in state st and reads the input symbol a, 
there is a chance of p^ that a transition to state *j will take place. 
Normalization guarantees that the sum of the elements in a row 
in this matrix is equal to 1. The matrix is square (n x n), and is 
thus a stochastic matrix. 

To include all the transition rules in PFA we would have to 
compose similar matrices for each of the input elements. If 
/ = {ei, (12, ..., am}, we define M as the set of transition-matrices 
for the elements of I. Thus M = {M(m), M(a%), ..., M(am)}. 

Finally, we wish to open the possibility that the initial state of 
PFA is also random. For each of the n states we must define an 
INITIAL PROBABILITY p(s), which represents the chance that at the 
first input the automaton is in state s. Since we wish PFA with 

n 
certainty to be initially in one of the « states, we let £ p(s;) = 1. 

One can now no longer speak of an initial state, but rather of an 
INITIAL DISTRIBUTION; this simply means the string of initial pro
babilities (p(si), p(s2), ..., JP0»))- This vector is denoted by s0. 

At this point we can define a probabilistic finite automaton. 
A PROBABILISTIC FINITE AUTOMATON is a system PFA = (S, I, 
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M, So, F), in which S is a finite set of states, / is a finite input 
vocabulary, M is the set of transition-matrices, s0 is the initial 
distribution and F <= S is the set of final states. 

EXAMPLE 4.6. Take the probabilistic finite automaton PFA = 

({Sl, s2}, {a, b}, {M(a), M(fo)}, (1,0), {s2}) with M(a) = 

and M(b) = K | • PFA has two states and the chance of starting 

in si is 1 (because s0 = (1,0)). From transition-matrix M(a) we 
learn that when the automaton is in state si and reads the input 
symbol a, it has a chance of 1 to change to state s%; if in s ta tes 
input of a leads with probability 1 to transition to st, i.e. PFA 
remains in S2. Transition-matrix M(b) shows what happens when 
the input is the symbol b. Once again all this is better shown by 
a transition-diagram. In a transition-diagram for a probabilistic 
finite automaton, the various arrows are labelled not only with the 
respective input elements, but also with the corresponding transi
tion probabilities. Figure 4.9. gives the diagram for the automaton 
in this example. Arrows for transitions the probabilities of which 
are equal to 0 have been omitted. 

Fig. 4.9. Transition-Diagram for a Probabilistic Finite Automaton 
(Example 4.6.). 

The diagram shows that starting in state s\ the automaton has a 
chance of 1 to pass to final state 52 when the input symbol a is 
read; this chance becomes % when the input symbol is b. What 
will be the chance for the transition if the input is the string ab ? 
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The element a brings the automaton, with a probability of 1, to 
state szi the element b will maintain the automaton in state S2 
with a probability of -f. If the transitions are independent of each 
other (which is our presupposition here), the string ab brings the 
automaton to state s2 with a probability of 1 • f- = f-. What then 
will be the chance that the string ab will bring the automaton back 
to state Si? Obviously this will be 1 • ■§• = ■§■• Likewise the string ab 
will take the automaton from state sz back to state s% with the 
probability 1 • § = §, and from state st back to state s t with 
probability 1 • ■§- = •§-. In this way we have in fact found a transi
tion-matrix for the string ab: 

M(ab) = [| ? 2_ 
3 3-1 

It is also quite easy to see that M(ab) is the matrix product of 
M(a) and M(b): 

M(ab) 0 1' 
0 1. 

■2 IT r l 2T\ 
3 3 _ 3 3 
X A ~ A A • 
.3 3J L3 3J 

In general we can define the TRANSITION-MATRIX M(X) FOR A 
STRING x = aifiz ... fl» as the product M(x) = Af(ai) • M{a%) • ... ■ 
M(an). In such a matrix one can read, for all pairs st, S], the 
probability that the entry of an input x will cause the probabilistic 
finite automaton to change from state si to state Sf. 

For the interested reader we can likewise easily indicate, in matrix 
notation, the chance that a final state be reached at all with a 
given string, given vector s0, the string of initial probabilities. For 
this purpose, we define a FINAL VECTORS/ as a string of n numbers, 
analogous to s0> corresponding to the n states in S and in the same 
order. For every state, the corresponding number is 1 if the state 
is a final state, and 0 when this is not the case. Thus s/ = (qi, qz, 
...,qn) where qt = 1 if st e F, and qi — 0 if st $ F. The final vector 
in Example 4.6. is thus (0,1), for only sz is a final state. The chance 
that JC will bring the automaton to a final state is given in matrix 
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notation as saM(x) s'f.x Thus the chance that the string ab will bring 
the automaton of Example 4.6. to a final state is equal to 

With these means at our disposition, we are able to define the 
language which is accepted by a probabilistic finite automaton. 
We should like to define that language as the set of strings by 
which the automaton reaches a final state with a certain minimum 
probability. What that minimum probability precisely is remains 
quite arbitrary. We can call it the CUT-POINT PROBABILITY, tj. 

The ^-STOCHASTIC LANGUAGE T(PFA, TJ) is the set of strings 
which bring the probabilistic finite automaton PFA to a final state 
with a probability > r\. Formally stated, T(PFA, rj) = 
{x\s„M(x)s'f > IJ}. 

If t] = 0, the situation is simple; every sentence by which a final 
state can be reached belongs to T. But stricter conditions can be 
posed. The opposite extreme is tj = 1. However, the chance is 
never greater than 1 that a sentence will bring the automaton to 
a final state, and thus T(PFA, 1) is empty for every PFA. 

THEOREM 4.4. A regular language is ^-stochastic for 0 < rj < 1. 

PROOF. Let Z, be a regular language, and FA, a finite automaton, 
where T(FA) = L. We begin to construct probabilistic finite auto
maton PFA by borrowing I and .Ffrom FA. The set of states S' 
in PFA will be S u s9, where % is a "dummy" state. A transition-
matrix is composed for every a el in PFA as follows: py = 1 if 
8{st, a) = SJ; pij = 0 if dfa, a) # sj, for every pair St, Sj in S. We 
let pi9 = 1 if 3(si, a) = <p, ®n&p^ = 0 in all other cases, for si e S. 
Finally, we let P w = 1, and p9t — 0 for every st e S. In this way 
every matrix M(a) is stochastic, and for every sentence x in T(FA) 

1 s'f is the TRANSPOSITION of the row-vector, i.e. the row-vector is set up 
vertically like a column, with the leftmost element at the top. Notice that the 
definition of a transition-matrix for x supposes the stochastic independance of 
the transitions. 

(1,0) a-R = (-M) 
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there is a probability of 1 that x will be accepted by PFA, while 
a final state will be reached with no other string. Because for 
every sentence s in L, the probability p(s) = 1 in T(PFA), it is 
true for every 0 < r\ < 1 that T(PFA, rj) — L. 

The inverse of Theorem 4.4. does not hold, but the following 
theorem is valid. 

THEOREM 4.5. Every O-stochastic language is regular. 

PROOF. Let PFA = (S, I, M, s0, F) be the probabilistic finite auto
maton which accepts the O-stochastic language T. We must first 
construct a nondeterministic finite automaton NFA(i) for a state Si 
with initial probability in PFA: p(st) > 0. We make NFA(i) such 
that it accepts every sentence which bring PFA from state Si to a 
final state, with probability > 0. For this purpose we let the initial 
state of NFA(i) be Si, F be the set of final states in NFAQ), and si 
in S(sj, at) if the element pji is greater than 0 in the transition-
matrix M(aic). The language T% accepted by NFAQ) is regular 
(Theorems 4.1. and 4.2.). 

If we construct a NFA(i) for every Si in S1 for which p(si) > 0, 
it follows that every sentence which is accepted by PFA, with 
probability greater than 0, will also be accepted by at least one of 
the NFA, and that every sentence accepted by one of the NFA 
will also be accepted by PFA with probability greater than 0. We 
conclude that the union of all the languages Ti is also regular 
(Theorem 2.5.). 

We close this paragraph with a remark on normalization as 
used with probabilistic finite automata. The basis for normaliza-

n 
tion £ Pt(s,a) = 1 is the input symbol: each input symbol leads 

i = i 
to a transition with a probability of 1. The consequence of this 
normalization is that it is not generally valid that the sentence 
probabilities in a stochastic language add up to 1. In the degenerate 
case, for example, where the matrix contains only l's and 0's, every 
sentence of the language has a probability of 1, while the language 
can indeed contain more than one sentence. There is therefore no 
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simple relationship between probabilistic finite automata and 
regular probabilistic grammars which are normalized on the basis 
of a nonterminal element. As we have seen, in that case a normal
ized probabilistic language is generated. Probabilistic finite auto
mata can, of course, also be normalized on another basis, namely 
the state. In that case the total chance for transition from a given 
state, taken over all inputs, is equal to 1, thus £ £ Pi(s, aj) = 1. 

i i 
It then becomes possible to show equivalences to probabilistic 
grammars. 



5 

PUSH-DOWN AUTOMATA 

In the preceding chapter we showed that regular languages can be 
accepted by finite automata. For languages of a higher order we 
shall have to refer to systems which are, in some way, infinite in 
size. To clarify the notion, let us consider a digital computer. 

A digital computer is a finite automaton because it has a finite 
number of parts — for instance, n (including storage) — each of 
which can be in a finite number of states — let us say k at most. 
The machine will therefore have no more than kn states, a finite 
number. Consequently a computer can accept, in principle, only 
regular languages; it cannot accept context-free or higher order 
languages. 

One may wonder if there is any practical interest in studying auto
mata which can accept higher order languages, since, in principle, 
they can never be built. However, the theoretical infiniteness of 
such automata is of little consequence in practice. The value of n 
for a sizable computer can easily reach 106, and if k is equal to 2, 
kn is an astronomically high number. For practical purposes, then, 
a computer is of unlimited size. It can, within limits which in 
practice are never reached, accept higher order languages. Most 
computer languages, such as ALGOL, are in fact context-free or 
higher order languages. 

In this chapter we will discuss one simple infinite automaton, 
the PUSH-DOWN AUTOMATON. This automaton is infinite because 
its store, the PUSH-DOWN STORE, is of unlimited capacity. In all 
other respects it is a finite automaton. We shall show that push
down automata are equivalent to context-free grammars. 
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5.1. DEFINITIONS AND CONCEPTS 

A push-down automaton is a finite automaton to which an un
limited push-down store has been added. A push-down store is 
somewhat comparable to a narrow knapsack. Imagine that a hiker 
has placed his matches at the very bottom of his knapsack, then 
put in his jacket and other articles of clothing, and finally a can 
of soup, a can opener, and cooking utensils. When the hiker 
becomes hungry and reaches a brook, he may wish to eat the soup. 
He removes the cooking utensils, can opener, and the can of soup; 
this poses no problems, as the last articles placed in the sack are 
the first to come out. Also, he can add water from the brook. 
But if he wishes to light a fire to warm the soup, he must first 
remove the clothing and jacket before he is able to reach the 
matches: the first things placed in the sack are the last to come out. 

We can make an analogy between the hiker and a push-down 
automaton: the knapsack can be compared to the push-down store 
(with the matches as the start element), the water and firewood to 
inputs, and warmth and satisfaction for hunger to state transitions. 

The formal definition of a push-down automaton is as follows. 
A PUSH-DOWN AUTOMATON PDA is a system (S, I, r, S, s0, y0) where: 

(1) S is a finite nonempty set of STATES, with s0 e S as INITIAL 
STATE. 

(2) / is a finite (INPUT) VOCABULARY. 
(3) r is a finite PUSH-DOWN VOCABULARY, with y0 e T a s push

down START SYMBOL, the only element in the store when input 
begins. Other push-down symbols are }% y% The set of finite 
strings of push-down symbols is JT*. Elements of r* are represented 
by lower case letters from the end of the Greek alphabet, such as 
X, ty, co. The topmost symbol which at a given moment is found 
in the push-down store is called the TOP SYMBOL. 

(4) 8 is the set of TRANSITION RULES. Each rule indicates what 
will occur when, at a given state, with a given top symbol, a given 
input symbol (possibly also A) is introduced, i.e. it shows what 
the following state will be and by what the top symbol will be 
replaced. The top symbol may be replaced by (a) an element of T; 
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(b) itself — a special case of (a), the content of the store remains 
unchanged; (c) an element of F", thus, a STRING of symbols replaces 
the top symbol; or (d) the null-string X — a special case of (c), 
this amounts to simply removing the top symbol. The notation 
for these cases is as follows: 

(a) S(st, a, yjc) = (SJ, yi), where Si and SJ are states in S, a is an 
input symbol in /, and yt and yx are push-down symbols in r. 

(b) 3(st, a, 7*) = (s}, yic) 
(c) 8(st, a, yic) — (sj, x), where / is a string in T*. If x = WVn 

for some yr in /**, and thus S(su a, yn) = (SJ, y/yte), then y/ is 
added to the store. Notice that the last added element is 
noted at the left. 

(d) d(st, a, yd = (SJ, X). Because X is the null-string, this simply 
means that the top symbol yjc is removed. 

It can also occur that 5 ($i, a, yid = V, the automaton is then said 
to BLOCK. 

The function S maps the cartesian product 5 x ( / u 2 ) x f i n 

A CONFIGURATION in a push-down automaton is a combination 
of state and store content. A transition rule in 5 can bring the 
automaton from one configuration to another. If there is a rule 
8{$t, a, yic) — (sf, x), then the introduction of the input element a 
can change the configuration from (si, yjeco) to (SJ, xw). The nota
tion for this is: 

a: fa, ytco) \- (SJ,X<°)-

This change is called a TRANSITION in the automaton. Unless other
wise stated, we shall suppose that S(s, X, y) = (s, y) for every s 
in S and for every y in T; in other words, the input of X changes 
neither state nor store content. Thus: 

X: (s, (o) \- (s, to) for every s e S and every eo e F*. 

In specially mentioned cases where it is permitted that S(s, X, y) # 
(s, y) (i.e. where the automaton can make a real change of state 
without input), we must allow that S(s, a,y) = <p for every a in /, 
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for otherwise the automaton could make various different transi
tions when the input a is introduced. The INITIAL CONFIGURATION 
of a push-down automaton is by definition (s0, y0). 

We write x = ai ai... an: (s, co) h* (s', co'), if 6 allows transitions 
at: (jsucoi) h (st+i,coi+i), where i = 1, 2, ..., n, such that si = s, 
©l = co, Sn+i = s', and con+i — co'. String x makes the automaton 
change from configuration (s, co) to configuration (s', co'). 

A string x is ACCEPTED by a PDA if at the end of the processing 
of x the push-down store is empty. Formally, string x is accepted 
by PDA if x: (s0, y0) H*(s, X). Note that this definition is not based 
on the attainment of a final state, as was the case with finite 
automata. There exists a description of push-down automata 
which does refer to the attainment of a final state; it is completely 
equivalent to the description used here, and we shall not bring it 
into the discussion. 

The LANGUAGE T(PDA) accepted by a push-down automaton is 
the set of strings which are accepted by that automaton, T(PDA) = 
{x\x: (s0, y0) h* (s, X)}. 

Figure 5.1 shows how a push-down automaton accepts a 
string. 

EXAMPLE 5.1. In order to demonstrate the operation of the push
down automaton, we take a PDA which only uses its store, and 
never changes states. The automaton accepts strings of a's, fs, 
and c's, with as many a's as b's, and one c at the end of the string: 
e.g. c, abc, aabbc, baabc, etc. 

PDA = (5, /, r, S, so, 7o), with S = {■?„}, J = {a, b, c}, 
F = i?o, 7a, 7b}, and where 5 consists of the following transition 
rules: 

1. S(s0, a, 7o) = (so, 7a7o) 5. S(s0, b, 70) = (s0, 7m) 
2. 5{s0, a, ya) = (s0, 7a7a) 6. S(s0, b, ya) = (s0, X) 
3. d(so, a, 70) = (s0, X) 7. S(s0, c, 70) = (s0, X) 
4. S(so, b, 70) = (s0, 7i>7o) For all other (s, c, 7), 3(s, c, 7) = (p. 
By convention 8 (s, A, y) = (s, 7) for all s, 7. 

We shall now show how the automaton accepts the string 
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Fig. 5.1. A Push-Down Automaton in Operation 
a. Situation at start 
b. Automaton while processing string x 
c. Automaton after accepting string x 
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aabbbbaac. The following list gives the successive transitions and 
the rules applied. 

(s0, y0) V (s0, yayo) (rule 1) 
{s0,yay0) f- Oo, yayaYo) (rule 2) 
(s0, yayayo) f- (s0, yay0) (rule 6) 
(■So, yaYo) J- (50s ?0) (rule 6) 
(%, y0) h (%, yby0) (rule 4) 
C?0, Wo) H (*o, y&Wo) (rule 5) 
(s0, ybybyo) I" (•?<>, Wo) (rule 3) 
(s0, ybyo) f- (y0, 7o) (rule 3) 
Ow Jo) 1- (*», A) (rule 7) 

Thus aabbbbaac: (s„, y„) \r (s„, A). 

EXAMPLE 5.2 Let PDA = (5, i, r, 8, s0, y0) be a push-down auto
maton where S = {s0, si}, I = {a, b, c}, F = {y0, ya, yb}, with 
the following transition rules: 

1. S(s0, a, y0) — (s0, yay0) 7. d(s0, c, y0) = (s0, X) 
2. S(s0, a, ya) = (s0, yaya) 8. ti(s0, c, ya) = (su ya) 
3. t>(s0, a, yb) = (so, yafb) 9. S(s0, c, yb) = (si, yb) 
4. S(s0, b, y0) = (s0, ybYo) 10. S(si, a, ya) = (si, X) 
5. d(s0, b, yb) = (s0, Wo) 11. S(si, b, yb) = (si, X) 
6. d(s0, b, ya) = (s0, ybya) 12. 5(si, X, y„) = (si, A) 
^(j, A, y) — (s, y) for every other s, y and in all other cases 

«5fo —. ?) = ?>• 
This push-down automaton accepts all symmetric sentences, where 
c may occur only in the middle of the sentence. If w is a string 
of a's and b's, and wB is the "mirror image" of w, then the language 
accepted by PDA is {wcwR}. In essence, the PDA places a ya into 
the store for every incoming a, and a yb for every incoming A until 
a c is introduced. From that point the state changes from s0 to si, 
and the process is reversed: for every incoming a it removes the 
top symbol if it is ya, and for every incoming b it removes the top 
symbol if it is yb. This continues until y0 is the top symbol, and by 
rule 12 the automaton removes y0 without further input. 
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The sequence of transitions for string aabbcbbaa is as follows: 

(■Jo, ?a) r- (s0, ya7o) I" (s0, ytYaVo) H (s0, ybybyayo) V (si, ybYbYayo) r-
(si, ybyay0) I- (.si, yay0) I- (si, 70) I- (si, A). 

It is obvious that push-down automata can do more than finite 
automata. The languages which are accepted by the automata in 
the last two examples are both context-free languages, and there 
is no finite automaton which can accept them. But push-down 
automata cannot accept all context-free languages; the languages 
which they accept are called DETERMINISTIC LANGUAGES. A class 
of grammars is known which generates precisely these deter
ministic languages, namely the class of JL2?(A:)-GRAMMARS. These 
are equivalent to push-down automata. We shall not discuss 
Li?(A;)-grammars here. The interested reader may consult Knuth 
(1965). 

However, there is equivalence between context-free languages 
and nondeterministic push-down automata. 

5.2. NONDETERMINISTIC PUSH-DOWN AUTOMATA 
AND CONTEXT-FREE LANGUAGES 

A nondeterministic push-down automaton NPDA differs from a 
PDA only in that each of its transition rules is of the following 
form: 

S(s, a, y) = {(su yi), (s%, y2), ..., (sn, ?»)}• 

This means that in each configuration the automaton is not limited 
to a single possible transition, but can make a "choice" among the 
elements of a set of transitions.1 The construction of a nondeter
ministic push-down automaton is completely analogous to that of 
a nondeterministic finite automaton, and the same is true of the 
definition of accepting. A NPDA ACCEPTS a string x, if, when x is 
1 At this point we drop the condition that if Sis, X, y) ¥= <p, then S(s, a,y) — </> 
for every a in /. This condition was necessary in order to exclude the possibility 
of a nondeterministic transition when an input a is introduced into the auto
maton. 



82 PUSH-DOWN AUTOMATA 

introduced as input, there is at least one possible sequence of 
transitions for which x: (s„, r0) h* (s, X). 

EXAMPLE 5.3. Let us construct a simple NPDA which will accept 
the language {anbn \ n > 1}. Let NPDA = ({s0}, {a, b}, {y0, 7a, 
yb}, S, s0, y0), with the following transition rules in S: 

1. S(s0, X, y0) = {(s0s yayb), (s„, yay0yb)} 
2. d(s„, a, ya) = {(s0, X)} 
3. S(s0, b, y0) = {(s0, X)} 

By convention, S(s, X, y) = (s, y) for every s and y, and S(s, —, 
y) = (p for all other <5. 

Only rule 1 is nondeterministic. To show how NPDA operates, 
we give the successive transitions in the accepting of the string 
aaabbb: 

X: (s0, y0) f- (s0, Vay0yb) (rule 1) 
a- (so,yayoVb) \- (so,y0yb) (rule 2) 
X: (s0, y0yb) f- (so, yayoyb7b) (rule 1) 
a: (s0, yay0ybyb) I- (s<>, y0yb7b) (rule 2) 
A: (s0, y0ybyb) \- (s0, yayb7byb) (rule 1) 
a: (s„, yayb7byb) I- (*>, 7&7&7&) (rule 2) 
*: fa, ybVbyb) f- (%, ytyb) (rule 3) 
6: (s0, VbVb) I- (so, 7B) (rule 3) 
b: (s„,yb) I- (so,A) (rule 3) 

Thus aaabbb = XaXaXabbb: (s0, y0) I-* (s0, A). 
This example also shows how a push-down automaton can make 

spontaneous transitions (when the input is X), and how the initial 
symbol y0 can be removed from the store before the store is empty. 

Theorems 5.1 and 5.2 together show the equivalence of non-
deterministic push-down automata and context-free grammars. 

THEOREM 5.1. For every context-free language L, there is a non-
deterministic push-down automaton which accepts L and only L, 

PROOF. In fact we shall prove a somewhat stronger theorem, 
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namely, that there is a nondeterministic push-down automaton 
with only one state which can accept the context-free language L. 

Let Z, be a context-free language, and G = (VN, VT, P, S), a 
grammar in Greibach normal-form which generates language L 
(according to Theorem 2.7., such a grammar exists). The produc
tions in G are thus exclusively of the form A -* aa, where a is a 
string of 0 or more variables. We construct a nondeterministic 
push-down automaton NPDA = (S, I, r, S, s0, y0) as follows: 
S = {s0}, 1= VT (with elements en), r = VN U VT = V (with 
elements at in VT and elements At, S in VN), y0 = S. The input 
vocabulary of NPDA is the terminal vocabulary of G; the push
down symbols of NPDA are the elements of V in G, and the 
push-down start symbol of NPDA is the start symbol S of G. 
Let NPDA have the following transition rules: 

1. 8(s0, A, A) contains (s0, aoc) for every production A -> ax in P 
(where a can have length 0). 

2. d(s0, a, a) = {(s0, A)} for every a in VT. 

The push-down automaton will in general be nondeterministic, 
for if A can be rewritten in more than one way in G (e.g. A -*■ a 
and A -* /?), then S(s0,1, A) likewise has more than one possible 
transition ((s0, a) and (s0, fi) in the present example). 

We must show that T(NPDA) = L(G). We shall first show that 
if x s L{G), then JC e L(NPDA); afterwards we shall show the 
inverse. 
(1) If x = ata2 ... an in L(G), then S =*• x with the following left
most derivation: S => ai«i => aiaz^z =>...=*■ flifl2 ... an-iAn-i =*■ 
aia2 ••• a»- This derivation is performed by rewriting the leftmost 
variable of a« at each step. If we wish explicitly to show this variable 
in the derivation, we can write 5 => aiAifii => aiazAzfa =>...=> 
aiaz ... an-iAn-i => aifite ... an, where fit represents the string of 
remaining variables. The following shows how NPDA precisely 
simulates this leftmost derivation for x = aias ... an: 

A: (s0,S) I- (s0,aiAifii) (rule 1) 
ax: (s0,aiA!fii) h (s0,Aipi) (rule 2) 
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X: (s0, Aifii) h (s0, azAzfe) (rule 1) 
ar. (s0, azAzfiz) V (s0, A2P2) (rule 2) 

' fln-i: (s0, a»-i^n-i) H (s0, An-i) (rule 2) 
A: (s0, An-i) I- (s0, an) (rule 1) 

an: (s0,an) h (s0, A) (rule 2) 
Thus x e T(NPDA). 
(2) If x = 6162 ... bm is accepted by NPDA, then Z>i e /. The 
transitions in NPDA in accepting x take place when the input b 
is introduced, or "spontaneously" when the input is X. We can 
therefore write x = aiaz ... an, where en = A, or a* = fy, while 
maintaining the order and in such a way that exactly one transition 
of NPDA goes together with each en in the acceptance of x. Thus 
we have the following steps for accepting x: 

a\: (s0, S) f- (sB, <o\) 
c 2 : (s0,a>i) t- (s0) coo) 

an: (s0,co„_i) h (so, A) 

With regard to rule 2, it follows directly that con^1 = a„, and 
tritely ©„_! =S> a„ in grammar G. We shall now take as an inductive 
hypothesis that (at =*■ ai+1 ... an in G, and show that (»;_!=> a,-
... a„. It then follows by induction (going back to n — 1, for which 
the theorem is valid) that <o0 = S 4> at ... an. 

We thus suppose that cot =*■ ai+1 ... a„. We know that a,: 
(s0, to,-!) h (s0, (B;). There are two possibilities: at e VT or at = X. 
Let us first suppose that at e VT. In that case the transition at: 
(sa, to,-j) I- (s0, a>i) can only have taken place by means of rule 2, 
and consequently (o^^ = atC0i. But because cot*>ai+1 ... a„ 
(induction hypothesis), it is true that col^l = a^a{ =4- a;a1+1 ... a„, 
that which we had to prove. 

Now let us suppose that at — A. In this case the transition 
at — X: (s0, co,-!) 1- (s0, to;) can only have taken place by means 
of rule 1, and consequently mi-1 = Aa'^x and cot = acuo'i-t. 
Because A -> ax is by definition a production in G, it is true that 
Aco'i-i =*■ aocco'i-i, or otherwise formulated coi^1 => to;. According 
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to the induction hypothesis, however, eor = ai+1 ... an, and con
sequently we have the following derivation: tOj_! =*■ ai+1 ... an = 
Aai+1 ... a„ = atal+1 ... a„, which is what we had to prove. We 
conclude, then, that &„ = S => x. 

To illustrate Theorem 5.1., we offer the following example. 

EXAMPLE 5.4. Take context-free language L = {ancbn}, n > 0. 
A simple grammar for L is G = ({S, B}, {a, b, c}, {S -> aSB, 
B -* b, S -* c}, S), which is in Greibach normal-form. According 
to the procedure given in the proof of Theorem 5.1., we construct 
the following push-down automaton which accepts language L: 
NPDA = (S, I, r, S, s0, y0), with S = {s0}, I = VT = {a, b, c], 
r = V = {a,b, c, S, B}, y0 — S, and with the following transi
tion rules in S: 

1. d(s0, X, S) = {{so, aSB), (so, c)} 
2. S(s0, X, B) - {(s0, b)} 
3. S(s0, a, a) = {(s0, X)} 
4. ^ 0 , b, b) = {(5b, X)} 
5. d(s0, c, c) = {(s0, X)} 

The following list shows the various steps by which NPDA accepts 
the sentence aacbb: 

X: (so, S) r (s0, aSB) (rule 1) 
a: (s0, aSB) b (s0, SB) (rule 3) 
X: (s0, SB) b (s0, aSBB) (rule 1) 
a: (so, aSBB) h (s0, SBB) (rule 3) 
X: (so, SBB) h (so, cBB) (rule 1) 
c: (s0, cBB) b (s0, BB) (rule 5) 
X: (so, BB) b (s0, bB) (rule 2) 
b: (so, bB) b (s0, B) (rule 4) 
X: (s0, B) b (sB, b) (rule 2) 
b: (s0, b) b (s0, X) (rule 4) 

To complete the proof of equivalence between nondeterministic 
push-down automata and context-free grammars, we must prove 
the following theorem. 
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THEOREM 5.2. For every language T which is accepted by a non-
deterministic push-down automaton, there is a context-free gram
mar G which generates precisely T. 

PROOF. Let T be the language accepted by NPDA = (S, I, r, 6, 
So, 7o)- We must construct a context-free grammar G = (Vs, VT, 
P, S) as follows: 

(i) Vs consists of compound elements [st, y, sj], where Si and S] 
are elements of S, and y is an element of r. VN also contains S, 
which is not compound. 

(ii) VT = /. 
(iii) P contains the following productions: 

1. S -* [s0, y0, $] for every s in S. 
2. {[s, y, Sn+i] -» a[si, ylt s2] [sz, yz, s$\ ... [sn, yn, sn+i] for any 

numbering of states in S} for every transition rule in 3 of 
the form: S(s, a, y) contains (si, yiy% ... y»). 

The second rule gives productions in G for every transition rule 
in NPDA. These productions are in Greibach normal-form: to the 
right of the arrow there is a terminal element followed by 0 or 
more variables. The case of 0 variables occurs when yiy2 ... yn = K 
thus in transition rules in which d(s, a, y) includes (si, A); this gives 
the following productions in G: [s, y, Si] -*■ a for all st in S. 

Although the first production is not Greibach normal-form, 
every leftmost derivation of G is as follows: S => <x0 => tfi«i => 
aiO20i2 =>...=> aifl2 ... an, where every a is a string of variables. 
Each of these variables is composed of three elements. If we 
examine the components y in these variables, we find that they 
stand for every «i precisely in the order they take on in the push
down store when «i#2 ••• a% is introduced into the automaton. 
Thus the grammar simulates the push-down automaton. Before 
continuing the proof of the theorem, we present an example in 
which this simulation is clearly to be seen. 

EXAMPLE 5.5. Let NPDA = (S, I, F, 8, s0, y0) be a nondeter-
ministic push-down automaton with 5 = {s0, si}, I = {a, b}, 
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r = {y0, yx}, and the transition rules given in Table 5.1. We must 
construct a grammar G = (VN, VT, P, S) according to the above 
procedure: VN consists of S and all triples [si, a v b, sj]. For 
convenience we use a separate upper case letter to denote each 
of these compound variables: 

A — fro, yo, So], B = [s0, y0, si], C = [s0, 71, s„], D = [s0, yx, sx], 
E = [si, y0, s0], F = [si, y0, sx], G = [si, yx, s„], H = [sx, yx, s{\. 

Further VT = {a, b}; the productions are given in Table 5.1. in 
both complete and abbreviated notation, grouped according to the 
corresponding transition rules. The abbreviated notation clearly 
shows that only the numbered productions lead to terminal strings. 

TABLE 5.1. Transition Rules of NPDA and Corresponding Productions of 
Equivalent Grammar G (Example 5.5.). 

Transition Rules NPDA 

(a) S(s0, a, n) 

(b) S(s0, b, y0) 

(c) d(so, b, yj.) 

(d) S{s0, X, y0) 

(e) <5(si, a, y0) 

= {(si,yx)} 

= {(so, yiy0)} 

= {(so, y m ) } 

= {Cso, X)} 

= {(so, y0)} 

l. 
2. 

3. 

4. 

5. 

6. 

7. 

8. 
9. 

Productions G 

S -*■ ls0, yo, so] 
S -*■ [so, yo, si] 

lso, yi, s0] ->- afri, yx, s0] 
[so, yi, si]-^ cist, yusrf 

[s0,yo,so] -*■ b[s0,yx,so] [so,yo,s0] 
lso,yo,s0] -*■ bls0,yx,si] IsuVoJo] 
[so,yo^ii -*■ bls0,yi,s0] [so,y0,si] 
[s0,yo,si] -*■ b[s0,yx,si] [si,yo>si] 

lso,yi,so] - * b[s0,yx,so] [s0,yx,s0] 
ls0,yi,s0] -> b[so,yi,sx] lsx,yi,s0] 
ls0,yi,si] -»- b[s0,yx,s0] lso,yiM 
[s0,yi,si] -+b{so,yi,si] [ii,yi>sil 

[so, y0, s0] -*■ X 

l>i, yo, so] -»■ (Aso, yo, so] 
bu Vo, si] ->- a[s0, y0,«] 

Abbreviated 
Notation 

S -+A 
S -*B 

C-+aG 
D^-aH 

A-+bCA 
A-+bDE 
B-+bCB 
B-*bDF 

C-*bCC 
C-ybDG 
D^-bCD 
D-+bDH 

A-^-X 

E-+aA 
F^-aB 

(f) S(S1,b, yi) = {(su X)} 10. f*i, n,si]-*b H-+b 
[sx, », 41 ->- * G-+b 
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In order to show how G simulates NPDA, we give first the 
acceptance of the sentence bbabba by NPDA, and then the genera
tion of the same sentence by G. Acceptance by NPDA: 

b: (s0, y0) 1- (s0, yiy0) 
b: (s0, viy0) \- (s0, yiyiyo) 
a: (s0, yiyiyo) 1- (si, yiyiyo) 
b: (s±, yiyiyo) \- (su yiy0) 
b: (si, yiy0) h (su y0) 
a: (si, y0) 1- (s0, y0) 
X: (s0, y0) 1- (so, A) 

Derivation by G: 

S =>A 
A =*• bDE 
bDE => bbDHE 
bbDHE => bbaHHE 
bbaHHE => bbabHE 
bbabHE => bbabbE 
bbabbE => bbabbaA 
bbabbaA => bbabba 

(rule b) 
(rule c) 
(rule a) 
(rule f) 
(rule f) 
(rule e) 
(rule d) 

(production 1) 
(production 4) 
(production 6) 
(production 3) 
(production 10) 
(production 10) 
(production 8) 
(production 7) 

It should be noticed that the last step in this derivation is an 
abbreviation although this is theoretically not permitted with a 
context-free grammar. The abbreviation is a result of production 7 
in Table 5.1, but this production is actually only a formalization 
of the convention introduced in paragraph 2.1., that X can be 
added to a context-free language. 

We can now continue with the proof of Theorem 5.2. We must 
show that T(NPDA) = L{G). The proof follows two steps: first 
we must show that if x e T, then x is also generated by G; then 
we must show the inverse of this statement. 
(1) If x = axa2 ... am is in T(NPDA), then s 4 x . T o prove this 
we must show by induction that for every n the following is true: 
if x: (s;, v) F* (s, X) in n transitions, then [s;, y, s j =*■ x by the 
productions of G. We first prove the theorem for n — 1, then 
show that it is also valid for n — 1 or fewer steps, and consequently 
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that it holds for n steps; thence follows general validity. From that 
point it is not difficult to show that if x is accepted by NPDA, 
then it is also generated by G. 

If n — 1, then either x = a (where a E I), or x = A. In both 
cases x: (st, y) h (SJ, X), and therefore (st, x, y) must include 
(s], X), so that G (according to production 2) includes the pro
duction [si, y, Sj] -» x. It follows directly that [s«, y, sj] => x is a 
derivation of G. 

Let us now suppose that the theorem holds for fewer than « 
transition steps. Let us examine x = axaz ... am(m^ 0), for which 
x: (s,-, y) h* (sj, 1) in precisely n transitions. The first step in this 
process is as follows: a: fa, y) h (si, yxy2 ■■■ yk)- The element a 
here is either 1, or the first element ax of x. After the first step, the 
push-down store thus contains yiy% ... yk, and n — 1 transitions 
remain to be made before this string is completely removed from 
the store. We know that this does finally occur, and that the 
respective yt's are successively removed. This, however, need not 
proceed directly, and might, on the contrary, follow various 
detours (yt might, for example, be replaced by a whole string of 
new push-down symbols, which will be removed when latter ele
ments of x are introduced into the input). Nevertheless it must 
remain possible to articulate the string x — a\az ... am in such a 
way that it can be written as awiH^ ... Wk where a = 1 or a — ax 
(dependent on the nature of the first step), and where every 
Wi leads to the removal of yu when the operation on the step began 
in the proper state su But if yt can be removed from the store 
with wi as input, then it also holds that if yt should be the only 
element in the push-down store while the automaton is in state s%, 
w i : i.sh"ii) l~* (s<+i>4)> where s i+1 is precisely the state beginning 
with which w<+i would empty the store if only yt+x were in it. 
For every w this process of emptying takes fewer than n steps, and 
there are productions in G such that \sh yt, si+1] =*■ w; (induction 
hypothesis). It holds also that the string of variables [si, yx, s%] 
[s%,}% ss] ... [st, yt, Sk+x] can be rewritten by means of the pro
ductions in G as the terminal string wxW2 ... Wk. From a: (si, y) I-
(si> 7xyz ■■■ yk), however, we know that (sx, yxjz ••• Vk) is an ele-
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ment of S(si, a, y), and therefore G (according to production 2) 
includes the production [st, y, sic+i] -* a[si, yi, s%] [S2, y%, S3] ... 
[sj, VtjSt+i]. It therefore holds that [Sj,y,si+1]=5> flWiWa ... wk = x, 
from which we see that the theorem also holds for n transitions. 
By induction, the theorem is valid in general. 

It is true of every x which is accepted by NPDA that x: 
(s„, y0) f-* (s, X), and consequently, by the theorem as proven, 
[so> To> s] 4. x in G. According to production 1, S -* [s0, y„, s] 
for every s in S; therefore S => x. 
(2) If S 4- x, then x e T(NPDA). We shall first prove that 
for every n > 0, if [s;, y, s j 4 x in G in n transitions, then 
x: (s;, y) h* (sj, A) in NPDA. Let n = 1. Then [s;, y, s j -» x is 
a production of G, and consequently, given the construction of G, 
either x eVr or x = X Likewise S(su x, y) includes (sj, X), from 
which follows that the theorem holds for n — 1. 

Let the theorem hold for derivations in G with fewer than n steps 
(induction hypothesis). Let [s, y, i] =*• x = ata2 ... am be a deri
vation which demands exactly n steps. This is possible, given the 
form of production 2, if a leftmost derivation is as follows: 
[s, y, i] => a[ii] [*2] ... [tj 4 a w ^ ] t>3] ••■ [*J =* ... =* a w ^ 
... Wfc = oia2 ... aOT = x. Here [?J represents the triad [su y«, Si+i], 
and Wi is a string of one or more successive elements a from x. 
Every wi can be derived from [f«] by the productions of G, and in 
general [f;] 4- w; in fewer than n steps. On the basis of the induc
tion hypothesis, however, w(-: (st,y,) h* (s ;+1 , A) for every i = 1, 
..., fe. But then it is also the case that W{w2 ...wk: (sl5 yxy2 ... yt) r-* 
(s2, y2 ••• Vt) *̂ ••• *̂ (st+i= 4)> a n d consequently also x: (s, y) F* 
(I = s t + 1 , X). By induction, the theorem holds for every n > 0. 

The derivation S =*■ x can be written S => [s„, y„, s] 4- x. If x 
is generated by G, then [s0, y„, s] 4> x, so that, on the basis of the 
theorem x: (s0, y„) h* (s, X), which by definition means that 
x e T(NPDA). 

It follows from Theorems 5.1. and 5.2. that the class of languages 
which are accepted by nondeterministic push-down automata is 
precisely the same as the class of languages generated by context-
free grammars. 
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LINEAR BOUNDED AUTOMATA 

An automaton has been discovered which accepts precisely the 
languages of the context-sensitive class. Like the push-down auto
maton, it is unlimited, but in an interesting way. In effect, it 
disposes of as much storage capacity as the input string is long: 
the store is small for a short string, large for a long string. It is 
as if one had to calculate the sum of two numbers and were given 
exactly the same amount of space on a blackboard for counting 
as the two original numbers occupy. One would be allowed to 
write and to erase as often as desired, but could use no more space 
than that allowed. 

The automaton in question is called LINEAR BOUNDED AUTO
MATON, LBA. In this chapter we shall show that linear bounded 
automata are equivalent to context-sensitive grammars. But the 
proof of this equivalence is considerably more complicated than 
those in the preceding chapters, and we will not be able to discuss 
it fully within the scope of this book. Therefore we shall limit 
ourselves here to a global proof of the theorem that for every 
context-sensitive grammar there is an equivalent linear bounded 
automaton. We have chosen this particular theorem for proof 
because it refers to the Kuroda normal-form which will be used 
later in dealing with linguistic applications (in Volume II), and 
because it provides a good illustration of the way linear bounded 
automata work. 
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6.1. DEFINITIONS AND CONCEPTS 

In several ways linear bounded automata resemble finite automata. 
In chapter 4 we observed that finite automata begin operating in 
an initial state and first read the leftmost symbol on the input 
tape. They then proceed to read the input symbols from left to 
right, until a final state is reached. Like finite automata, linear 
bounded automata also have a limited number of states, and they 
too begin their operation in an initial state by reading the leftmost 
symbol on the input tape. But linear bounded automata are 
capable of more than finite automata in two respects. In the first 
place, they can both read and write: they can write over a symbol 
which they have read, and replace it with another symbol. In the 
second place, they can move the input tape not only from left 
to right, but also from right to left; moreover, at a transition 
(a change of state and or the replacement of a symbol in the input 
tape), they can remain at the same position on the tape. In writing 
they can use "auxiliary symbols" which are not part of the input 
vocabulary. Because linear bounded automata may write only 
within the bondaries of the original input string, two boundary 
symbols ( # ) are placed on the tape, to the left of the first element 
and to the right of the last. Linear bounded automata always start 
in an initial state at the left-hand boundary symbol; they are said 
to accept the input when they pass over the right-hand boundary 
symbol in a final state. This latter is possible, of course, only after 
they have dealt with each element between the boundary symbols. 
The formal definitions are as follows. 

A linear bounded automaton is a system LBA = (S, I, r, 8, 
So, #, F) in which: 

(1) S is a finite, nonempty set of STATES, with s0 e S as INITIAL 
STATE, and F<= S as the set of FINAL STATES. (States are, as usual, 
denoted by the letter s with a subscript, or by r, s, t, ...) 

(2) J is a finite INPUT-VOCABULARY (notation as usual). 
(3) r is a finite set of TAPE SYMBOLS, the vocabulary of symbols 

which can appear on the tape. I belongs to this set, as do all 
auxiliary symbols which can be used in writing. (Notation: tape 
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symbols are in general denoted by y with a subscript; strings of 
auxiliary symbols are denoted by lower case letters from the end 
of the Greek alphabet, %, y/, co. If it is known that a tape symbol 
belongs to the input vocabulary, the notation for J can be used.) 
There is also a special tape symbol #, the BOUNDARY SYMBOL. 

(4) 5 is a finite set of TRANSITION RULES. A transition rule indica
tes for a pair of state and tape symbols what the following state and 
tape symbol will be; it also indicates if the band remains at the 
same place, goes one place to the right, or one place to the left. 
This is written as follows: we say that (sm, y», k) is in d(st, yj) if the 
automaton, in state s% and reading yj, can change to state sm and 
write yn in the place of yj. The letter k shows in which direction 
the automaton moves on the tape: k = — 1 indicates that it goes 
to the left; k — 1 indicates that it goes to the right; k = 0 indicates 
that it remains in the same place and reads the symbol it has 
written in the place of yn. By convention, d(s, y) always contains 
(s, y, 0). We say "can change" because linear bounded automata 
are nondeterministic; a linear bounded automaton has in principal 
several possible transitions for each configuration. 5 maps the 
cartesian product S X T in subsets of S X r X {—1, 0, 1} u <p. 
In every operation the boundary symbols must remain in place; 
thus, whenever the automaton reads # it writes # over it. In 
formal terms, if (s', y, k) is in d(s, # ) , then y = # for every s', 
and vice versa if (s\ # , k) is in S(s, y), then y = # . 

The concept of "configuration" calls for some further clarifica
tion. This can best be done with a visual representation of the 
operation of a linear bounded automaton, as in Figure 6.1. In that 
figure we see the initial and final situations in the process of 
accepting the string x = aias ... an, as well as two possible situa
tions during the operation. 

A useful way of showing the entire configuration of automaton 
and tape is to write the state of the automaton to the left of the 
symbol which is being read. The configuration in Figure 6.1.a. 
can thus be denoted by s0#ai ... a„# because the automaton is 
in state s0 and is reading the left-hand boundary symbol. For the 
configuration in Figure 6.Lb. we write #yiyz ... ykSjat+i ■■■ an#, 
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# al a2 . . . an # 

e0 

# 7i y2 
. . . % ak+i 

~ 
8 . 

3 

. . . an # 

# . . . 7i 

8k 

y,- . . . an # 

# . . . # 

1 
sfe? 

Fig. 6.1. A Linear Bounded Automaton in Operation 
a. Situation at start. 

[ Possible situations during operation. 
d. Situation after accepting x. 

in which we see that the tape symbol ak+i is being read in state Sj. 
The configuration in Figure 6.I.e. is written # ... sjefiyj ... an#; 
that represented in Figure 6.1.d. is written # ... #sp If the auto
maton passes from configuration C to configuration C in one step 
we write C h C, and when the change takes place by an undeter
mined number of transitions, the notation is C r-* C. 

A linear bounded automaton LBA ACCEPTS a string x when 
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s0#x# b* #co#sf, where x e I*, a> e f, and sf e F. The LANGUAGE 
T(LBA) accepted by LBA is the set of strings which are accepted 
by LBA: T(LBA) = {x\s0#x# t-* #co#sf, x e l ' . o e f, sf e F}. 

EXAMPLE 6.1. Let LBA = (S, I, r,S,s0, #,F)bea linear bounded 
automaton in which S = {s0, si, S2, S3, s±, Sf}, I = {a, b}, r = 
{a, b, ya, 7b, #}, F— {sf}, and with the following transition 
rules in d: 

1. d(s0, # ) = {(si, # , 1)} 7. diss, 7b) = {(s3, yb, - 1 ) } 
2. 5(5i5 a) = {(s2, ya, 1)} 8. <Jfe # ) = {(53, # , - 1 ) } 
3. d(su # ) = {(*,, # , 1)} 9. ^ 3 , 6) - {(S4, y* - 1 ) } 
4. 5(si, yb) = {(ft, y6, 1)} 10. S(s4, a) = {(s4, a, —1)} 
5. «5(J2, a) = {(s2, a, 1)} 11. S(Si, b) = {(54, b, - 1 ) } 
6. <5(*2, A) = {(S2, b, 1)} 12. S(Si, 7a) = {(si, ya, 1)} 
S(s, 7) — <p for all other cases for which no convention holds. 

It is immediately obvious that this automaton is deterministic: 
there is never more than one possible transition. We shall first 
show how the automaton accepts the string ab. The input tape 
carries the string #ab#, and the first configuration is s0#ab#, 
i.e. LBA is reading the left-hand boundary symbol in the initial 
state s0. The successive steps are as follows: 

s0#ab# b #siab# (rule 1) 
#siab# b #7aszb# (rule 2) 
#yaszb# b #7absz# (rule 6) 
#7abs2# b #7assb# (rule 8) 
#yas3b# b #Si7a7b# (rule 9) 
#Si7a7b# I- #7aSi7b# (rule 12) 
#7aSi7b# b #7a7bSi# (rule 4) 
#7o?bSi# b y#a7b#Sf (rule 3) 

The following shows in short how the automaton accepts the string 
aabb: s„#aabb# b #staabb# b #yas2abb# b* #yaabbs2# b 
#yaabsib# b #ya

as4.byb# b* #s4yaa6y6# I- #yaSlabyb# b 
#y«7«s2fey»# ^#yttyJ>s2yb# b #y0ytts3byb# b #r„s4v0r,,y6# h 
#y07flsiW6# t-* #ya7aybyb#Sf 
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Thus this automaton shifts back and forth between the boundary 
symbols until every a has been converted into ya, and every b 
into yt>. It can reach the final state Sf only if there are as many 
ya'$ as y&'s, and when the ya's are in the left-hand half of the tape, 
and the y&'s in the right hand half. This automaton accepts the 
language {anbn \ n ^ 0}. 

6.2. LINEAR BOUNDED AUTOMATA AND 
CONTEXT-SENSITIVE GRAMMARS 

The equivalence of linear bounded automata and context-sensitive 
grammars is established in Theorems 6.1. and 6.2. 

THEOREM 6.1. For every context-sensitive language L, there is a 
linear bounded automaton which accepts L and only L. 

PROOF (summarized). Let I, be a context-sensitive language. Accord
ing to Theorem 2.11., there is a grammar G in Kuroda normal-form 
which generates L. We must construct a linear bounded automaton 
such that T(LBA) = L(G). Let G = (VN, VT, P, S). The auto
maton LB A = (S, I, r, 8, So, # , F) must have the following 
construction: 

(i) S = {s0, si, t0, ti, {tAJ, r0, n}, with s0 as both initial and 
final state: F= {s0}. 

(ii) / = VT 

(iii) r = VN u VT U # 
(iv) 5 contains the following transition rules: 

1. S(s0, #) = {Oi, #, 1)} 
2. S(Sl, a) = {(sh a, 1)} 
3. S(sh # ) = {(to, # , - 1 ) } 
4. S(t0, A) contains (t0, A, 1) 
5. S(t0, A) contains (t0, A, — 1) 
6. S(t0, a) contains (t0, a, 1) 
7. S(t0, a) contains (t0, a, —1) 
8. S(t0, B) contains (t0, A, 0) 

for every a in VT 

for every A in V& 
for every A in VN 
for every a in VT 
for every a in VT 
for all productions 
A -> J8 in P 
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9. S(t0, a) contains fa, A, 0) for all productions 
A -»• a in P 

10. S(t0, C) contains fa, A, 1) 1 for all productions 
11. 5 fa, D) contains fa, B, 0) J AB -* CD in P 
12. <S(/0, 5) contains fa, S, —1) 
13. 8fa, # ) = {(n, # , 1)} 
14. <J(n, 5) = {fa, # , 1)} 1 for all productions 
15. <5(*i, i4) = {(fc, 5, 0)} j S -> SA in P 
16. «5(*i, # ) = {(So, #, 1)} 
In all other cases where no convention holds, S(s, y) — <p. 

We shall now show, without complete proof by mathematical 
induction, that this linear bounded automaton simulates the deri
vations of G and only those of G. The states s0 and si function 
to verify that a string of terminal elements is found between the 
two boundary symbols # . Rules 1 and 2 show that the automaton 
starting at the left-hand boundary symbol passes over all terminal 
elements until the right-hand boundary symbol is reached. Rule 3 
indicates that at that point state t0 is reached. If symbols other 
than terminal elements are found between the boundary symbols, 
the machine blocks and the string is not accepted. Rules 4 through 
7 see to it that the automaton can move freely to the left or to 
the right without altering the content of the input; it can simply 
write the symbol it reads. Rules 8 through 11 see to it that the 
automaton can transpose elements or pairs of elements only 
according to the productions in P. Rules 12 through 15 see to 
the correct inversion of productions S ~> SA, the only rules in 
Kuroda normal-form in which 5" can appear to the right of the 
arrow. Because these are the only expanding productions in the 
grammar, it must be possible to derive the input string x in gram
mar G as S => SA => SAA => ... => SA ... i i x . This is simu
lated in reverse order by the linear bounded automaton by replacing 
#SAB...#, where possible, with ##SB...#. This can occur 
because when the automaton in the "work-state" t0 reads S, it 
changes to state r0 (rule 12) and moves one place to the left to 
see if there is an S next to the boundary symbol # . If that is the 
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case, the automaton changes to state n and, provided that S -» SA 
is a production of P, rules 14 and 15 replace SA with # 5 , and 
the work-state t0 is again reached. The automaton then sees if SB 
can be reduced to 5"; if it is, ###S...# appears on the tape, and 
the process continues. In this way the string # # ... #S# will 
appear on the tape only if x can be derived from S. Once the 
automaton has reached state t0, rules 12, 13, and 141 see to it 
that it goes on to state h and proceeds to the right in order to 
read the last boundary symbol. According to rule 16, when the 
automaton reaches the final state s0 and the tape is pushed out, 
string x is accepted. 

If we wish to have LBA also accept the null-string X, we must 
add a new state tx, and two new transition rules: 8(t0, # ) contains 
(tx, # ,1 ) , and (tx, # ) contains (s0, # , 1). With these, when the 
input is X, the final state is reached immediately after completion 
of the steps required by rules 1, 2, and 3. 

EXAMPLE 6.2. Take grammar G = (VN, VT, P, S), with VN = 
{S, A, B}, VT = {a, b}, and the following productions: 

(a) S ->■ SA (d) A -* a 
(b) S -> B (e) B -* b 
(c) BA -+ AB 

Because of production (c) it is clear that grammar G is context-
sensitive and that it is in Kuroda normal-form. G generates the 
language L(G) = {alba^ | i +j > 0}. The sentences are thus 
strings of a's with one b in them. Production (a) generates the 
string SAn; production (b) replaces the single S with B; by pro
duction (c) the B can be moved any number of places to the right. 
Productions (d) and (e) replace the variables with terminal symbols. 
1 Notice that rule 14 exists only if there is indeed a production S -*■ SA in P. 
If this were not the case, the operation would stop. When no such production 
exists, language £(G) consists exclusively of sentences of length 1, and it 
obviously remains possible to construct a linear bounded automaton which 
accepts that language and only that language. Also rule 14 strictly violates the 
convention that no new boundary symbols may be written. Paragraph 7.1 gives 
an easy way out. 
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We can construct a linear bounded automaton LBA which 
accepts L{G), according to the procedure given in the proof of 
Theorem 6.1. Thus LBA = (S, J, T, 8, s0, #, F), with S = {s0, su 

U, h, tB, r0, n},I = {a, b},T= {S, A, B, a, b, # }, F = {s0}, and 
the following transition rules in 8: 

1. 8{s0, # ) 
2. S(Sl, a) 
3. 8{sh b) 
4. 8{su # ) 
5. 8{t0, S) 

6. S(t„, A) 

1. S(t0, B) 

8. d(t0, a) 

9. 8(t0, b) 

10. 8{tB, B) 
11. 8{r0, # ) 
12. 8{n, S) 
13. 8{tx, A) 
14. <5(ft, # ) 

= {(ft, # , 1)} 
= {(si, a, 1)} because as VT 
= {(si, b, 1)} because b e Vr 
= {(?„, # , - 1 ) } 
= {{u, s, i), {to, s, - l ) , (/•<,, s, - l ) } 

because S e VN 
= {{to, A, 1), {t„, A, - 1 ) , {tB, B, 1)} 

because 4̂ e J^r, and iL4 -» AB in P 
= {(*„, B, 1), </0, 5 , - 1 ) , {to, S, 0)} 

because -B e VN, and S -» B in P 
= {(?«,, a, 1), (/„, a, - 1 ) , {to, A, 0)} 

because a £ VT, and 4̂ -> a in P 
= {(fe, b, I), {to, b, - 1 ) , {t0, B, 0)} 

because 6 e Fy, and 5 -> b in P 
= {0o, A, 0)} because 5 4 -> AB in P 
= {(n, # , 1)} 
= {(ft, # , 1)} { because S -* SA in P 
= {(r„, S, 0)} { 
= {(*>, #, 1)} 

The following shows the consecutive configurations in LBA for 
the acceptance of the sentence abaa; the numbers over the transi
tion symbols h indicate the rule used in the transition. 

s0#abaa# I— #s1abaa# h2- #as1baa# r— #abs1aa# I— 
#abas1a# F 1 #abaas1# (^ #abat0a# I-5- #abat0A# I-1 

#a2rt0a,4# I-5- #abt„AA# A #at0bAA# h2- #at„BAA# h1-
#t„aBAA# r1- #t0ABAA# r̂ - #BtBBAA# r12- #BtgAAA# \$-
#t„BAAA# h2- # t 0 S4^l^# t-1 r„#SA/4A# F 1 1 #rtSAAA# 
h11 ##tiAAA# h^- ##taSAA# I5 '11,12 '13 # # # f 0 S 4 # 
I5 ' " '1 2 '1 3 # # # # f 0 S # I 5 ' " ' 1 2 # # # # # f t # h ^ # # # # 
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To complete the statement of equivalence between linear 
bounded automata and context-sensitive grammars, we mention 
the following theorem. 

THEOREM 6.2. For every linear bounded automaton LBA, there is 
a context-sensitive grammar G such that T(LBA) = L(G). 

A large number of rules are needed for the construction of such 
an equivalent context-sensitive grammar. The proof of this theorem 
is beyond the scope of this book; for it we refer the reader to 
Landweber (1963) and Kuroda (1964). 
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TURING MACHINES 

An obvious question at this point is whether it is possible to 
design an automaton which could accept type-0 languages. The 
answer is affirmative; in fact some time before the theory of formal 
languages came into existence, Turing had described an automaton 
which later proved capable of accepting type-0 languages. The 
TURING MACHINE, as the automaton is called, is in principle capable 
of performing every operation which one might intuitively qualify 
as a MECHANICAL (EFFECTTVE)PROCEDURE (cf. paragraph 2.1.). In 
this chapter we will make the notion of "procedure" more explicit 
in order to facilitate an understanding of a number of important 
properties of natural languages. However, we shall first show that 
Turing machines accept type-0 languages and only type-0 lan
guages, and that there exists a type-0 grammar for every language 
accepted by a Turing machine. 

In this chapter, more than in the preceding chapters, theorems 
will be stated without proof. The theory of Turing machines has 
recourse to refined fields of mathematics, such as recursive function 
theory, with which we can suppose no acquaintance on the part 
of the reader. Moreover Turing machines are less of interest to 
Imguistics and psychohnguistics than automata of more limited 
capacity. Therefore, we shall state and discuss only a limited 
number of theorems which are of some importance to linguistics. 



102 TUBING MACHINES 

7.1. DEFINITIONS AND CONCEPTS 

Several different but equivalent terminologies have been used in 
describing Turing machines. The terminology which we shall use 
here is closely akin to that of linear bounded automata used in the 
preceding chapter 

Like linear bounded automata, a Turing machine is made up of 
a finite automaton and a tape. A Turing machine can read and write 
tape symbols in the same way as a linear bounded automaton, 
but it is not subject to linear limitation: it can read and write to 
the left and to the right of the original input. We must suppose 
that the length of the tape is infinite, and that at the beginning of 
an operation a limited and continuous portion of the tape carries 
input symbols, bordered left and right by boundary symbols. To 
facilitate further formulation, we also suppose that the remainder 
of the tape is filled with boundary symbols. The machine can read 
the boundary symbols and replace them with other tape symbols, 
but cannot itself write boundary symbols. Consequently the tape 
carries a continuous string of input symbols which cannot be 
interrupted by boundary symbols. On the other hand, there may 
be "pseudo-boundary symbols", equivalent in every respect to the 
ordinary boundary symbols except in that they may also be written; 
in informal treatment of Turing machines, the distinction between 
the two types of boundary symbols is often neglected. 

The notation will be the same as that used for linear bounded 
automata. 

In formal terms, a Turing machine TM is a system (S, I, r, 8, 
s0, #, F), in which: 

(1) S is a finite set of STATES, with s0 as the INITIAL STATE, and 
F <= S as the set of FINAL STATES. 

(2) lis a finite set of INPUT SYMBOLS. 
(3) r is a finite set of TAPE SYMBOLS, of which I is a subset. 

Elements of J" which are not elements of / are called AUXILIARY 
SYMBOLS, one of which is the BONUDARY SYMBOL # . In the initial 
configuration the tape carries a string from /*, bordered on the left 
and on the right by strings of boundary symbols of infinite length. 
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(4) <5 is a finite set of TRANSITION RULES which indicate, for every 
pair of state and input symbol, what the machine must write (the 
boundary symbol cannot be written by the machine), what the 
following state will be, and whether the machine will remain at 
the same place on the tape, or move one step to the left or right. 
It is also possible for the machine to block. We can therefore say 
that d maps S x rinS X {r— # } x {—1, 0, 1} u <p. The transi
tion rules have the form S(s, y) = (s\ y', k), where k = —1, 0, 
or 1. They should be interpreted as follows: if the Turing machine 
is in state s and reads the symbol y, it passes to state s', writes / 
over the symbol y, and moves the tape according to the value of k. 
Turing machines are deterministic; for every combination of state 
and tape symbol, only one transition is possible. It is possible, of 
course, to define nondeterministic Turing machines, but these are 
equivalent to deterministic Turing machines.1 (We shall use non-
deterministic Turing machines in the proof of Theorem 7.1.). 

Before defining the language accepted by a Turing machine, we 
must indicate what is meant here by configuration. As was the 
case for linear bounded automata, a configuration in a Turing 
machine includes the content of the tape, the state of the auto
maton, and the position of the tape content in relation to the 
automaton. The notation is the same as for configurations in linear 
bounded automata, but redundant boundary symbols are omitted. 
Thus, for example, s#yiyz ... yn# stands for ...##s#yiyz ■■■ 
?n# ##■■■, and means that the Turing machine is in state s and 
is reading the boundary symbol directly to the left of the tape 
content yiys ... yn. The initial configuration is s0#w#, where 
w e I*. A final configuration is every configuration in which the 
Turing machine is in a final state: cos/%, where co and x are elements 
of r*, and Sf is an element of F. In this case the automaton is said 
to STOP (stopping should not be confused with blocking). A string 
x in I* is accepted by a Turing machine when s„#x# H* cosfx. The 
LANGUAGE accepted by a Turing machine is the set of the strings 
in /* accepted by the machine. Figure 7.1. illustrates an initial 
1 It is not known whether deterministic and nondeterministic linear bounded 
automata are also equivalent. 
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configuration, a configuration during operation, and a final con
figuration of a Turing machine in the process of accepting the 
input string x — a\ ... am. 
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7.2. A FEW ELEMENTARY PROCEDURES 

In this paragraph we shall give a few examples of operations which 
can be performed by a Turing machine. The operations given here 
will later serve as elementary procedures in the comparison of 
Turing machines and type-0 grammars. 

EXAMPLE 7.1. The transfer of information on the tape 
In several cases it is necessary to transfer parts of the original 
input, or of the tape content which develops later, to a different 
place on the tape. In this way information can be stored while 
other operations are carried out. A simple example of this may be 
seen in the following Turing machine: 

TM = (S, I, r, 6, So, #, F), with S = {s0, sA, sB, si, sz, s3}, 
I = {a,b}, r = {#, a, b, c, A, B}, F = {S3}, and where d con
tains te following transition rules: 

1. S(s0, # ) 
2. S(s0, a) 
3. S(s0, b) 
4. S(s0, A) 
5. d(s0, B) 
6. S(SA, a) 
7. S(sA, b) 
8. 6(SA, A) 
9. d(sA, B) 

10. S(sA, # ) 
11. <5(JB, a) 
12. S(SB, b) 

= {So, # , 1) 
= (SA, C, 1) 
= (SB, C, 1) 
= (S2, a, 1) 
= C*2, b, 1) 
= (SA, a, 1) 
= (SA, b, 1) 
= {SA, A, 1) 
= (SA, B, 1) 
= (si, A, - 1 ) 
= {SB, a, 1) 
= (sB, b, 1) 

13 5{SB, A) 
14. d(ss, B) 
15. 8(SB, # ) 
16. (5(5i, a) 
17. S{Sl, b) 
18. d(si, c) 
19. <5(5i, A) 
20. S(si, B) 
21. 8{s-2, A) 
22. S(s2, B) 
23. d(sz, # ) 

<*(-, - , - ) = 

= (SB, A, 1) 
= (SB, B, 1) 
= (su B, - 1 ) 
= (si, a, - 1 ) 
= (su b, - 1 ) 
= (So, C, 1) 
= (su A, - 1 ) 
= (su B, - 1 ) 
= (sz, a, 1) 
= (S2, b, 1) 

= (S3, #, 0) 
g> in all other cases. 

This Turing machine will replace every string x in /+, where 
\x\ = n, with a string cnx; the original string of a's and b's is moved 
exactly its length to the right and is replaced by a string of e's 
whose length is equal to that of the string of a's and b's. Let us 
take for example the transfer of the string aab. The following gives 
the successive configurations in the machine; the number of the 
transition rule involved is given over the transition symbol, 
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except where a sequence of operations is repeated, in which case 
an asterisk * appears over the transition symbol. 

s0#aab# I— #s0aab# I— #csAab# I— #casAb# \r— 
#cabsA# h15- #castbA# ^ #cslabA# V^ #slcabA# ^ 
#es0abA# r1- #ccsAbA# r* #ccbSiAA# ^ #ccsxbAA# Y^1-
#cs1cbAA# I— #ccs0bAA# h— #cccsBAA# h* #cccAAsB# 
^ #cccAs1AB# h— #cccsBAAB# \^- #cccas2AB# h— 
#cccaas2B# I—■ #cccaabs2# r— #cccaabs3#. 

EXAMPLE 7.2. The comparison of two strings 
At times it is necessary to decide whether two strings of elements 
are identical. One can easily see that this is possible with a Turing 
machine. Imagine that we are interested in two strings n and rz 
over a vocabulary V. We place the string r\cr% on the tape, where 
c £ V. The language T = wcw is then a context-sensitive language 
with a vocabulary Vu {c}. This means that there is a context-
sensitive grammar which generates the sentences wcw and only 
the sentences wcw. There is consequently a linear bounded autom
aton LBA which accepts language T, and since Turing machines 
are a generalization of the linear bounded automaton, there is 
a Turing machine which accepts language T. In other words, a 
Turing machine accepts a string ncrz on condition that n = r%, 
and can therefore be considered an automaton which determines 
the identity of two strings. 

7.3. TURING MACHINES AND TYPE-0 LANGUAGES 

It is possible to construct a "Universal Turing machine" UTM, 
which can simulate the operation of any given Turing machine. 
A description of the TM (its transition rules, etc.) would be placed 
on the input tape of the UTM, while the input of the TM would 
appear in another place on the input tape of the UTM. Thus 
"programmed", the UTM would imitate the operation of the TM 
precisely. It is even possible to construct a UTM with only two 
states, but it would need an extremely large tape vocabulary. 
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However, it is not our intention to discuss Universal Turing 
machines here. We have mentioned them only to render the propo
sition acceptable that various elementary procedures for which 
Turing machines have been constructed can be combined in a 
single Turing machine. Such a machine could switch over from 
one procedure to another, just as a digital computer can switch 
from one subroutine to another. (The only essential difference 
between a computer and a Turing machine is that the latter disposes 
of an unlimited store: all information presented can be stored on 
a tape of infinite length.) With this background, we can discuss 
the following theorem. 

THEOREM 7.1. For every type-0 language L there is a Turing 
machine such that T(TM) = L. 

PROOF (summary). The construction of a TM which accepts lan
guage L is roughly as follows. Let L be a type-0 language, and G the 
type-0 grammar which generates it. Let x be a sentence in L. We 
put the string x on the input tape as #x#, and build in a procedure 
according to which the symbols c and S (neither of which are ele
ments of VT) are added to the string as follows: #xcS#. For every 
production a -» fi in G we construct such transition rules for TM 
that a string a can be rewritten on the tape as fi. If a is not of the 
same length as fi, it will be necessary at rewriting to transfer the 
information directly to the right of a, either to the left or to the 
right, so that fi will fit precisely into place. Therefore we must 
include a transfer procedure in the Turing machine, similar to 
that of Example 7.2. 

TM can nondeterministically replace S with some fi, where 
iS -> fi is a production in G. Let fi — B\ B% ... 3n (where B% is an 
element of V, but not necessarily of VN). In that case the tape 
shows #xcBiBz ... Bn#. 

Next we must build a procedure into TM according to which 
the left-hand members (ai) of the productions ai -* fi% can be 
rewritten as an identification symbol. The automaton now non-
determmistically chooses an ai and a Bj from the string mentioned 
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above, and switches over to a comparison procedure which com
pares at element for element with BJBJ+I .... Example 7.2. showed 
that such a comparison procedure is possible in principle. If string 
at is identical to string BjBj+i ..., it is replaced by Pi, the right-hand 
member of the production cm -*• pi. By continued replacement of 
strings between c and # according to the productions of G, a 
string of terminal elements is (nondeterministically) composed 
between c and # . At this point the Turing machine can switch 
back to the comparison procedure in order to compare this new 
string with string x. If the two are identical, the machine reaches a 
final state and stops. It is clear that the terminal strings between c 
and # can only be sentences of L(G), and that any sentence in 
L(G) can appear there. Thus TM accepts the sentences of L(G) 
and only the sentences of L(G). If there is a nondeterministic 
Turing machine which accepts L(G) and only L(G), then there is 
a deterministic Turing machine which does the same. 

THEOREM 7.2. For every language T accepted by a TM, there is a 
type-0 grammar G such that L(G) = T(TM). 

PROOF (summary). Let T be the language accepted by Turing 
machine TM. For every x in T, TM goes from its initial state to 
a final state in a finite number of operations: s„#x# F* #a>Sf%#, 
with Sf e F and co, x e F*. We write x as 01^2 ... an(n> 0). The 
first step in the process of accepting is as follows: s0#aia2...an# I-
#s0ala2-..an#. Another transition arbitrarily chosen is #^ry1S72o-

# I- #^s'y1y2(T# if TM moves to the left (with s, s' e S, yu 

?2> y'ie F> a n d &, 0 e r*). This can be described as rewriting triads: 

(i) 7 1 % -* s'yivi-
Nothing else changes in the configuration, and given the construc
tion of TM, the transition is completely determined by the triad 
71*72- There is a similar pair of triads for the case that the machine 
moves to the right. The transition has the form #$syly2<r# h 
#xl/y'is'y2o# and can be represented as a rewrite: 

(2) syty2 -* yis'y2. 
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If the machine remains in place, we write: 

(3) sy2 -► s'y'2. 

Because the number of states s and tape symbols y for each Turing 
machine is finite, the number of pairs or triads is also finite. A 
subset of the set of these pairs gives a complete description of the 
possible operations of the Turing machine. Because Turing ma
chines are deterministic, for every triad or pair to the left of the 
arrow there is only one possible triad or pair which can follow to the 
right of the arrow. Therefore, we can conclude that the operation 
of every Turing machine can be completely described by means of 
a finite set of deterministic rewrite rules. 

Let TM accept x. We have seen that the final configuration has 
the form #cosfX#. It is not difficult to construct a Turing machine 
TM' equivalent to TM, which has as final configuration # s/S' #. For 
this purpose we build TM' in such a way that, just before reaching 
a final configuration, it will follow a procedure to replace all the 
remaining tape symbols with (pseudo) boundary symbols, except 
the last which is replaced by the as yet unused tape symbol S". 
The initial and final configurations are therefore respectively 
s0#x# and #sfS'#. 

We can now construct a grammar G for which L{G) = T{TM) — 
T(TM'). We collect all the rules of types (1), (2), and (3) in TM'. 
If fi -> a is a rule of TM', we make a -> /? a production of G. 
Given the deterministic character of rules fi -*■ a, if a -> jS and 
a' -> fi, then a = a'. Next we add to the productions of G the 
productions S -> SfS' for every s/ in F, and the production 
s0# -*■ #■ It is clear that by means of these productions, the 
derivations S => sfS' =5> x and only these can be made for every x 
in T and only if x e T. G is a type-0 grammar, and consequently 
the theorem is proven. 

It follows from Theorems 7.1. and 7.2. that Turing machines 
are equivalent to type-0 grammars or unrestricted rewrite systems. 
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7.4. MECHANICAL PROCEDURES, RECURSIVE 
ENUMERABILITY, AND RECURSIVENESS 

Given a type-0 grammar G with a vocabulary VT, there is a Turing 
machine TM which will stop in a final state after a finite number of 
transitions for every string x in V*T where x e L(G). We call 
this a mechanical procedure. In general we can define a mechanical 
(effective) procedure as an operation which can be performed by 
a Turing machine in a finite number of steps. Thus we replace 
the temporary definition of "procedure" given in paragraph 2.1. 
with the more precise definition "that which can be performed by 
means of a Turing machine". In paragraph 2.1. we imagined a 
procedure as a computer program by which an operation can be 
performed systematically. It does not at first seem evident that 
anything that can be performed systematically in a mechanical 
way (that is, without the use of human intuition), possibly by 
computer, can also be done on a Turing machine. The Turing 
machine appears to be far too simple a mechanism. But since the 
publication of Turing's original article (1936) it has become 
increasingly evident that the Turing machine can indeed perform 
anything which we might intuitively qualify as a procedure. For 
a good survey of the question, see Minsky (1967). It is therefore 
clearly justified formally to define the concept "procedure", as 
we have done, in terms of Turing machines. This opens the possi
bility of establishing with exactitude the problems for which no 
procedure exists, for such are the problems for which no Turing 
machine can be constructed. In the remainder of this chapter we 
shall speak freely of Turing machines whenever it is clear that a 
mechanical procedure must exist. Whenever we can explicitly 
indicate the consecutive steps of an operation, we conclude that 
the operation can be performed on a Turing machine. 

The acceptance of a sentence by a Turing machine is by defini
tion a mechanical procedure, but the same is true of the acceptance 
of sentences by more limited automata. It follows from the hierar
chy of languages that for every language which is accepted by a 
finite automaton, a nondeterministic push-down automaton, or 
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a linear bounded automaton, there exists a Turing machine which 
also accepts it. We can therefore treat the acceptance of languages 
and sentences by automata in general in terms of procedures. 

We would point out that the definition of "accepting" has been 
rather weak for all automata. We know that if x e L, there is a 
procedure (TM) which will confirm that x is an element of L. 
But what happens if a string in V*T which is not an element of L 
is introduced as input? The Turing machine cannot reach a final 
state, but rather becomes blocked or goes on endlessly computing. 
We shall return to this point, but we shall first show that for every 
type-0 language L there is a mechanical procedure by which each 
sentence in L can be enumerated within a finite amount of time. 
L is then said to be RECURSIVELY ENUMERABLE. 

THEOREM 7.3. Every type-0 language is recursively enumerable. 

PROOF. It is easy to see that the strings in V? can be enumerated 
by means of a mechanical procedure. If VT contains k elements, 
the strings of V*T can be considered as numbers in a system with 
a base k, plus the null-string. If, for example, there are ten elements 
in VT, we can give them the labels 0, 1, 2, . . . , 9. strings of F j are 
thus numbers of the decimal system: 0,1,2, . . . , 10,11,..., 100,101, 
..., and it is certainly possible to design a Turing machine which 
will write these sentences in sequence on its tape (the Turing ma
chine must be able to perform the operation «+ l ) . Each of these 
numbers appears on the tape after a finite number of operations, 
and no number is omitted. The same will hold for k. Furthermore, 
we know that there is a procedure which can determine whether 
a string is an element of L (Theorem 7.1.). This procedure can be 
applied to every newly enumerated string of V*T, in order to 
enumerate the sentences of L. There is a problem, however, for 
we do not know what will occur if the string in question is not an 
element of L. It is possible that the machine will go on endlessly 
computing and will never come to enumerate and test the following 
strings. This situation can be avoided by interrupting the test 
procedure at a given moment in the following way. We number 
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the strings in V*T: X = 1, a\ = 2, ai = 3, etc. (this is possible, as 
we have seen), and we indicate by number how many transitions 
the TM can undergo at a given stage of the test procedure for a 
given string. The process takes place as shown in Table 7.1. In 

TABLE 7.1. Test Procedure for the Enumeration of the Sentences of L. 

Number of Transitions of Til to be Simulated 

1 2 3 4 . . . . . 

String X 
Number 

2 

3 

4 

fact we have constructed a new Turing machine, TM', which 
simulates the test procedure of TM. TM' first tests string 1 to see 
if it is an element of L by simulating one transition of the procedure 
of TM. If TM' finds that the string is an element of L, it enumerates 
the string and proceeds to test string 2. If it is not yet clear whether 
or not string 1 is an element of L, TM' still proceeds to test string 2. 
According to the table, TM' may simulate again only one transition 
of TM. String 2 is or is not enumerated according to the results of 
this test; according to the table, TM' then goes back to string 1 
and simulates two steps from TM to test the string. According 
to the results of this test, the string is or is not enumerated, and 
TM' then goes on to test string 3 with one step from TM. It goes 
on in the same way to test string 2 with two transitions, string 1 
with three transitions, string 4 with one transition, and so forth. 
In this way the automaton returns to each string and performs one 
step more than the preceding time to test it. Thus each string in 
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VT is successively tested for membership in L by way of a finite 
number of transitions. For each x in L the procedure finally 
leads to the acceptance and enumeration of x. 

We state without proof that the inverse of Theorem 7.3. is also 
valid: every recursively enumerable language can be generated 
by a type-0 grammar. 

We have seen that the recursive enumerability of a type-0 lan
guage follows from the existence of an accepting procedure for 
the sentences of L, and have remarked that this is a weak theorem. 
We do not know what the Turing machine will do to a string in 
VT which does not belong to the language. In order to discuss this 
question further, we define the COMPLEMENT OF A LANGUAGE L, 
with vocabulary VT, as V? — L. This is the set of strings over the 
terminal vocabulary which are not elements of the language. 
Linguists call this the set of UNGRAMMATICAL SENTENCES. The 
complement of a language is denoted by CL. 

A stronger form of acceptance would be a procedure according 
to which for every string in V? it would be indicated if the string 
belongs to L or to CL. One might imagine a "twin Turing machine" 
which would reach a final state for a string in CL, while the 
original Turing machine would do the same for a string in L. 
One might also imagine a Turing machine with two sets of final 
states, one for accepting, the other for rejecting. For every string 
x in VT, the Turing machine would reach a final state: the 
accepting final state when x e L, and the rejecting final state 
when x e CL. If such a procedure exists for language L, the 
automaton is said to RECOGNIZE (as opposed to accept) L. A recogni
tion procedure of this sort is usually called an ALGORITHM. An 
algorithm is thus a procedure according to which for every x in 
VT, it can be determined whether or not x belongs to L. Because 
algorithms lead to decisions for every string in VT, the language 
L <= VT is called a DECIDABLE (RECURSIVE) SET if an algorithm exists 
for the recognition of L. It follows from the construction of the 
twin Turing machines that a language is recursive if both the 
language and its complement are recursively enumerable. 

We know that type-0 languages, and consequently also type-l, 
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type-2, and type-3 languages are recursively enumerable, but are 
the complements of these languages also recursively enumerable? 
That is not the case in general. We state without proof that there 
are type-0 languages which are not recursive, because they have 
complements which are not recursively enumerable. This means 
that the complements are not type-0 languages. However, the 
complement of a context-sensitive language is recursively enumer
able, and consequently context-sensitive; context-free and regular 
languages are all recursive. There are (recognition) algorithms 
for all of these languages. 

We have seen that the complement of a type-0 language is not 
necessarily itself of type-0, but what of the other language types? 
It is not yet known if the complement of a context-sensitive 
language is context-sensitive; all we know is that it is recursively 
enumerable, and consequently of type-0. It has been proven that 
no general procedure exists for determining whether the comple
ment of any context-free language is also context-free. In any 
case it does not hold in general that the complement of a context-
free language is also context-free; the complement of a determini
stic context-free language is, however, also deterministic and con
text-free. It is also known that the complement of a regular lan
guage is likewise regular. 
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GRAMMATICAL INFERENCE 

8.1. HYPOTHESES, OBSERVATIONS, AND EVALUATION 

Is it possible on the basis of samples of a language to decide on an 
acceptable grammar for that language? In its present form, this 
question cannot be answered, but the day to day work of the 
linguist, as well as the fast growing language capacity of the young 
child, suggest that an affirmative answer might be expected to at 
least some forms of the question. The answer depends on (1) what 
is known about the grammar, (2) the composition of the sample 
of data, and (3) what is understood by "acceptable". The investiga
tion of these matters is known as the study of GRAMMATICAL 

INFERENCE. 
That which is already known or supposed of a grammar is 

referred to by the term HYPOTHESIS-SPACE. The terminal vocabulary 
VT, for instance, is ordinarily given. Certain suppositions can also 
be made as to the class to which the grammar belongs (regular, 
context-free, etc.). In the case of a probabilistic grammar, not only 
can suppositions be made about the type of grammar, but infer
ence can also have the more limited goal of finding the most 
acceptable production probabilities for a grammar which is given. 
This latter has rather direct possibilities of application, and we 
will deal with it in some detail in paragraph 8.2. Paragraph 8.3. 
will treat a number of general findings relative to nonprobabilistic 
hypothesis-space, and paragraph 8.4. will discuss the most general 
kind of hypothesis-space, probabilistic grammars for which both 
productions and production probabilities must be found. 
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The term OBSERVATION-SPACE refers to the composition of the 
data sample; it can take on various forms. If L is the language 
investigated and x is a given string in V^., we can obtain positive 
information, x e L, or negative information, x $ L (i.e. x e CL), 
about L. In the former case we speak of a POSITIVE INSTANCE, in 
the latter, of a NEGATIVE INSTANCE. The information available is 
called an INFORMATION SEQUENCE. If all the instances in the sequence 
are positive, we have a POSITIVE INFORMATION SEQUENCE; if negative 
instances also occur, we have a MIXED INFORMATION SEQUENCE. 
A COMPLETE INFORMATION SEQUENCE is a mixed information 
sequence in which all positive and negative instances are enumerat
ed; such sequences are generally infinite in length. A COMPLETE 
POSITIVE INFORMATION SEQUENCE is the enumeration of all positive 
instances; it is called TEXT PRESENTATION, since the language is 
presented, sentence for sentence, as a text. Repetitions may occur, 
provided that the enumeration is complete, i.e. every sentence of 
the language must occur after a finite number of other sentences. 
INFORMANT PRESENTATION is the term for a complete mixed in
formation sequence, or a sequence in which every positive and 
negative instance over VT occurs after a finite number of other 
instances. One might picture this as a researcher who wishes to 
find the grammar of a language and reads each string of V^ to an 
informant who in turn tells him for every string whether it belongs 
to the language or not. A STOCHASTIC TEXT PRESENTATION is an 
infinite sequence / = xi, xz, ..., where Xi is an element of L, and 
L is a probabilistic language in which for every xt, pQct = xt) = 
pQc — x);1 this means that the chance that string x will be in 
position i is constant and equal to the probability of the string in 
the language. The sentences thus appear successively with their 
respective probabilities in L. Notice that the definition of a stochas
tic text presentation does not include the property of completeness. 
At the limit, however, the relative frequency of a sentence in a 
stochastic text presentation is equal to its probability in L. The 
chance of occurrence of a sentence x in L can be increased by 

1 P(Z = *) is the probability of x in L. We suppose the variables xt to be 
independent, i.e. pQci = xt | XJ = XJ) <= p(xt = xt). 
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increasing the length of the information sequence. A sample of 
a stochastic text presentation of size A: consists of the first k elements 
of that text presentation. On the basis of the assumption of inde
pendence,2 the probability of this particular sample is the product 
of the probabilities of its k elements. 

What is an "acceptable" grammar ? Suppose that the information 
consists of an information sequence up to a given point k: xi, 
X2, ■.., xjc. Any grammar which corresponds to the elements 
Xi xn is, in a weak sense, acceptable. By "corresponds" we 
mean that the positive instances in the sequence are generated by 
the grammar, and the negative instances are not. But the criterion 
of correspondence will in general allow an infinity of possible 
grammars. If we concentrate our attention on the positive instances 
in the text presentation, we find that the one extreme is a grammar 
which generates only the k elements of the information, whereas 
the other extreme is a universal (regular) grammar over Vr which 
generates all the strings of V*T. Both these grammars correspond 
to the information, but the former is "unnecessarily" complex, 
and the latter would correspond to any sample, and therefore does 
not "fit". Both complexity and fit must decidedly be included in 
the standard of evaluation of the acceptability of a grammar. To 
a large extent, complexity is a matter of teste and of the preferences 
of the researcher. That the standard is relative is probably the 
only point on which one could expect all to agree. Grammars may 
be compared on the basis of various criteria, such as the number 
of symbols, the number of productions, the number of alternatives 
for each production, etc. These criteria make up the context of 
evaluation; on it depends the complexity of a grammar. The use 
of the mechanism of probabilistic grammars can permit a definition 
of context (without excluding other definitions, as complexity 
remains a matter of taste) in terms of the a priori probability of 
alternative grammars in the hypothesis-space. This will be done 
in paragraph 8.4; it will at the same time permit an evaluation, 
by way of the Bayes theorem, of the fit of various probabilistic 
grammars. 
2 See note 1. 
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In the following paragraph, however, we shall deal only with 
the classical statistical evaluation procedure. This method is more 
efficient in that context, and yields results for large samples which 
scarcely deviate from those of a Bayes analysis. 

8.2. THE CLASSICAL ESTIMATION OF PARAMETERS 
FOR PROBABILISTIC GRAMMARS 

We will be dealing here with the simple case in which, except for 
the production probabilities, the entire grammar is given. The 
discussion will be limited to nonambiguous context-free grammars. 

On the basis of a sample of language L, we must determine 
which probabilistic grammar will be the best for L, that is, we 
must find an optimal estimate for the production probabilities of 
the grammar. 

Let G be a nonambiguous context-free grammar with N produc
tions. The respective production probabilities are labelled pi, 
P2, ..., PN- TO normalize the grammar, we must see to it that for 
every variable A in VN, £ p (A -» «!) = 1. If there are /(/ > 0) 

i 

productions in which A occurs to the left of the arrow, then for the 
productions A ->aj (where i = 1, 2, . . . , / ) , /—1 production pro
babilities must be found. (If G has only one production, A -> x, then 
p(A -> x) = 1.) If VN has M variables, and the number of inde
pendent production probabilities in the grammar is denoted 
by k, then k = N — M. On the basis of the sample, estimates 
must be found for these k parameters, q\, qz, ..., q^. When that 
is done, the production probabilities^!,pz, ...,PN will follow direct
ly from the normalization. 

Given a sample from language L, we proceed as follows. Let 
the sample contain n different sentences (or sentence types, since 
a particular sentence can occur more than once in the sample). 
The leftmost derivation S =S» s; must be determined for every 
sentence st (where i = 1, . . . ,»). If the productions used in the 
derivation are independent, then p(S =5> s;) = p(s>) c a n De expressed 
as the product of the production probabilities pt of the various 
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steps in the derivation. For the derivation S=> a => jS =>y => st, 
for example, this is p(s;) = j^PtPi- This product for each of the 
n sentence types is denoted by m, and each of its terms can be 
expressed in parameters qi, ..., qn. 

We define the likelihood function JSf for the sentences 
and the parameters qi, ..., qt as follows: 

^ ( s j , ..., s„; qu ..., qk) = n^iti1 ... %{n, 

where/f is the number of times sentence type i occurs in the sample. 
Using logarithms, this is: 

logj2? =filogni +/2 log7t2 + ... +/„log7t„ = X/»log%. 
i 

The best estimate of the parameters qi, ..., qi- is that which gives 
a maximum for-S?, and thus also for log^?. With these parameters, 
the chance of drawing precisely this sample is at a maximum. 
The various parameter estimates q\, q%, ..., qn, are found by 
expressing every m in parameters, and then determining the k 
partial derivatives of SP according to q\, ..., qic. This yields a 

system of k equations ^ — = 0, the solutions of which are the 
dqi 

desired estimates qi,..., #*. At this point the probabilities j>\, ...,PN 
can be calculated. 

EXAMPLE 8.1. Let I, be a language over the vocabulary {a, b, c}. 
Suppose we have a sample of L consisting of 100 sentences with 
the following distribution of sentence types: c (22 times), aca 
(42 times), abcba (I9t\mes),abbcbba(\2 times), abbbcbbba (4 times), 
and abbbbcbbbba (once). A possible grammar for these sentence 
types has the following productions: 

S -» aAa A -* bAb 
c l - 9 i , l - « 2 
S — * c A —>■ c 

Above the arrows we find the production probabilities expressed 
in parameters, and in such a way that the grammar is normalized. 
The leftmost derivations of the sentences in the sample are given 
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below with the probability of the production concerned at each 
step. 

S => c p(c) = 1 — qt 

S=>aAa => aca piacd) = q^l — q2) 

S=>aAa=>abAba => abcba p(abcba) = qiq2(l —q2) 

etc. p(abbcbba) = qiq2(l — q2) 

p(abbbcbbba) = qiq2(l — q2) 

p(abbbbcbbbba) = qiq%(l — q2) 

The likelihood function then becomes: 

& = [d-«i)]22 bid-42)]43 [«i«2d-«2)]19 bxald-aa)]12 x 
natural logarithm of 3? is: 

ln^P = 78 In qi + 59 In q2 + 22 In (1 -qi) + 78 In (1 -q2). The 
most likely values of q\ and q% are found by taking partial deriva
tives of ln=SP with respect to q\ and qi, putting them equal to zero, 
and solving the equations: 

glnJSP _ 78 22 glnJSP 59 78 

thus £1 = 0.78 thus q2 = 0.43 

With these estimates of the parameters, we can calculate the proba
bilities of the sentence types in the sample. For c we have l-qi — 
0.22, for aca, qi(l-qz) = 0.78 X 0.57 = 0.445, and so forth. In 
a sample of 100 sentences we would expect the sentence c 22 times, 
and the sentence aca, 44.5 times, etc. All the values are given in 
Table 8.1., together with the observed values. The correspondence 
between observed and expected values can be measured and evalu
ated with standard statistical tests such as, for example, the chi-
square test for goodness of fit. 
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TABLE 8.1. Observed and Expected Frequencies of Sentence Types 

(Example 8.1.). 

Sentence Type 

c 
aca 
abcba 
abbcbba 

Observed 

22 
42 
19 
12 

Expected 

22 
44.5 
19.1 

8.2 

Sentence Type 

abbbcbbba 
abbbbcbbbba 
other 

Observed 

4 
1 
0 

Expected 

3.5 
1.5 
1.2 

8.3. THE "LEARNABILITY" OF NONPROBABILISTIC 
LANGUAGES 

A number of theorems concerning the "learnability" of non-
probabilistic languages were presented by Gold in a fundamental 
article (1967). In this paragraph we shall state some of his more 
important findings without proving them. 

Suppose we have a complete (text or informant) information 
sequence for a language of a given class (finite, regular, etc.). An 
algorithm must be found with the following characteristics :1 

(1) each time a new input element xi is introduced, the algorithm 
produces a grammar (or a code for a grammar) of the given class 
which is consistent with the information received up to that point. 
(2) after a finite number of elements has been received, the output 
remains constant: the grammar produced as output is always the 
same or equivalent, and is a grammar of L. 

A language is said to be IDENTIFIABLE IN THE LIMIT or LEARN-
ABLE if such an algorithm exists for it for every complete informa
tion sequence. A class of languages is learnable if every language 
in it is learnable. The most important conclusions drawn by Gold 
from his investigation concerning the various classes of languages 
are given in Table 8.2.; in it, the symbol + denotes "learnable", 
and the symbol —, "not learnable". 

1 "Algorithm" is used in the same sense here as in the preceding chapter: 
a Turing machine which stops (produces an output) after every input. Gold 
also analyzes learnability as a procedure, but we will not discuss his findings 
here; they are not much different from the results for algorithms. 
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TABLE 8.2. "Leamability" of Languages of Various Classes according to Text 
or Informant Presentation 

Language Class Text Informant 

Type-0 
Type-0 (recursive) 
Type-0 (primitive recursive) 
Context-Sensitive 
Context-Free 
Regular 
Finite 

The table calls for some explanation on (a) the broad difference 
between "learnabilty" on the basis of text presentation and "leam
ability" on the basis of informant presentation, and (b) the fine 
differentiation within the class of type-0 languages. 

(a) Text presentation involves leamability for finite languages 
only. The fact that a finite language can be learned through text 
presentation can easily be understood as follows. Every sentence 
of the language appears after a finite number of earlier instances 
(since the presentation is complete). The algorithm can simply 
be to enumerate all different sentences which have appeared in 
the presentation up till and including the last instance. This list 
of sentences can as well be written as a grammar with rules S -*■ Xi 
with one rule for every sentence xi. After a finite amount of time, 
all the sentences of the language will have passed in review (as 
the number of sentences is finite), and from that point the grammar 
will remain unchanged. The grammar thus produced will certainly 
be a grammar of the language. 

The process, however, will only succeed with finite languages; 
not even regular languages are learnable, according to Gold's 
definition of the term, on the basis of text presentation. One might 
imagine the following algorithm for the learning of regular lan
guages on the basis of text presentation: the first and all following 
outputs of the algorithm would be a universal grammar U, with 
productions S -* a and S -> aS for every a in Vr. As such a gram
mar can generate any string in Vt, all subsequent outputs would 

+ 
+ 
+ 
+ 
+ 
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be the same grammar, which will be consistent with all further 
information. But this algorithm would not satisfy condition (2) 
of the definition, because the grammar produced is not a grammar 
of the language (unless the language is the universal language V J). 
The grammar would then be "too broad" for the language. The 
algorithm should be set up in such a way that the grammar is as 
narrow as possible at first, and is broadened according to the 
incoming information. As the class of finite languages is contained 
by the class of regular languages (Theorem 2.3.), it is not impossible 
that the language here in question be finite. The algorithm must 
begin here with the narrowest conjecture, namely that the language 
is finite. If it more broadly supposed the language to be infinite, 
while in fact the language was finite, it would never receive informa
tion incompatible with that supposition. We might, of course, 
imagine an algorithm which decides that a language is finite if it 
finds k repetitions of the same set of sentences, but this still would 
not solve the problem. Although such an algorithm would yield 
a correct grammar for a finite language, it could mistake an infinite 
for a finite language. Suppose, for example, that from infinite 
language L a text presentation is prepared as follows: take from L 
subsets Fx, i% ... of increasing size. Begin presenting the sentences 
in Fi with k or more repetitions. The algorithm will then incorrectly 
decide that the language is finite. When Ft is introduced, the 
algorithm must review its judgment, but if there are also k or 
more repetitions of the sentences in Ft, it will return to its original 
decision that the language is finite. But the same process will 
occur when Fs is introduced, and so forth. The presentation is 
complete, for every sentence of the language will be presented after 
a finite amount of time, but the algorithm would always produce 
nothing other than grammars for finite languages. Thus an algo
rithm which functions flawlessly for finite languages cannot learn 
an infinite language, and an algorithm adapted to infinite languages 
will, when presented with a finite language, produce grammars 
which are too broad. Therefore it is impossible to "learn" an 
infinite language only on the basis of text presentation. 

(b) In the preceding chapter it was stated that type-0 languages 
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are generally not recursive. However there are type-0 languages 
which are recursive, but not context-sensitive; the set of recursive 
type-0 languages does not coincide completely with that of context-
sensitive languages. The table shows that only "primitive recursive" 
type-0 languages, a subset of recursive type-0 languages, are learn-
able according to Gold's definition of the word. Primitive recursive 
languages cannot be defined without recourse to the theory of 
recursive functions.1 Suffice it to note that "most" recursive 
languages are primitive recursive (also, in the history of mathe
matics, it has been difficult to find exceptions to this), and that the 
distinction between recursive and primitive recursive languages is 
of little importance to the study of natural languages. All recursive 
grammars (i.e. grammars of decidable languages) which will be 
mentioned below are in fact primitive recursive. 

8.4. INFERENCE BY MEANS OF BAYES' THEOREM 

In paragraph 8.2. we found by "classical" means optimal statistical 
parameters for a given nonambiguous context-free grammar. We 
renounced the possibility of choosing from among several gram
mars. In paragraph 8.3. the procedure was inverse, in a sense. 
We examined the conditions of presentation under which a gram
mar may be selected from the class of a priori possible grammars, 
renouncing the probabilistic formulation. The notion of "learn-
ability" had to be defined in terms of equivalent grammars, as 
the algorithms cannot select an optimal or "most efficient" (cf. 3.1.) 
grammar from the class of equivalent adequate grammars. 

Horning (1969) combined the two approaches, and developed 
a method of selecting an optimal probabilistic grammar from a 

1 A language is PRIMITIVE RECURSIVE if its characteristic function is primitive 
recursive. The characteristic function CL of a language L, where L <= VT, has 
the value 1 for every string in VT which is an element of L, and the value 0 
for every string in VT which is not an element of L. 

Definitions of recursive functions may be found in Kleene (1952), Minsky 
(1967), Nelson (1968), et alibi. 
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given class on the basis of a given information sequence. We shall 
state some of his most important findings here concerning non-
ambiguous context-free grammars. 

We have seen that a standard of evaluation must express two 
aspects: the complexity of the grammar, and the degree to which 
it fits the information which is available at a given moment (para
graph 8.1.). The complexity of a grammar depends on the context, 
which includes at least (1) the size of the nonterminal vocabulary, 
(2) the number of alternative rewrites for a given variable, and 
(3) the length of those alternatives. (In practical and linguistic 
situations the context can include far more than this. The three 
aspects mentioned here, however, are constant themes in the lin
guistic literature on the subject.) The relative importance to be 
attributed to each of these aspects of context is a matter of taste, 
but there is a method by which this can at least be done in an 
exact manner. The method is by means of a so-called GRAMMAR-
GRAMMAR. We will now introduce this notion. 

A grammar is a finite string of symbols; a set of grammars (an 
hypothesis-space) may be regarded as a set of such strings, and 
thus as a kind of "language". A grammar-grammar is a grammar 
which generates such a "language". If the grammar-grammar is 
probabilistic, it will define a probability distribution over the 
"sentences" of the "language", and thus over the class of gram
mars which it generates. The complexity of a grammar can then 
be defined as minus the base two logarithm of its probability, as in 
information theory. The probabilistic grammar-grammar is thus a 
precise definition of the context; moreover, the more variables, the 
more alternatives for each variable, or the longer the alternatives 
in a generated grammar, the smaller its probability and the greater 
its complexity. The relative importance of each of the aspects can 
be varied by varying the production probabilities of the grammar-
grammar. 

We illustrate this with an example. To avoid confusion, name, 
variables, and arrow of the grammar-grammar are given in bold 
face type, while those of grammars are in ordinary type. 
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7. 

8. 

9. 

10. 

11. 

A ^ T N 

T ^ « 

T^b 
0.5 

N - > A 

EXAMPLE 8.2. Let G be a probabilistic grammar-grammar with the 
following productions: 

1. S ^ R 

2. S ^ R R ' 

3. R 4 - N - > P 

4. P ^ A 

5. P ^ P , A 

6. A ^ T 

This grammar-grammar generates regular grammars with one 
or two variables (£, A) and one or two terminal symbols (a, b). 
We shall show the leftmost derivation of a regular grammar G 
with the following productions: 

S -> b, bS, aA A -> a, bA, aS 

These are in fact six productions: the commas indicate alternative 
rewrites for a single variable. If we know that G is a context-free 
grammar, and thus that the first member of every production is 
a single variable, the grammar can be written without ambiguity 
as follows: 

S -*■ b, bS, aAA -» a, bA, aS 

(In the triad aAA, the reader should imagine a caesura between 
A and A.) This is precisely the "sentence" which we wish to derive 
from G; its leftmost derivation is as follows: 

s°=̂  
1 

0.5 

0 .5 

0 .5 
=5> 

RR 

N - » 

S-> 

S-* 

s-> 

PR 

PR 

P, AR 

P, A, AR 

V.J 

0.5 
=> S 

°4s 
°4s 
¥s 

->A 

->T, 

-**, 
- » * . 

-»&, 

A,AR 

A,AR 

A, AR 

TN, AR 

6N,AR 
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°Js-+b, bS, AR 

2> S -* b, bS, TNR 

™ S -» b, bS, aNR 

Us->b, bS, aAV. 

=4 S -*■ &, &S, a 4 N -> P 

™S-+b, bS, aAA -* P 

™ S-*b, bS, aAA -> P, 

°JS-*b, bS, aAA -* P, 

2̂ 5 S -* b, bS, aAA -* A, 

A 

A, 

A, 

A 

A 

°^S->b, bS, aAA -» T, A, A 
0.5 
=> S -» b, bS, aAA ->■ a, A, A 
^ S-*b, bS, aAA ->• a, TN, A 

=> S ->Z>, bS, a4i4 -* a, feN, A 

=i» S -» &, 6S, a/1.4 -» a, 6/4, A 

°Js-+b, bS, aAA -* a, bA, TN 

=> S -> ft, fcS, a/4,4 -» a, bA, a N 

=*• S -* b, bS, aAA -* a, bA, aS 

The product of the probabilities of the rewrites is p(G) = 0.525, 
and the complexity of G in context G is thus — 2log 0.525 = 25. 
The reader can verify for himself that grammar U with productions 
S -» a, b, aS, bS (this is the universal grammar which generates 
all strings in F£) has a complexity of 15 in context G. 

If we consider it particularly important that a grammar should 
have few variables, we make production 2 less probable; the 
probability of a grammar with two variables decreases, and the 
complexity increases. If, on the other hand, we wish the number 
of alternative rewrites important, we can reduce the probability 
of production 5, which determines the number of alternatives for 
rewriting of a variable. Finally, if we wish to increase the impor
tance of rewrite length, we reduce the probability of production 7. 
Many other variations are possible.1 

We suppose that a complexity distribution is defined over the 
grammars in the hypothesis-space by means either of a grammar-

1 One should, however, remain cautious. A grammar-grammar which 
generates all grammars of a certain type (e.g. regular grammars) will have 
a terminal vocabulary of infinite size, since the nonterminal vocabulary of 
every grammar generated is a subset of the terminal vocabulary of the grammar-
grammar. Solutions to this problem have been found by Feldman, et al. (1969) 
and Horning (1969). 
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grammar or of some other context. We express the "credibility" 
of a grammar G« in the hypothesis-space as a number p{Gt), such 
that it is an inverse function of complexity (whichever way this is 
defined), with 0 < p(Gt) < 1, and ]T p(Gt) = 1 for the grammars 

* i 

in the hypothesis-space. These propositions hold automatically 
in the context of a consistent probabilistic grammar-grammar. 
The ^-values will be treated in all other regards as probabilities. 
We also suppose that the grammars in the hypothesis-space can 
be enumerated according to the order of their a priori credibility 
or "probability" p. (From this point we shall use the word "proba
bility" exclusively.) 

The observation-space is assumed to be a stochastic text presen
tation (cf. paragraph 8.1.). 

As the OPTIMAL GRAMMAR we consider the a priori most probable 
grammar which is stochastically equivalent to the grammar by 
which the text was derived. 

A procedure must be devised (in the sense of a Turing machine) 
which at receiving each new instance can maximalize the chance 
of conjecturing the optimal grammar, i.e. it must conjecture the 
grammar with the highest a posteriori probability, given the text 
and the a priori probabilities of the grammars. In order to investi
gate the existence of such a procedure we must, therefore, first 
explicate the relations between a priori and a posteriori probabilities 
of grammars. 

The a priori probability of a grammar Gt in the hypothesis-space 
is denoted by p(Gi). The probability of an information sequence 
(a sample) S), up to a given moment of the text presentation and 
given the hypothesis-space, is p(S}). The conditional probability 
that Sj will occur when Gt is really the grammar of the language is 
p{S)\Gi), and this is equal to the product of the probabilities of 
the sentences in the sample, given grammar Gt (cf. paragraph 8.1). 
Therefore, if the sample contains the sentences si, S2, ..., sa, then 
p(S}\Gi) = p(si\Gi) ■ (p(s2\Gi) ■... 'p(sic\Gi\ or simply: 

(1) p(Sj\Gd = II Ks,|G,). 
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On the other hand we indicate the chance that Gi is really the 
grammar of!,, given the sample Sj, as p(Gi\Sj), which, according 

TltC *? A 
to an elementary rule of probability theory, is equal to — '' . J , 

PV>j) 
where p(Gt, Sj) is the chance that Gi is correct and that the sample 
Sj occurs. Therefore: 
(2) p(Gj, Sj) = piSj) ■ p(G,\Sj). 

This means that the common chance of Gi and Sj is the a priori 
probability of Sj, multiplied by the conditional probability that Gi 
is the real grammar when Sj occurs. For the sake of symmetry, 
this can also be written as follows: 

(3)KG i ,S,) = p(G*)-lKSi|Gi). 

On the basis of (1) and (2) we can find the a posteriori probability 
ofG«: 

(4) piG^) = K G i )
K ^ | G i ) 

(This is a form of the Bayes theorem.) 

If we determine the a posteriori probabilities of all grammars in 
the hypothesis space, given the sample and the a priori probabilities, 
the denominator in (4), p(Sj), remains constant, and only the two 
terms of the numerator vary. To find the optimal grammar, we 
must therefore find the grammar which yields the greatest numer
ator p(Gt) -p(Sj\Gi). We can write this product as p'(Gt\Sj). If the 
sample contains k sentences, by substitution of (1) we get: 

(5) pXG^Sj) = p(G,) • n pisjfa). 
J '= l 

Horning has proven that a procedure does exist by which at every 
new instance that G in the hypothesis-space can be found for which 
(5), and thus its posteriori probability, is at a maximum. We shall 
neither describe the procedure here nor prove the theorem, but 
only wonder if indeed the optimal grammar can, in the long run, 
be found in this way. In Gold's terms, the procedure does not 
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lead, after a finite number of instances, to the reproduction at 
every new instance of the same grammar or stochastic equivalents 
which are grammars of the language. It only leads to the some
what weaker result, that every nonoptimal grammar in the hypo
thesis-space is rejected after a finite number of instances. In other 
words, the chance that a nonoptimal grammar be conjectured 
decreases as the number of instances increases. This can also be 
regarded as a definition of "learnability", although it is weaker 
than that given by Gold. Taken in this sense, however, Horning 
has shown that probabilistic nonambiguous context-free grammars 
are "learnable" by means of a stochastic text presentation. 

Until now we have assumed that the hypothesis-space consists 
of probabilistic grammars. However, if the hypothesis-space is 
generated by a probabilistic grammar-grammar this is not the 
case. Example 8.2. showed that the output of such a grammar-
grammar is a grammar and its corresponding probability. Addi
tionally, a way must be found to obtain optimal parameter esti
mates for production probabilities in the grammars in the hypoth
esis-space. Horning presents a (Bayes) procedure for this as well, 
and shows that the conclusions on learnability which we have just 
mentioned still hold in essence for this complete case. 



HISTORICAL AND BIBLIOGRAPHICAL REMARKS 

The theory of formal languages, except for the probabilistic part, 
is largely based on Chomsky's work. The original publication in 
which the hierarchy of grammars was introduced is Chomsky 
(1959 a, b.) A later survey is Chomsky (1963) in which the hierarchy 
of grammars was somewhat refined. Grammars with productions 
exclusively in the context-sensitive form were given a separate 
type number, and consequently the numeration differs there from 
that of the earlier work. We have followed current usage and 
maintained the original numeration. 

The term "regular language" has a history of its own. Originally 
(Chomsky and Miller 1958; Bar-Hillel, Gaifman, and Shamir 
1960) these languages were called "finite state languages" because 
of the connection with finite or finite state automata. But in 
mathematics, the theory of recursive functions dealt independently 
with, among other things, "regular sets", which can be recursively 
generated by "regular expressions", and Kleene showed the equiva
lence of these sets and the sets accepted by finite automata. As 
type-3 grammars are equivalent to finite automata (as in Theorems 
4.2. and 4.3. proven by Chomsky and Miller 1958), type-3 languages 
are regular sets. Consequently type-3 grammars and languages 
are now generally called "regular grammars" and "regular lan
guages". 

Context-free grammars are treated in great detail in Chomsky's 
original work. The expression "normal-form" originated in Choms
ky's notion of a "normal grammar" (Chomsky 1963). He said that 
normal grammars are the kind of grammars usually dealt with in 



132 HISTORICAL AND BIBLIOGRAPHICAL REMARKS 

linguistic discussions on constituent structure analysis: produc
tions A -> a concern the LEXICON of the language, and productions 
A -* BC lead to binary divisions into CONSTITUENTS. At present, 
however, the term "normal-form" is used only to denote stan
dardized forms for the productions of grammars. The Greibach 
normal-form is presented in Greibach (1965). The self-embedding 
theorem (Theorem 2.8.) for context-free languages was first 
formulated by Chomsky (1959a); a complete proof can be found 
in Salomaa (1969). The notion of ambiguity was first handled 
by Parikh (1961). For later developments see Ginsburg and Ullman 
(1966). For linear grammars see Greibach (1963) and (1966) and 
others. A textbook on context-free grammars is Ginsburg (1966). 

The equivalence of type-1 grammars and grammars with produc
tions only in the context-sensitive form was treated by Chomsky 
(1963). Grammars of the form which we have called the Kuroda 
normal-form were called "linear bounded grammars" by Kuroda 
and several other authors, by analogy with the automaton. The 
normal-form theorem (Theorem 2.11.) was first proven by Kuroda 
(1964). 

The earliest publications on the subject of probabilistic gram
mars are Grenander (1967), Ellis (1969), and Booth (1969). It 
was an obvious matter to relate them to the Chomsky hierarchy. 
The consistency theorem for regular grammars (Theorem 3.1.) 
was proven by Ellis (1969) as was Theorem 3.2. The hypothesis 
formulated in Theorem 3.3. may be found in Suppes (1970). The 
Chomsky and Greibach normal-form theorems were originally 
proven by Ellis (1969); in the proof given here, we have followed 
Huang and Fu (1971). The conditions of consistency for probabi
listic context-free grammars were investigated by Booth (1969) and 
Ellis (1969) where the reader may find more details on the subject. 

The investigation of finite automata originated in the work of 
McCulloch and Pitts (1943), in which they gave models for neural 
networks which could be regarded as FINITE STATE MACHINES. Of 
the many early publications on this subject, we mention Rabin 
and Scott (1959), in which the proof of Theorem 4.1. can be 
found, and Kleene (1956). Later surveys are those by S. Ginsburg 
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(1962) and by A. Ginzburg (1968). The equivalence of finite 
automata and regular grammars (Theorems 4.2. and 4.3.) were 
proven by Chomsky and Miller (1958). Probabilistic finite auto
mata were introduced by Rabin (1963). Much work in this area 
was done by Salomaa, who gives a good survey in Salomaa (1969). 

The notion of the "push-down store" was introduced by Newell, 
Shaw, and Simon (1959). The first formulation of the relationship 
between push-down automata and formal languages is that of 
Oettinger (1961). The relationship between context-free grammars 
and push-down automata (Theorems 5.1. and 5.2.) was formulated 
by Chomsky (1963) and Evey (1963) more or less independently. 
The equivalence of deterministic push-down automata and LR(k)-
grammars was proven by Knuth (1965). 

Deterministic linear bounded automata were introduced by 
Myhill (1960); Landweber (1963) gave proof of Theorem 6.2. on 
deterministic linear bounded automata. Kuroda (1964) introduced 
the nondeterministic linear bounded automaton and proved the 
equivalence of them and context-free grammars (Theorems 6.1. 
and 6.2.). 

The Turing machine was presented by Turing (1936) as a machine 
which could perform any computation for which an explicit 
procedure is known. For an introduction to the subject of mechan
ical (effective) procedures, see Minsky (1967); in the same work 
models by Post and Church, similar to the Turing machine, are 
also discussed. The relationship between Turing machines and 
type-0 languages formulated in Theorems 7.1. and 7.2. was first 
mentioned by Chomsky (1959a). We have borrowed the argumenta
tion for Theorem 7.1. from Hopcroft and Ullman (1969). The 
argumentation for Theorem 7.2. was taken from Chomsky (1963), 
who in turn refers to Davis (1958), starting from the fact that type-0 
languages are recursively enumerable sets. The argumentation 
for Theorem 7.3. was borrowed from Hopcroft and Ullman (1969). 
The first surveys of the relationship between formal languages and 
automata were Chomsky (1963) and Chomsky and Miller (1963) 
on the one hand, and Bar-Hillel (1964) on the other. 

The earliest publication on grammatical inference is Miller and 



134 HISTORICAL AND BIBLIOGRAPHICAL REMARKS 

Chomsky (1957). Solomonoff (1958, 1964 a, b) was the first to 
develop these ideas. The Feldman group, with among them 
Horning, has also done important work in this field (Feldman et 
al. 1969). 

The best recent surveys of the subjects treated in this volume 
are Nelson (1968) where various topics are treated within the theory 
of formal systems, and Hopcroft and Ullman (1969) to which 
the present work is indebted and which would serve as excellent 
further reading. Neither of these books, however, deals with 
probabilistic grammars or probabilistic automata. For the latter, 
we refer the reader to Salomaa (1969). There are no standard 
texts on probabilistic grammars or grammatical inference. 
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SUBJECT INDEX 

(italicized numbers refer to definitions) 

Accepting, passim 
by finite automaton, 54, 55 
by linear bounded automaton, 94 
by nondeterministic FA, 60 
by nondeterministic PDA, 81 
by push-down automaton, 78 
by Turing-machine, 103,113 

Accepting systems, 2, 53 
Algol, 75 
Algorithm, 113, 114,121 
Ambiguity, 25, 26, 31 

of grammar, 26, 37, 51,118 
inherent, 26 
of language, 26 

Automata, 2, passim 
finite, 54, see also finite automaton 
linear bounded, 91, 92, 93-100,133 
normalized, 68, 73, 74 
probabilistic, 68, 68-74, 133 
push-down, 75, 7tf-90 

Bayes' theorem, 117, 124,129 
Boundary symbol, 93,102 

Cartesian product, 5 
Categorical grammar, 2 
Category symbol, 4 
Characteristic function, 124 
Chomsky hierarchy, 12, 131 
Chomsky normal-form, 17, 18, 21, 

45, 47, 49 
Complement of language, 113 
Computer language, 3, 75 
Configuration, 77, 93,103 

initial, 78, 103 
final, 103 

Connected grammar, 22 
Consistency, 38, 50,128,132 

conditions, 38, 50,132 
Constituent structure, 132 
Context-free 

grammar, 11,16-27, 37, 81-90,118, 
132, 133 

language, / / , 16-27,38, 114 
Context-sensitive 

grammar, 10, 27-34, 37, 96-100 
language, / / , 38, 27-34, 96-100, 

106,124 
productions, 27, 28, 29, 30, 131 

Control unit, 55 
Corpus, 43 
Credibility of grammar, 128 
Cut-point probability, 72 

Decidability. 113 

Effective procedure, 110 
Efficiency of grammar, 35, 124 
Eigenvalue, 52 
Equivalency, passim 

strong, 5 
weak, 5, 55, 66, 82, 121 
of probabilistic grammars, 37, 50, 

124 
Evaluation context, 117, 125 

Final 
state, 54, 92, 102 
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vector, 71 
Finite automaton, 16, 22, 53-74, 131, 

132 
deterministic, 60, 63 
A:-limited, 58 
non-deterministic, 60-63 
probabilistic, 68, 69, 70-74 

Finite language, 16 
Finite state 

automaton, 131 
grammar, 11 
language, 11, 131 
machine, 132 

Formal 
grammar, / , 2 
system, 1, 2, 3, 134 

Generate, 5, passim 
Generative 

grammar, 2 
system, 2, 53 

Grammar, 5, passim 
acceptability of, 115 
ambiguity of, 26,37 
categorical, 2 
connected, 22 
complexity of, 117, 125,128 
context-free, see context-free 
context-sensitive, see context-sensi

tive 
equivalent, 5, passim 
generative, 2 
-grammar, 125-12% 
hierarchy, 9,131 
leftylinear, 26 
linear, 26,132 
linear bounded, 34, 132 
LR(k}-. 81, 133 
normal, 131 
normalized, 36-43, 48, 50 
optimal, 128, 129 
picture-, 3 
probabilistic, 55-52, 74, 115, 117, 

124,130, 132, 134 
regular, / / , 12-16, 37-44, 65, 67, 

126, 131, 132 
right-linear, 26 
self-embedding, 21, 22 

transformational, 31 
type-0,10, 37,101,105, 107 
type-1, see context-sensitive 
type-2, see context-free 
type-3, see regular 
universal, 117,122 
unrestricted probabilistic, 36 

Greibach normal-form, 17, 19, 20, 
45, 50, 85, 86, 132 

Hierarchy 
Chomsky, 12,131 
of grammars, 9, 131 
of languages, 12 

Hypothesis-space, 115,117,125,128, 
130 

Inference, 1, 3, 115-130, 133,134 
Informant presentation, 116,121,122 
Information sequence, 116 

complete, 116, 121 
mixed, 116 
positive, 116 

Initial 
configuration, 78,103-104 
distribution, 69 
probability, 69 
state, 54, 76, 92,102 

Instance, positive, negative, 116 

jfc-limited automaton, 58, 59 
Kuroda normal-form, 31, 32, 96, 98, 

132 

Language, 5, 37, 55, 78, 95, 103, 
passim 
-acquisition, 3 
ambiguity of, 26 
complement of, 113 
context-free, / / , 16-27, 38, 114 
context-sensitive, / / , 38, 27-34, 96-

100, 106,124 
deterministic, 81,114 
finite, 16 
mirror-image, 6 
normalized, 37, 38 
probabilistic, 37 
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recursively enumerable, 9, 10, 111, 
113 

recursive, 113,114 
regular, 11, 38, passim, 53, 66, 72, 

114, 122, 123 
self-embedding, 21, 22 
stochastic, 72 
universal, 123 

"Learnability" of language, i2i-124, 
130 

Leftmost derivation, 25, 26, 50, 51, 
83,118 

Likelihood function, 119 
Linear 

grammar, 26, 132 
production, 26 

Linear-bounded 
automaton, 34, 91-100, 92, 102, 

106, 133 
grammar, 34,132 

Listener, 2 
Z.R(fc)-grammar, 81,133 
Logic, 1, 3 

Markov-process, 60 
Matrix, 39 

algebra, 38 
element, 39 
multiplication, 41 
stochastic, 42, 69 

Mechanical (effective) procedure, 9, 
101,110, 111, 133 

Mirror-image language, 6 

Natural language, 9, 101 
Neural networks, 132 
Normal-form, 17, 19, 28, 34, 45-50, 

131, 132 
Chomsky, see Chomsky normal-

form 
Greibach, see Greibach normal-

form 
Kuroda, see Kuroda normal-form 

Normalized 
automaton, 68, 74 
grammar, 5(5-43,48, 50 
language, 37, 38 

Null-string, 4, passim 

Observation space, 116 
Optimal grammar, 128,129 

Picture-grammar, 3 
Primitive recursiveness, 122, 124 
Probabilistic 

context-free grammar, 44-52 
finite automaton, 6"S-74,133 
grammar, 55-52, 74, 115, 117,124, 

130,132, 134 
grammar-grammar, 125-12$ 
language, 37 
regular grammar, 38-44 

Product of languages, 16, 66 
Production rule, 4, passim 
Production probability, 36, 44, 48, 

115, 118,119, 125,130 
Psycholinguistics, 2, 101 
Pushdown automaton, 75, 76-90 

nondeterministic, S/-90 
Pushdown store, 75,133 

Reading head, 55 
Recognizing, 113 
Recursive, 113 
Recursive enumeration, 9, 10, / / / , 

113,114, 133 
Regular 

expression, 131 
grammar, / / , 12-16, 57-44, 65, 67, 

126,131,132 
language, 11, 38, passim, 53, 66, 

72, 114, 122,123 
set, 131 

Representation problem, 43 
Rewrite rule, see production rule 
Right-branching, 14 
Right-linear 

grammar, 14, 26 
production, 26 

Self-embedding, 21-24-, 132 
Sentence, 5, 36, 55, passim 
Sentence probability, 37, 73 
Speaker, 2 
State, initial, final, 54, 76, 92, 102, 

passim 
State transition function, 54 
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Start symbol, 2, 5, 76 
Stochastic 

matrix, 42, 69 
language, 72 
text presentation, 116, 117, 130 

Structural description, 35, 53 

Turing machine, 1, 2, 101, 102-114, 
121,133 

Ungrammatieal sentence, 113 
Universal 

grammar, 117,122 
language, 123 
Turing machine, 106,107 

Unrestricted 
probabilistic grammars, 36 
rewriting systems, 10,109 

Variables, 4, passim 
Vocabulary, 2, 3, 4, 54, passim 

nonterminal, 4, passim 
terminal, 4, passim 
push-down, 76 

Tape symbol, 92,102 
Text presentation, 116, 121, 122, 128 
Terminal vocabulary, 4, passim 
Top symbol, 76 
Transition 

diagram, 56, 59, 61, 66, 70 
matrix, 69, 71 
rule, 54, 76, 93,103 
table, 58 

Tree diagram, 13, passim 


