
JANUA LINGUARUM
STUDIA MEMORIAE

NICOLAI VAN WIJK DEDICATA

edenda curat

C. H. VAN SCHOONEVELD

Indiana University

Series Minor, 192/1

FORMAL GRAMMARS
IN LINGUISTICS AND
PSYCHOLINGUISTICS

VOLUME I

An Introduction to the Theory of
Formal Languages and Automata

by

W. J. M. LEVELT

1974

M O U T O N
THE HAGUE • PARIS

© Copyright 1974 in The Netherlands
Mouton & Co. N. V., Publishers, The Hague

No part of this book may be translated or reproduced in any form, by print,
photoprint, microfilm, or any other means, without written permission from the

publishers

Translation: ANDREW BARNAS

Printed in Belgium by N.I.C.I., Ghent

PREFACE

In the latter half of the 1950's, Noam Chomsky began to develop
mathematical models for the description of natural languages.
Two disciplines originated in his work and have grown to maturity.
The first of these is the theory of formal grammars, a branch of
mathematics which has proven to be of great interest to informa
tion and computer sciences. The second is generative, or more
specifically, transformational linguistics. Although these disciplines
are independent and develop each according to its own aims and
criteria, they remain closely interwoven. Without access to the
theory of formal languages, for example, the contemporary study
of the foundations of linguistics would be unthinkable.

The collaboration of Chomsky and the psycholinguist, George
Miller, around 1960 led to a considerable impact of transforma
tional linguistics on the psychology of language. During a period
of near feverish experimental activity, psycholinguists studied the
various ways in which the new linguistic notions might be used in
the development of models for language user and language acquisi
tion. A good number of the original conceptions were naive and
could not withstand critical test, but in spiteof this, transformational
linguistics has greatly influenced modern psycholinguistics.

The theory of formal languages, transformational linguistics,
psycholinguistics, and their mutual relationships are the theme of
this work. Volume I is an introduction to the theory of formal
languages and automata; grammars are treated only as formal
systems, and no application of the theory, linguistic or other, is
made. Volume II in turn deals with applications of those mathe-

VI PREFACE

matical models to linguistic theory. Volume III treats applications
of grammatical systems to models of language user and language
learner, as well as the formal questions which have arisen as a
result of such applications. The material is cumulative: Volume II
supposes a general understanding of Volume I, and Volume III
refers to the subjects dealt with in Volumes I and II. Volumes II
and III have their own preface, so we can now turn to some
introductory remarks with respect to the present volume.

Volume I, independent of the two following volumes, should
be seen as an introduction to the theory of formal languages and
automata. A number of similar introductions are available at the
moment, but I have nevertheless undertaken the present work for
three reasons. First, most available texts, because they suppose
an acquaintance with sophisticated mathematical theories and
methods, are beyond the reach of many students of linguistics
and psychology. More often than not, Chomsky's and Miller's
contributions to the Handbook of Mathematical Psychology prove
too difficult for early graduate teaching. The present introduction
is kept at a rather elementary level; a general knowledge of college
mathematics will be sufficient to follow the text, although familiarity
with the elements of set theory and statistics will certainly be an
advantage.

Second, existing introductions treat a number of subjects which
have little obvious relation to linguistics or psychology. The
linguist or the psychologist is obliged to make his own selection
from among a series of topics which he does not yet understand,
and he might search in vain for a treatment of topics which are
especially relevant to his field. Probabilistic grammars and gram
matical inference, for example, are not treated in any of the
existing introductions. Special attention has been paid to these
topics in the present volume, but matters not directly relevant to
linguistics or psychology have not been completely excluded, as a
balanced presentation of the theory sets its own demands.

The third reason for writing this introduction is to supply
readers of the two following volumes with a concise survey of the
main notions of formal language theory used there. The subject

PREFACE VII

index of this volume can be used to find definitions of technical
terms: definitions are indicated by italicized page numbers.

Without the help and cooperation of many, these three volumes
could not have been realized. A first version was written during
a sabbatical year at The Institute for Advanced Study in Princeton,
New Jersey. I am deeply grateful to Professor Duncan Luce and
to The Institute for the invitation which made my stay possible.
Much in this work is due to the help and insights of Professor
George Miller, former director of the Harvard Center for Cognitive
Studies, where the new psychology of language originated under
his guidance. Thanks to him I was granted a Research Fellowship
at the Center in 1965, and by happy coincidence, he too was at the
Institute for Advanced Study when I was composing the text. His
attentive advice was most useful, especially in the writing of the
third volume. Likewise, regular discussions with Dr. Philip Johnson-
Laird helped to clarify many of the psychological issues. Conver
sations with Professor Aravind Joshi on the subject matter of the
first two volumes were also enormously stimulating and enjoyable;
I profited almost daily from his erudition in the fields of both
formal systems theory and mathematical linguistics.

Finally, I wish to express my gratitude to all those who have
contributed by critically reading the text in the original Dutch
version: Professor L. Verbeek, Dr. H. Brandt Corstius, Mr. R.
Brons, Dr. G. Kempen, Dr. A. van der Ven, Mr. E. Schils, Mr.
L. Noordman, Dr. A. De Wachter-Schaerlaekens, and Professor
A. Kraak. Their remarks not only prevented the printing of many
disturbing errors, but also led to many enriching additions to the
text.

March 1973 W. J. M. Levelt
Nijmegen

TABLE OF CONTENTS

Preface v

1. Grammars as Formal Systems 1
1.1. Grammars, Automata, and Inference 1
1.2. The Definition of "Grammar" 3
1.3. Examples 6

2. The Hierarchy of Grammars 9
2.1. Classes of Grammars 9
2.2. Regular Grammars 12
2.3. Context-free Grammars 16

2.3.1. The Chomsky Normal-Form 17
2.3.2. The Greibach Normal-Form 19
2.3.3. Self-embedding 21
2.3.4. Ambiguity 25
2.3.5. Linear Grammars 26

2.4. Context-sensitive Grammars 27
2.4.1. Context-sensitive productions 27
2.4.2. The Kuroda Normal-Form 31

3. Probabilistic Grammars 35
3.1. Definitions and Concepts 35
3.2. Classification 37
3.3. Regular Probabilistic Grammars 38
3.4. Context-free Probabilistic Grammars 44

3.4.1. Normal Forms 45
3.4.2. Consistency Conditions 50

X TABLE OF CONTENTS

4. Finite Automata 53
4.1. Definitions and Concepts 54

. 4.2. Nondeterministic Finite Automata 60
4.3. Finite Automata and Regular Grammars 63
4.4. Probabilistic Finite Automata 68

5. Push-Down Automata 75
5.1. Definitions and Concepts 76
5.2. Nondeterministic Push-down Automata and Context-

free Languages 81

6. Linear-Bounded Automata 91
6.1. Definitions and Concepts 92
6.2. Linear-bounded Automata and Context-sensitive

Languages 96

7. Turing Machines 101
7.1. Definitions and Concepts 102
7.2. A few Elementary Procedures 105
7.3. Turing Machines and Type-0 Languages 106
7.4. Mechanical Procedures, Recursive Enumerability,

and Recursiveness 110

8. Grammatical Inference 115
8.1. Hypotheses, Observations, and Evaluation 115
8.2. The Classical Estimation of Parameters for Proba

bilistic Grammars 118
8.3. The "Learnability" of Nonprobabilistic Languages . 121
8.4. Inference by means of Bayes' Theorem 124

Historical and Bibliographical Remarks 131

Bibliography 135

Author Index 139

Subject Index 140

1

GRAMMARS AS FORMAL SYSTEMS

1.1. GRAMMARS, AUTOMATA, AND INFERENCE

The theory of formal languages originated in the study of natural
languages. The description of a natural language is traditionally
called a GRAMMAR; it should indicate how the sentences of a
language are composed of elements, how elements form larger
units, and how these units are related within the context of the
sentence. The theory of formal languages proceeds from the need
to provide a formal mathematical basis for such descriptions.

Chomsky, the founder of the theory, envisaged more than a
simple refinement of traditional linguistic description. He was
primarily concerned with a more thorough examination of the
basis of linguistic theory. This involves such questions as "what
are the goals of linguistic theory?", "what conditions must a
grammar fulfill in order to be adequate in view of these goals?",
and "what is the general form of a linguistic theory?" Without a
formal basis, these and similar questions cannot be handled with
sufficient precision. Volume II of this book will deal with these
issues; it will be shown that a formal language can serve as a
mathematical model for a natural language, while a formal gram
mar can act as a model for a linguistic theory.

From a mathematical point of view, grammars are FORMAL
SYSTEMS, like Turing machines, computer programs, prepositional
logic, theories of inference, neural nets, and so forth. Formal
systems characteristically transform a certain INPUT into a par
ticular OUTPUT by means of completely explicit, mechanically
applicable rules. Input and output are strings of symbols taken

2 GRAMMARS AS FORMAL SYSTEMS

from a particular alphabet or VOCABULARY. For a formal grammar
the input is an abstract START SYMBOL; the output is a string of
"words" which constitutes a "sentence" of the formal "language".
Therefore a grammar may be considered as a GENERATIVE system;
this feature is often emphasized by the use of the term GENERATIVE
GRAMMAR. The quotation marks around "word", "sentence", and
"language" indicate that these terms are not used in their full
linguistic sense, but rather are concepts which must be strictly
defined within the formal system. In linguistic applications of
formal language theory, as in Volume II of this book, care must
be taken to establish the relationships between the formal and
linguistic notions. In the present volume, however, we will no
longer use the quotation marks, and will omit the adjective
"formal" for both language and grammar where the context allows.

A second type of formal system can use the sentences of a lan
guage as input; its output is generally an abstract stop symbol.
Systems of this type are called AUTOMATA, and may be considered
as ACCEPTING SYSTEMS. The theory of automata is older than that
of formal language, and historically it was rather surprising that
the two theories showed such close parallels that they often
appeared to be mere notational variants. One can very well use
an automaton rather than a formal grammar as a model for a
theory of natural language, but although this has in fact been
done, the generative grammar remains the preferred model. The
interchangeability of grammars and automata indicates that the
distinction between generative and accepting is less fundamental
than it may at first appear. It is primarily a conceptual distinction;
there are indeed automata with no "preferential direction" such
as Turing machines, and grammars which are accepting rather
than generative systems such as categorical grammars. However,
from the point of view of presentation and application, the dicho
tomy has its merits. In psycholinguistics in particular it has a
natural interpretation with reference to SPEAKER-HEARER models.
Volume III of this book will offer several examples of such applica
tions.

The third and last type of formal system which will be discussed

GRAMMARS AS FORMAL SYSTEMS 3
in this volume takes a sample of the sentences of a language as
input; its output is a grammar which is in some way adequate
for the language. Such systems are called GRAMMATICAL INFERENCE
PROCEDURES. They can serve as models not only for linguistic
discovery procedures (how can one find a grammar for a given
corpus of sentences?) but also for theories of language acquisition.

The mathematical growth of formal language theory has resulted
in an enormous extension of its range of applications. Beyond its
obvious applications in the analysis of computer languages, the
theory is used for the formal description of visual patterns (see
Volume III, paragraph 3.6.7. for such picture grammars), for
subdivisions of logic, and for several other fields which deal with
the formal representation of knowledge.

Conversely, the integration of formal language theory into the
theory of formal systems has made various mathematical tools,
such as recursive function theory, available to the study of formal
languages.

The reader, however, need not be acquainted with such areas
of mathematics in order to understand the present work which
is meant to be an introduction. Our discussion will be limited to
the relationship between formal language theory on the one hand
and the theories of automata and inference on the other. Each of
these has rather direct linguistic and psycholinguistic applications,
and it is precisely the possibility of application which has served
as the principal, though not only, criterion for selecting properties
of the theories for discussion. This does not alter the fact that
it is better to treat the structure of grammar, of automata, and of
inference from an abstract than from an applied point of view.
Such is the method which we shall follow here, beginning with a
formal definition of the concept "grammar".

1.2. THE DEFINITION OF "GRAMMAR"

* For the formal definition of "grammar" we must introduce four
concepts: terminal vocabulary, nonterminal vocabulary, produc
tion rule, and start symbol.

4 GRAMMARS AS FORMAL SYSTEMS

The TERMINAL VOCABULARY VT is the set of terminal elements
with which the sentences of a language may be constructed.
Elements of VT will be denoted by lower case letters from the
beginning of the Latin alphabet. We write a e VT or a in VT when
a belongs to the terminal vocabulary.

The NONTERMINAL VOCABULARY VN consists of elements which
are only used in the derivation of a sentence; they never occur
as such in the sentences of the language. Elements of VN axe
upper case Latin letters and are called VARIABLES or CATEGORY
SYMBOLS.

VN and VT are disjoint: their intersection, VN n VT, is empty.
Together VN and VT form the vocabulary V of the grammar,
thus V — VN U VT. A string of elements in V, regardless of
whether they are variables, terminal elements, or both, will be
denoted by a lower case letter of the Greek alphabet. A string
may have 0, 1, or more elements; the string of 0 elements is called
the NULL-STRING, and is represented by X. A string consisting
exclusively of terminal elements may be denoted by a lower case
letter from the end of the Latin alphabet.

The symbol V*T is used to denote the set of all finite strings of
elements from the terminal vocabulary. For example, if VT consists
of two elements, a and b, i.e. VT = {a, b}, V? consists of X, a, b,
aa, ab, bb, ba, aaa, aab, aba, bba,... If we wish explicitly to exclude
the null-string X, we write F j , the set of all strings of positive
length. Thus, V% = VT — X. Obviously, therefore, if VT is not
empty, then V*T and F j contain an infinite number of elements
(strings). Analogously one can define F* as the set of all possible
strings of vocabulary elements, and V+ as the set of all possible
strings of vocabulary elements except the null-string. The length
of a string a is denoted by |a|; thus \a\ — 1, \aab\ = 3, and | A| = 0.

The PRODUCTION RULES or productions of a grammar are ordered
pairs of strings. They take the form a -> ft, where oc e V+ and
P e V*. This means that string of elements a. of positive length can
be replaced by, or rewritten as, string of elements fS, possibly X.
Such rules apply in any context, i.e. if a is part of a longer string
ya8, then yo& may be rewritten as yfi8 by the same rule. When a

GRAMMARS AS FORMAL SYSTEMS 5

string is rewritten as another string by a single application of a
production rule, we use the symbol =>; thus ya.8 => yfiS. The latter
string DERIVES DIRECTLY from the former. If there are productions
such that a.y => <x2, a2 = a3, ... a„_! => a„, we may write o^ 4» a„,
read "«i derives «„". The set of productions of a grammar is
denoted by P; the set may also be described as a CARTESIAN
PRODUCT. The set of all possible rules consists of all ordered pairs
of strings which can be constructed in this manner; it may be
denoted by V+ X V*, the cartesian product of V+ and V*. The
productions of a grammar are a subset of this product: some
strings of V+ may be replaced by some strings in V*. Thus P <=
V+ X V\

The START SYMBOL of a grammar is denoted by S (originally
for "sentence"); it is a particular element of VN.

We can at this point define a grammar as follows.
A GRAMMAR G = (VN, VT, P, S) is a system consisting of a

nonterminal vocabulary VN, a terminal vocabulary VT, a set of
productions P, and a start symbol S, with the following properties:

(1) VN, VT and P are finite, nonempty sets.
(2) VN n VT = 0.
(3) P <= V+ x V.
(4) S e VS.

A SENTENCE generated by G is every element s of V*T for which
S^s, i.e. it is a terminal string derivable from S by the produc
tions of P.

The LANGUAGE JL(G) generated by G is the set of sentences
generated by G.

Two grammars Gi and Ga are (WEAKLY) EQUIVALENT if L(Gi) =
L(G£), i.e. if they generate the same set of sentences. Another
form of equivalence, STRONG EQUIVALENCE, will be discussed in
Volume II, paragraph 2.1.

6 GRAMMARS AS FORMAL SYSTEMS

1.3. EXAMPLES

EXAMPLE 1.1. Let G = (VN, VT, P, S), where VN = {£}, i.e. S is
the only nonterminal symbol, Vp = {a, b}, P = {S1 -> tfS, S1 -> £}.
Which language is generated by G? Repeated application of the
first production gives S => aS => aa5 => aaaS, etc. None of these
strings is a sentence, for all include the nonterminal symbol S.
The only way to eliminate S is by use of the second production
S -+ b. This will produce sentences such as b, ab, aab, aaab, etc.
A sentence generated by G is thus a string of a's followed by a
single b. A simple notation for language L(G) is {d*b}, where a* is
any string of <z's of length ^ 0.

EXAMPLE 1.2. Let G = (Fjr, Fy, P, S), where K^ = {S}, VT =
{«, &}, P = {S -► «£«, 5 -* M*, S-*aa, S -> Z»i}. The first two
rules may be applied and repeated in any order. This will produce
such derivations as S * aSa => abSba =*• abbSbba => abbaSabba.
The only way to derive sentences from such strings is by use of
the third or fourth production; these replace S with aa or bb. In
all cases the result is a string of a's and &'s, followed by the same
string in reverse order. G is said to generate language {wwB},
where wR represents the reflection of w, and |w] > 1. L(G) is
called a MIRROR IMAGE language.

EXAMPLE 1.3. Let G = (VN, VT, P, S), where VN = {S,E,F},
VT = {a, £>, c, d}, P = {S -> £SF, S-* EF, E-* ab, F-* cd}. By
applying the first production of P n — \ times, we obtain the string
En-1SFn~1 (the exponent indicates the number of successive occur
rences of the element). By then using the second production once,
one obtains EnFn. When, by application of the third and fourth
productions respectively, all the E's are replaced by ab and all
the F's by cd, the resulting string consists of n a&-pairs followed
by n crf-pairs. Language L(G) consists of all sentences of the form
(ab)n(cd)n, where n > 1.

In this example a alternates with b, and c with d in the sentences
of L(G). It is possible to modify the grammar in such a way that

GRAMMARS AS FORMAL SYSTEMS 7
the terminal elements will be neatly grouped in the sentences of L:
first all a's, then all £>'s, etc. This will be the case in the following
example.

EXAMPLE 1.4. Language {anbncndn}, where n > 1, is generated by
grammar G = (VN, VT, P, S), in which VN = {S, E, F, B, C},
VT = {a, b, c, d}, and P consists of the following productions:

1. S -* ESF 4. F -> Cd 7. BC -* be
2. S-+EF 5. Ba -> aB 8. Bb ->• bb
3. E-*aB 6. dC -»■ Cd 9. cC ~* cc

The first four productions are essentially the same as those of
Example 1.3. They produce strings of the form {aB)n{Cd)n, where
« > 1. The other five productions serve in the further grouping
of the elements. By means of production 5 one can replace a string
aBaBaB... of arbitrary length by a string of a's followed by a
string ofB's. Production 6 acts similarly with respect to CdCdCd...
sequences. We must now see to it that further rewriting in terminal
symbols is possible only when these arrangements have in fact
been performed; this is the purpose of rules 7 through 9. Rule 7
serves to replace the pair BC in the center of the string with
terminal elements, but it can be applied only if B and C are found
in the right place in the center of the string. By means of produc
tion 8 the variables B are replaced by the terminal symbol b, on
condition that each B is located directly to the left of a b. The
process can be completed only when all the B's are already in the
correct positions. Finally production 9 acts similarly in the right
hand half of the string. The result is a string of the desired form,
anbncndn; sentences of other forms cannot be generated by this
grammar.

EXAMPLE 1.5. It is possible to write a still more compact grammar
for language {anbncndn}, namely G = (VN, VT, P, S), in which
VM = {S, E, F}, VT = {a, b, c, d}, and P consists of the following
productions:

8 GRAMMARS AS FORMAL SYSTEMS

1. S-+ESF 4. dF-^Fd
2. S -» abed 5. Eb -► abb
3. £a -»• aE 6. cf -> c«f

The reader himself may now experiment with the operation of
this grammar.

2

THE HIERARCHY OF GRAMMARS

2.1. CLASSES OF GRAMMARS

The definition of grammar given in the preceding chapter is abso
lutely general in the following intuitive sense: if a mechanical
procedure can be contrived, according to which the sentences of
language L can be enumerated in some order, then language L
can be generated by a grammar in the defined form. We call this
statement intuitive because the concept "mechanical procedure"
has not yet been defined. One definition of it will be given in
paragraph 7.4., but for the present one can roughly conceive of
it as follows. Let us assume that we dispose of a general purpose
computer with an unlimited memory. Let us further assume that
a program can be written for this computer according to which
each sentence of L, and only sentences of L, will appear in the
output after a finite number of operations. (The program might,
for example, produce the sentences in order of length: first X if it
is in the language, then the sentences of length 1, followed by the
sentences of length 2, etc.) We could then say that a procedure
exists for the enumeration of the sentences of L, and that L is
RECURSIVELY ENUMERABLE. Every recursively enumerable language
can be generated by a grammar corresponding to the definition
(we shall return to this matter in paragraph 7.4.).

The class of recursively enumerable languages is large, but it is
of little interest from a linguistic point of view. One would expect
that natural languages have characteristic properties which would
rather limit the range of possible syntactic structures in certain

10 THE HIERARCHY OF GRAMMARS

respects. The class of recursively enumerable languages is therefore
an unattractive model for natural languages because it is denned
by procedures which may be completely arbitrary. Models of
empirical interest will result only from the definition of more
limited classes of grammars. It is better to reject too strong a
model with good reason than to maintain a weak model and never
discover the characteristic structure of a language. The class of
recursively enumerable languages is the weakest conceivable model.

Chomsky (1959 a, b) devised a schema for the classification of
grammars which is now in general use. It is based on three in
creasingly restrictive conditions on the production rules.

FIRST LIMITING CONDITION: For every production a-»j? in ? ,
|a| < \fi\. Thus the grammar contains no productions whose
application would result in a decrease of string length.

SECOND LIMITING CONDITION: For every production a -* fi in P,
(1) a consists of only one variable, i.e. a e VN, and (2) /? # L The
productions are of the form A -*■ /?, where /? e V+.

THIRD LIMITING CONDITION: For every production a -*■ fi in P,
(1) a e VN, and (2) /? has the form a or aB, where a e VT and
B e VN- The rules are thus either of the form A -* a or of the form
A -+aB.

With these limiting conditions, grammars may be classified in
the following way.

TYPE-0 GRAMMARS are grammars which are not restricted by any
of the limiting conditions. Their definition is simply that of "gram
mar"; they are also called UNRESTRICTED REWRITING SYSTEMS.
Productions are of the form a -> /?.

TYPE-1 GRAMMARS are grammars restricted by the first limiting
condition. Productions have the form a -* f), where Ia| < |/?|.
Type-1 grammars are also called CONTEXT-SENSITIVE GRAMMARS for
reasons to be mentioned in paragraph 2.4. They obviously consti
tute a subclass of type-0 grammars. In fact they are a strict subset
of the set of type-0 grammars, for there are type-0 grammars

THE HIERARCHY OF GRAMMARS 11

which are not of type-1, namely, those grammars with at least one
production where |a| > |/?|. The grammars given in Examples 1.1.
through 1.5. satisfy this first condition and are therefore context-
sensitive.

TYPE-2 GRAMMARS are grammars restricted by the second limiting
condition. Productions have the form A -+ /? where fi # X. Gram
mars of this type are called CONTEXT-FREE GRAMMARS. The second
condition implies the first: from \fi\ > 1 and \A\ = 1 it follows
that \A\ < \p\. Context-free grammars are therefore context-sensi
tive, but the inverse is not true; the class of context-free grammars
is a strict subset of the class of context-sensitive grammars. The
grammars given in Examples 1.1., 1.2., and 1.3. are context-free.

TYPE-3 GRAMMARS are grammars restricted by the third limiting
condition. Productions have the form A ~* a or A -*■ aB. These
are REGULAR GRAMMARS (in linguistic literature they are often called
FINITE STATE GRAMMARS). In its turn the third limiting condition
implies the second. Therefore the class of regular grammars is a
subclass of the class of context-free grammars; in fact it is a strict
subset. The grammar given in Example 1.1. is a regular grammar.

Language types may be defined according to the various classes
of grammars. A type-3 grammar generates a regular language (or
finite state language), a type-2 grammar generates a context-free
language, a type-1 grammar generates a context-sensitive language,
and a type-0 grammar generates a (recursively enumerable) lan
guage.

It does not follow, however, from the relations of inclusion
which exist among the various types of grammars that corres
ponding languages are bound by the same relations of inclusion.
We cannot exclude the possibility a priori that for every context-
free grammar there might exist an equivalent regular grammar.
In that case all context-free languages might be generated by
regular grammars, and consequently regular languages would not
form a strict subset of context-free grammars. However in the
following it will become apparent that the language types do show
the same relations of strict inclusion as the grammar types: there

12 THE HIERARCHY OF GRAMMARS

are type-0 languages which are not context-sensitive, context-
sensitive languages which are not context-free, and context-free
languages which are not regular. Figure 2.1. illustrates this hierarch
ical relation, called the Chomsky Hierarchy.

Fig. 2.1. The Chomsky Hierarchy of Languages.

It is obvious that the null-string can be present only in type-0
languages. Sometimes, however, it is convenient to add it to other
languages as well. In the following we shall suppose in all cases,
except in Chapter 3, that X has been added to the language,
unless otherwise stated.

In the remaining part of this chapter we shall deal with a few
properties of each of the grammars.

2.2. REGULAR GRAMMARS

Most properties of regular grammars (RG's) can best be treated
on the basis of the theory of automata (cf. chapter 4). Our discus
sion here will be limited to five theorems which will be needed in
the remainder of the present chapter; four of them can easily be
explained without reference to automata theory.

We must first introduce a means of visual representation of
grammatical derivations, called DERIVATION TREES, TREE DIAGRAMS,
or PHRASE MARKERS (P-markers). The procedure is a general one
which may be used not only for regular grammars, but also for

THE HIERARCHY OF GRAMMARS 13

context-free grammars and some context-sensitive grammars. An
example will illustrate the procedure.

EXAMPLE 2.1. Let G = (VN, VT, P, S), where VN = {£5}, VT =
{a, b}, and P = {S -» aB, B-»bS, B-»b}. G is thus a regular
grammar. The sentences in L(G) consist of alternating a's and fe's,
beginning with a and ending with b. Thus L(G) = {(ah)*} (by
convention X e £((?)).

Let us examine the derivation of the sentence ababab; it can
be generated only in the following way: S => aB =>■ abS => a£a.B =>
ababS => ababaB =*- ababab. Figure 2.2.a. gives the tree diagram
for this derivation, clearly illustrating each step. Beginning at S
(at the top of the diagram), the tree divides into two branches,
one leading to a, the other to B; this is the first step in the deriva
tion. From B two further branches lead to b and to S respectively,
showing the second step. The remaining steps in the derivation
may be discovered by inspection.

Formally speaking, a (derivation) tree is a system of nodes and
branches (or edges). Branches are directed connections between
nodes, i.e. branches enter and leave the nodes. A tree has only
one node which no branch enters; it is called the root or origin
of the tree. Exactly one branch enters each of the remaining nodes.
Moreover, a path may be found from each node to the root of the
tree. Finally, each node bears a label.

s b . s

a B

y
Fig. 2.2. a. Derivation Tree for the Sentence ababab (Example 2.1.).

b. Incomplete Derivation Tree.

14 THE HIERARCHY OF GRAMMARS

A derivation in a context-free grammar can be represented by
a tree diagram, all the nodes of which are labeled with elements
of V. The root is the start symbol S, nodes from which branches
leave are elements of VN, and nodes from which no branches leave
are elements of VT. Each of these features can easily be verified
in Figure 2.2.a.

Sometimes it is considered unnecessary to show the entire deri
vation, and only the first few steps are given in an incomplete
tree, as in Figure 2.2.b. In such a case it is possible that nodes
from which no branches leave may be labeled as elements of VR.

We can now return to the subject of regular grammars. It is
evident that each string in a regular grammar derivation contains
at most one variable, and that this variable is the last element of
the string. Consequently, tree diagrams for such derivations branch
to the right, i.e. at each step it is the rightmost node which further
divides into two branches.

The definition given for regular grammars is in some sense
economical. It is possible that the class of languages generated
by regular grammars be generated also by grammars with a more
complicated rule structure. While this fact is not interesting in
itself, it should caution us against concluding on the class to
which a language might belong solely on the basis of the type of
grammar by which it is generated. An example will serve to
illustrate this.

EXAMPLE 2.2. Let G = (VN, VT, P, S), with VN = {S}, VT = {a},
and P = {S -y aSa, S -> aa, S -* a}. This is obviously a context-
free grammar; the productions are not of the form of those of
regular grammars. But L(G) is a regular language, for there is
also a regular grammar by which it can be generated. L(G) consists
of all possible strings of a's; it can likewise be generated by gram
mar G' with P' = {S -* aS, S -> a}. G' is thus a regular grammar
equivalent to G, and consequently L(G) is a regular language.

A grammar is called RIGHT-LINEAR if all its productions are of
the form A -> xB or A -» x (notice that x represents a string of
terminal elements).

THE HIERARCHY OF GRAMMARS 15

THEOREM 2.1. The class of right-linear grammars generates pre
cisely the class of regular languages.

PROOF. All regular grammars are right-linear, and therefore all
regular languages can be generated by right-linear grammars. The
inverse, that each right-linear grammar has an equivalent regular
grammar, must also be shown to be true. Let G = (VN, VF, P, S)
be a right-linear grammar. We must show that there is a regular
grammar G such that L(G') = L(G). Take G' = (V'N, V'T, P', S)
with the following composition. For every production A -> x in P,
where x = ayai... an, P' contains the following set of productions:
A -» a\A\, A\ -* a^Az,..., An_^ -* an-iAn-i and An_i ~* an. These
productions are clearly of the prescribed regular form, and A
generates x. If we see to it that the variables A\, A2, ..., An-i do
not occur in any other production of P', G' will generate only x.
Likewise for each production of the type A -*■ xB in P, where
x = 6162 ••• bm, let P' contain a set of productions A -> b\Bi,
Bi -*■ b%Bz, ..., Bm_i -»bmB, also taking care that the new varia
bles Bi, B%, ..., Bm_\ appear only in these productions. Further,
let the nonterminal vocabulary V'N contain VN plus all the new
variables introduced in the above way, and V'T = VT. It follows
from the construction that L(G') = L(G).

THEOREM 2.2. A context-free grammar, with productions such that
all derivations are either of the form xB or of the form x, generates
a regular language. The same holds if all derivations are of the
form Bx or x.

PROOF (summarized). If all the derivations of a context-free
grammar must be of the form xB or x, then all the productions
must have the form A -* xB or A -* x. It follows from Theorem
2.1. that such grammars only generate regular languages. A similar
argument holds for grammars, all the derivations of which have
the form Bx or x, but it must be shown that grammars with pro
ductions exclusively of the form A -> Ba or A -* a generate only
regular languages.

16 THE HIERARCHY OF GRAMMARS

THEOREM 2.3. All finite languages are regular.

PROOF. Let L be the finite set {s\, s%, ..., sn}, where st — aacitz ...
aihi- One can generate st by a finite set of regular productions,
namely S -> anAn, An -* ai2Ai2, ..., /!«,_! -» aiht, following the
construction used in the proof of Theorem 2.1. The combination
of all sets of productions for all Si gives a finite regular grammar
which generates L.

THEOREM 2.4. The union of two regular languages is regular.

PROOF. Let L\ and £2 be regular languages. We must show that
Ls, where l 3 = L i U L% (i.e. Lz consists of all the sentences of L\
and all the sentences of L2), is also regular. Let Gt = (V^, V\,
P1, S1) be a regular grammar which generates Lu and G2 =
(Ti> VT> P2> S2) be a regular grammar which generates L2, taking
care that Vj) n V% = 0 (this is always possible). We compose
grammar G3 = (Vf,, V\, P3, S) as follows. (1) Vl = 7^ u Vj, u S,
i.e. F^ contains the variables of Gx and G2 plus a new variable S,
which will also serve as the start symbol of G3. (2) F | = V\ u V\.
(3) P 3 contains all productions P1 and P2 as well as all possible
productions S -> a such that either S1 -> a is a production in P1 ,
or S2 -+ a is a production in P2 . Thus S => a in G3 in precisely
the cases where S1 => a in Gi and 5 2 => a in G2. Therefore
Lz = LiV L%. Because all the productions of G3 are of the required
regular form, Ls is regular.

L$ may be called the PRODUCT of Li and £2 if L3 consists of
all strings xy with x in L\ and y in Lz.

THEOREM 2.5. The product of two regular languages is regular.
(This theorem will be proven in paragraph 4.4. in connection with
the discussion of finite automata.)

2.3. CONTEXT-FREE GRAMMARS

The definition of context-free grammars (CFG) is less economical
than that of regular grammars. Any production of the form

THE HIERARCHY OF GRAMMARS 17

A -* P, where \p\ ^ 0, is allowed; p can therefore be any string
of terminal and nonterminal elements. However, one can greatly
simplify the form of productions without diminishing the gene
rative capacity of the grammars. Such simplified forms of grammars
are called NORMAL-FORMS. The most important normal-forms of
context-free grammars are the CHOMSKY NORMAL-FORM and the
GREIBACH NORMAL-FORM. We shall discuss each of these, and will
likewise prove that every context-free grammar is equivalent to a
grammar of the Chomsky normal-form.

2.3.1. The Chomsky Normal-Form

A grammar is said to be of the Chomsky normal-form if all
productions have the form A -»• BC or A -> a.

THEOREM 2.6. Any context-free language can be generated by a
grammar of the Chomsky normal-form.
PROOF. By definition a context-free language can be generated by
a grammar with productions of the form A -* p. We can distin
guish three possibilities for such productions: (1) PeVr(2)pe VN,
(3) all other cases. In order to construct a grammar G' in
Chomsky normal-form and equivalent to context-free grammar G,
we must see if production forms (1), (2), and (3) can be replaced
by the appropriate normal production forms. (1) Productions
A -* p, where P — a, are of the required form and call for no
further discussion. (2) If A -* B is a production of G, there are
two possibilities: (a) G contains no productions of the form B -» x,
i.e. B cannot be further rewritten; in this case we can simply ignore
the production A - »B in the construction of G'. (b) B can be
further rewritten in G, for instance by the productions B -» pi,
B -*-fii, ••-, B -> pn. Without diminishing the generative capacity
of the grammar we can now replace these productions, as well as
A ~* B with the set of productions A -* fiu A -*Pz, ..., A -* /?„.
In spite of rewriting, one or more of these new productions may
retain the same form, for instance A -> C. In that case we can
repeat the procedure and replace A -* C by the productions A -* >><

18 THE HIERARCHY OF GRAMMARS

for every yt for which C -» y*. This can in its turn lead to the
same problem, but, as G contains a finite number of variables,
the process will reach an end, except if the replacement chain
contains a loop (for example A -» B, B -> C, C -* A). But in that
case, the variables in the loop are interchangeable, and one of
them, A for instance, can replace the others in all the productions
of the grammar. The result is that all the newly constructed
productions are of form (1) or (3). Those of form (1) are of the
Chomsky normal-form. Both the new productions of form (3) and
the original form (3) productions from G can be treated as follows.
(3) In the remaining productions A -»/?, /? consists of terminal
and/or nonterminal elements. We replace all the terminal elements
with new variables. Assume that the itb element of fi is a terminal
element bt; we replace it with a new variable Bi, and add the
production Bi -» bt, which is of the required normal form. By
repeating the operation for all terminal elements in /?, we replace
the production A -* B by a production A ~> B1B2 ... Bn and a
terminal production of the form mentioned above. Finally we must
replace nonterminal productions with productions of the form
A -> BC. Here we again apply the construction used in the proof
of theorem 2.1., replacing production A -*• £1-82 ... Bn with a set
of productions A -»■ B1D1, Di -* B2D2, ... Dns -> Bn~\Bn, which
are all of the required form. It follows from the construction that
grammar G' thus obtained is equivalent to G and in the Chomsky
normal-form.

EXAMPLE 2.3. Let G = (VN, VT, P, S), where VN = {S,A,B},
VT = {a,b}, and P contains the following productions:

1. S-»aSB 3. A ->ab
2. S -> A 4. B -y b

G generates all strings of the form anbn (n > 1 when X is excluded).
Sentence asb3, for example, has the following derivation: S =>
aSB => aaSBB => aaSBb => aaSbb => aaabbb. We shall now con
struct a grammar G' in the Chomsky normal-form and equivalent
toG.

THE HIERARCHY OF GRAMMARS 19

The only production in the required form is production 4; all
others must be replaced. Beginning with production 1, we replace
S -*■ aSB with two productions S -*■ CSB and C -> a, as in (2) in
the above proof. S -* CSB can in turn be replaced by S -* CD
and D -» SB, as in (1).

In production 2 we first replace A with the strings as which it
can be directly rewritten. In the present case, the only such string
is ab (cf. production 3), and production 2 is thus replaced by
A -* ab. The normal-form can be obtained by the replacement
of a and b with new variables and the addition of two terminal
productions. As we already dispose of terminal productions C -* a
(from production 1) and B -*b (production 4), it is sufficient to
replace production 2 with S -* CB. Production 3 is at the same
time replaced by productions of the required form. Thus G
contains the following productions:

1. S -* CB 3. S -* CD
2. D -*• SB 4. C -* a

5. B-*b
The derivation of sentence a?b3 in G' is therefore S => CD =*■
aD => aSB => aCDb => aaDb => aaSBb => aaSbb => aaabbb.

Although grammars G and G' are equivalent, the derivations
differ. This can easily be observed from the derivation trees for
sentence a3b3 given in Figure 2.3.a. (derivation in G) and Figure
2.3.b. (derivation in G').

2.3.2. The Greibach Normal-Form

A grammar is in the Greibach normal-form if all the productions
are of the form A -*■ afi, where fi is a string of 0 or more variables
(fi 6 V'N).

THEOREM 2.7. Any context-free language can be generated by a
grammar in the Greibach normal-form.
For the proof of this theorem we refer the reader to Greibach
(1965). Our discussion here will be limited to the following example.

2 0 THE HIERARCHY OF GRAMMARS

a . S b. s c. S

a SB C D a D

a SB. b / s X </DB.

\ / \ \ /N\
A b C D b a BB. b

/ \ / / ^ \ \
a b a S B v 6 6

a ' 2>
Fig. 2.3. Derivation Trees for e?b3.

a. Derivation Tree in G.
b. Derivation Tree in G' (Chomsky normal-form).
c. Derivation Tree in G" (Greibach normal-form).

EXAMPLE 2.4. Let us once again consider grammar G of Example
2.3. In order to find a grammar G" in Greibach normal-form
which is equivalent to it, we may use grammar G' in Chomsky
normal-form as starting point. The variables of G' are S, B, C,
and D. We number these in an arbitrary order, indicating the
number by subscript: thus, Si, B%, C3, D4. We shall at this point
change the productions in such a way that the direct rewriting of
a variable has as its first element either a terminal element or a
variable with a higher number. Production 1 (Si -»■ C3B4) and
production 3 (Si -* C2-D4) already have this form. Production 2
(Z>4 ->• S1B2) can be adapted by first replacing Si with the strings
as which it can be directly rewritten, namely C3.B2 and C3-D4,
giving D4 -> CsBzBz and D4 -> C3D452. It remains the case that
the subscripts decrease (from 4 to 3), but the required form can
be obtained by replacing Cz in both productions with the only
string as which it can be rewritten, a (see production 4). This gives
the productions D4 -> aBiB% and D4 -> aDiBz. Productions 4
(C -*■ a) and 5 (B -* b) are already of the required form. Recapi
tulating, at this point we have the following productions: Si -*
CSB2, Si -> C3D4, D4 -> aDiBz, 2>4 -* aB2B2, C 3 -> a, B* -*• £.*
1 This example is relatively simple, as the case where the two subscripts are
equal does not occur. In that case a special procedure is applied, and it is this
which is the heart of Greibach's proof. We refer the reader to her original
article, or to Hopcroft and UUman (1969).

THE HIERARCHY OF GRAMMARS 21

The first two productions are not yet of the Greibach normal-
form; we thus replace the variable Cs in these two productions
with the only string as which it can be rewritten, a, thus also
eliminating the need for the production C% -*■ a. In this way we
arrive at the following productions for grammar G" in Greibach
normal-form (the subscripts are no longer necessary):

1. S^aB 3. D-*aBB
2. S -» aD 4. D -> aDB

5. B-*b

Grammar G" will thus generate sentence a3bz as follows: S =>
aD => aaDB => aaaBBB => aaaBBb => oaaBbb => aaabbb. The tree
diagram for this derivation is given in Figure 2.3.C.

2.3.3. Self-embedding

The economical production forms for context-free languages,
especially the Chomsky normal-form (A -ya,A -* BC), show the
minute difference in type of production which distinguishes
context-free and regular languages (the regular form is A -*■ a or
A -*■ bC). What is the characteristic difference between these two
classes of languages? One important property characterizing all
nonregular context-free languages and absent in regular languages
is t h a t Of SELF-EMBEDDING.

A context-free grammar G = (VN, VT, P, S) is called self-
embedding if there is a variable B in VN, and elements a and y in V+
such that B =4- ccBy.

Thus there is a variable B which, by application of the produc
tions, can be rewritten as a string in which B itself occurs, but
neither at the beginning nor at the end. The definition implies that
a regular grammar is not self-embedding, since nonterminal
symbols occur in regular derivations only at the end of a string.

A language is self-embedding if all grammars generating it are
self-embedding.

It is therefore not sufficient that one of its grammars be self-
embedding, as some self-embedding grammars merely generate

22 THE HIERARCHY OF GRAMMARS

regular languages. This is the case with the grammar of Example
2.2. Its productions are S ~* aSa S -*■ aa, S -» a, generating the
language {an\n > 1}. The language is regular, but the grammar is
self-embedding because S => aSa. The same example showed that
G', with productions S -* aS and S -» a, generates the same
language. Grammar G' is not self-embedding, and generates L(G),
and consequently, by definition, L(G) is not self-embedding.

THEOREM 2.8. All nonregular context-free languages are self-
embedding, and all self-embedding languages are nonregular.
PROOF. The second member of this theorem follows directly from
the definitions. A self-embedding language is generated exclusively
by self-embedding grammars; a self-embedding grammar is, as
we have seen, nonregular. Therefore a self-embedding language is
nonregular.

The first member of the theorem can be otherwise formulated.
It must be shown that all grammars of a nonregular context-free
language are self-embedding. This can be done by proving that if
a language L is generated by a non-self-embedding grammar,
it is necessarily a regular language. To do this, however, we shall
have to refer to a lemma which in turn will be easy to prove after
the discussion of finite automata in Chapter 4.
Lemma. Let Lx and L% be regular languages, and a be a terminal
element of Lx. Let Lz be a language consisting of all sentences
in L% in which the element a does not occur, as well as all strings
which can be obtained by replacing the element a in the remaining
sentences of Lx with a sentence of £2 (if Lz is infinite, this can be
done in an infinite number of ways). £3 is then a regular language.

We shall now prove that a language generated by a grammar
which is not self-embedding is a regular language. Let language L
be generated by a grammar G which is not self-embedding and
which contains the variables Ax, At, ..., An.

Let us assume that grammar G is connected: a grammar is
CONNECTED if for each pair of variables Ai, Aj (i,i — 1,2,..., n,
where n is the number of variables in the grammar), there are
strings aj and a2 in V* such that At =5> a.xAfl2. Let Au Aj be an

THE HIERARCHY OF GRAMMARS 23
arbitrary pair of variables in G. Since G is connected, we have
At 4> y^A^i for some pair q>u <p2. Let us further assume that
l ^ l > 0. Let Ak, Ax also be an arbitrary pair of variables in G,
with Ak =S> i^l^4;^2, and assume that \ij/2\ > 0. Let us examine
the consequences of the two conditions \<pi\ > 0 and |^a| > 0. It
follows from the fact that G is connected that strings coi and <»2
exist such that Aj 4> (0^0)2 and that one can therefore make
the following derivation in G: At=> (piAj(p2 =*■ (p1co1Ak(D2<p2 =*■
<P\Q>\A2(n2<p2. But it follows from the same fact that At 4>
£,xA£2. Therefore we have the following derivation in G:
At =S- (p1<o1ij/1i;1A£2il/2(D2(p2- It follows from the two additional
conditions that Ai is self-embedding in G. But G is not self-embed
ding. At least one of the additional conditions must not be valid
for a grammar to be connected, i.e. if a connected grammar has
a pair of variables At, Aj, for which At => <x±Ap.2 with lo]̂ > 0,
then there is no pair of variables for which |<X2| > 0, including
the pair At, A). Therefore all the derivations in G are either all
of the forms xA and x, or all of the forms Ax and x. It follows
from Theorem 2.2. that G is regular. Theorem 2.8. is thus valid
for connected grammars. We must show that the theorem also
holds for grammars which are not connected.

A nonconnected grammar has at least one pair of variables Ai,
Aj, for which it is not the case that A; =*■ <X1AJX2 for some pair
<xi, «2- We shall prove the theorem for such cases by Mathematical
induction, in two steps: (i) we must first show that the theorem
is valid for grammars with only one variable, S; (ii) then we assume
that it holds for all grammars with less than n variables (the
induction-hypothesis) and prove that in that case the theorem also
holds for grammars with n variables. It follows from (i) and (ii)
that the theorem holds for all grammars with one or more variables.
(i) G has only one variable, S. The only possible pair of variables
is thus S,S, and consequently there is no pair ai and 1x2 such that
S 4- ajSc^. Since all productions are of the form S -*■ x, language
L(G) is finite; on the basis of Theorem 2.3. it is regular. The theo
rem is thus valid for nonconnected grammars with one variable.
(ii) Let us assume that the theorem is valid for all grammars with

24 THE HIERARCHY OF GRAMMARS

less than n variables (the induction-hypothesis). Take grammar G
with n variables Ax, A%, ..., An, where 5" = A\. Because S is the
start symbol, it is true for all variables which may occur in the
derivation of a sentence (we suppose without loss of generality
that G contains no "dummy" variables from which no derivation
is possible) that S 4 tp^^ (j > 1) and for strings <px and <pz

in V*. Because G is not connected, there must be a variable At such
that it is not true that At 4 a^Sa.2 for a pair al9 a2. Otherwise we
would have A t => <x1<p1AJ(p20i2> D u t we know that there is at least
one pair Ai; Aj for which this is not the case.

Let us first examine the case where i > 1, that is, where At ^ S.
We can construct a grammar G' with » — 1 variables by removing
all productions of the form At ->■ y/ from G, and by replacing A%
in all productions with a new terminal element a. From the
induction-hypothesis it follows that L(G') is regular. Next let us
examine the set K of terminal strings x for which At 4 x in G,
K = {x\Ai 4 x}. This set can be generated by a grammar G"
which includes all the productions of G except those containing S
(At =S- axSoLx is impossible), and with At as start symbol. Because
G" has fewer than n variables, K is regular (by the induction-
hypothesis). L(G), however, is precisely the language which results
from the replacement of the element a in the strings of L(G') with
strings x from K. It follows from the lemma that L(G) is regular.

Let us now consider the case where At = S. Take the produc
tions in G of the form S -* a; an arbitrary a* can be rewritten as
a string of terminal and/or nonterminal elements £i, £,%, ..., <?fm.
For each <̂ in on we can define a set of strings Lj for which
£j- 4 x on the basis of the productions in G. Thus Lj = {x\%j 4- x}.
From the induction-hypothesis it follows that Lj is regular for
all j ' s . Let K{ be the set of strings y for which a; 4 y, i.e.
JCj = {y\«i 4 y}. From the composition of a, it follows that each
y consists of a sequence of x's respectively taken from L\, Lz, ...,
Lm, all of which are regular. From Theorem 2.5. it then follows
that Kt is regular. L{G) is the union of all Kt's. As a consequence
of Theorem 2.4., therefore, L(G) is itself regular. This completes
the proof of Theorem 2.8.

THE HIERARCHY OF GRAMMARS 25

2.3.4. Ambiguity

The generation of a sentence by a context-free grammar can be
represented by a tree diagram. This however does not mean that
a given tree diagram corresponds to only one way in which a
sentence can be derived.

EXAMPLE 2.5. Let G be a context-free grammar with the following
productions:

1. S-+AB 5. B-+Sd
2. S-+CD 6. C-*aS
3. S -► be 7. D->d
4. A -*■ a

The sentence abed can be derived from this grammar as follows:
S => AB => aB => aSd => abed. The corresponding derivation tree
is shown in Figure 2.4. There are, however, other derivations of
abed which correspond to the same tree, for example, the deriva
tion 5 => AB => ASd => Abed => abed, where the productions are
applied in a different order. This cannot be detected in the tree
diagram, which fact corresponds to our intuition that the two
derivations determine the same syntactic structure. Therefore we
cannot consider this to be a case of real ambiguity.

In order to define ambiguity in terms of derivations, we must
introduce the concept of LEFTMOST DERIVATION. We can speak of
a leftmost derivation of x if at each step in the derivation S =S- x
it is the variable farthest to the left of the string which is rewritten.
A leftmost derivation of the sentence abed can begin with S =f AB.
At this stage the leftmost variable is A; thus the following step
will be AB => aB. The leftmost variable is now B, and the next

s

A 8

/ S A

> / \
Fig. 2.4. Derivation Tree for the Sentence abed (Example 2.5.).

26 THE HIERARCHY OF GRAMMARS

step is aB => aSd, and the final step, aSd => abed. The first deriva
tion given in this example was in fact a leftmost derivation. It is
clear that every tree diagram corresponds to no more than one
leftmost derivation, and every leftmost derivation with only one
tree diagram.

A grammar G is AMBIGUOUS if there is a sentence in L(G) for
which there are two or more leftmost derivations.

The grammar given in Example 2.5. is ambiguous, for sentence
abed has another leftmost derivation: S => CD => aSD =>- abcD =>
abed. The tree diagram for this derivation is shown in Figure 2.5.

s

Fig. 2.5. Alternative Derivation Tree for the Sentence abed (Example 2.5.).

A language L is (inherently) ambiguous if all grammars which
generate it are ambiguous.

Although grammar G of Example 2.5. is ambiguous, L{G) is
not. Language L(G) consists of sentences abed*, which can be
generated by grammar G' with productions S -» aSd and 5 -> be;
G' is not ambiguous. Languages exist, however, which are in
herently ambiguous. An example is the union of {aWcl} and
{aWcl}, briefly noted L = {a*#c*|i = j or j = k, where /, j ,
k > 1}. Any grammar for L will generate sentences with i = j by
a different process than sentences with j = k. But then sentences
with i — j = k can be generated by both processes.

2.3.5. Linear Grammars

A production is called LINEAR if it is of the form A -> xBy, i.e. if
the string derived contains only one variable. A SIGHT-LINEAR
production has the form A -*■ xB; a LEFT-LINEAR production has
the form A ~* Bx.

THE HIERARCHY OF GRAMMARS 27

A grammar is linear if each of its productions is either linear
or of the form A -* x; a grammar is right-linear if each of its
productions is either right-linear or of the form A -*■ x; a grammar
is left-linear if each of its productions is either left-linear or of
the form A -» x.

It follows from Theorem 2.1. that a right-linear grammar
generates a regular language. Left-linear grammars also generate
only regular languages.

An example of a linear grammar is G' mentioned in the preceding
paragraph, with productions S -*• aSd and S -» be. The language
generated by it, {a bed*}, is not regular; it is therefore self-embed
ding. Although the class of linear grammars has a greater gene
rative capacity than the class of regular grammars, it does not
coincide with the class of context-free languages.

THEOREM 2.9. There are context-free languages for which no linear
grammar exists.

For proof of this theorem we refer the reader to Chomsky and
Schutzenberger (1963). An example of a context-free language for
which no linear grammar can be found is language L with sentences
a""16"V26"'2 ... am*6m*6, where m > 1 and k > 1, thus strings
of alternating sequences of a's and b's, where each sequence of
b's is as long as the sequence of a's which precedes it, and ending
in a single b. A grammar for this language has the productions
S -* aSS, S -* b. The first of these productions is not linear. All
other grammars for this language likewise have at least one non
linear production.

2.4. CONTEXT-SENSITIVE GRAMMARS

2.4.1. Context-sensitive Productions

The definition of context-sensitive grammars (grammars in which
all productions are of the form a -+ fi, where |a| < |/?|) does not
indicate in what way such grammars are "sensitive to context".

28 THE HIERARCHY OF GRAMMARS

The original definition given by Chomsky (1959a) was in fact
different from the present one. He defined context-sensitive gram
mars (CSG) as grammars the productions of which have the form
<X\AOL2 -* ttip<X2, where <*i and ot2 are elements of V, and ft is an
element of V+. Thus A can be replaced by ft only if A appears
in the context <x\— az. This type of context-sensitive production
can also be written as A -> ft/ai—<xz. In spite of the change of
definition, the following theorem remains valid.

THEOREM 2.10. The class of languages generated by grammars
exclusively containing context-sensitive productions is the class of
type-1 languages.

PROOF. Let Gi be a type-1 grammar, and Ge be a grammar exclu
sively containing context-sensitive productions. Every Gc is evi
dently also a G\, because for all productions a -* ft in Ge it is true
that |«| < \ft\. However it must likewise be shown that for every
Gi there is an equivalent Gc.

Let Gi — (VN, VT, P, S) be a type-1 grammar. There is a
grammar G' — (V'N, V'T, P', S') equivalent to it, where all the
productions a -» ft in P' have the following "normal-form": either
both a. and ft are strings exclusively containing variables, or a
and ft are of the forms A and a respectively (i.e. the productions
are of the type A -*■ a). This will become evident from the following.
Let V'N consist of all the elements in VN as well as an additional
variable Xa for each element a in VT, thus FjJ = VN u {Xa\a e VT}.
To compose P' we must change the productions of P in such a
way that every terminal element a in them is replaced by Xa, then
add productions Xa -» a for every a in VT- Thus all productions
in P' are of the "normal-form" (note that this normal-form can
also be used for all type-0 grammars), and L(G') = L(Gi).

We must now find a grammar G" which contains only context-
sensitive productions, and is equivalent to G'. Let a -»ft be a
production in P', with a = Ax Az ... Am, and ft — Bi Bz ... Bn,
where n^m. We replace this production with the following set
of equivalent context-sensitive productions in P":

'•^"A-At/'

THE HIERARCHY OF GRAMMARS

A1 - A't / — A2A3...Am A\ -* Bx

A2-*A2j A\ —A3...Am and A'2 -* B2

Am-*A'ml A\ ... A'm+1 — A'm-+ BmBm+1...B„ j

The first group of context-sensitive productions (Ai though Am)
replaces a = A^A2 ... Am to a string of new variables A\A\...A'm.
This can in turn be replaced by B\B% ... Bnby way of the second
group of context-sensitive productions (A[through A'm) if n > m.
When all the productions of P' have been replaced in this way
by sets of context-sensitive productions, and V^ includes V# and
the newly introduced variables, then G" is equivalent to G' and
consequently also to G'. G", however, is a Gc.

EXAMPLE 2.6. The production CD -» DC is of type-1 form.
Application of the procedure mentioned above yields the following
set of context-sensitive productions equivalent to CD -» DC:

1. C -* C'l—D 3. C -+D
2. D -+ D'/C— 4. D' -»■ C

An advantage of a type-1 grammar in context-sensitive form
(that is, containing productions exclusively in context-sensitive
form) is that the derivation of a sentence in it can be represented
by means of a tree diagram. Context-sensitive productions, in
effect, replace only one variable in the string at each step; each
step, therefore, corresponds to the branches leaving only one node.
This will be illustrated by the following example.

EXAMPLE 2.7. Let us examine the derivation of sentence aabbccdd
in grammar G of Example 1.5. G contains the following produc
tions:

1. S-*ESF 4. dF^Fd
2. S -* abed 5. Eb -► abb
3. Ea-+aE 6. cF-*ccd

29
1

30 THE HIERARCHY OF GRAMMARS

As a first step we replace grammar G with grammar G', containing
the following "normal form" productions, obtained by application
of the procedure explained in the proof of Theorem 2.10.:

1. S -> ESF 6. Z e ->• b
2.
3.
4.
5.

o —> Xa-Ab-XcXfi
MXa ~~* XaE
Xa-*a
XdF -*■ FXa

7. EXb -» XaXbXi
8. XCF —*■ XcXeXg,
9. Xc-*c

10. Xa -»• d

The productions are now replaced by context-sensitive produc
tions where necessary by application of the procedure given in
Example 2.6. This yields the following productions; productions
3-6 and 8-11 were obtained by means of this procedure:

1. S -> ESF
2. S -* XaXbXcXd

3. £ - > £ ' l—Xa

4. Xtt -> X'a 1 E'-
5. E' -» Xa

6.X'a-+E
7. X„ -> «
S. F-*F' / Xa—

9.Xd-+X'dl-F'
10. F' -* Xa

11. X'd-+F
12. Z t -► fc
13. J B - ^ I A / - ^
14. J ? ^ Z A / I « -
15. Z c ->• c
16. X„ -> d

These productions can be used to derive the sentence aabbccdd
in the following way (the numbers over the arrows refer to the
productions applied):

S i ESF X EX„XbXcXdF X E'XaXbXcXdF

4 E'X'aXbXcXdF 4> XaX'aXbXcXdF X XaEXbXcXdF
o g j o
=> XaEXbXcXdF => XaEXbXcXdF => XaEXbXcXdXd

=*• XaEXbXcFXd => XaXaXbXbXcFXd =*• XaXaXbXbXcXcXdXd

7 , 1 2 , 1 5 , 1 6 . , , ,
;> aabbccdd.

All sixteen productions have been used in this derivation. Figure
2.6., gives the corresponding tree diagram.

THE HIERARCHY OF GRAMMARS 31

Fig. 2.6. Derivation Tree for the Sentence aabbccdd (Example 2.7.).

Nevertheless, tree diagrams for derivations in context-sensitive
grammars are less exhaustive in illustrating the precise steps of
derivation than tree diagrams for derivations in context-free
grammars. More specifically, the diagrams do not show the
contextual restrictions operative at the various steps of rewriting
in a context-sensitive grammar, and it is possible that two deriva
tions, based on different sets of productions, will be represented
by the same tree diagram. For a context-sensitive derivation, as
opposed to a context-free derivation, the "ambiguity of x" does
not correspond to "more than one possible tree diagram for x".

2.4.2. The Kuroda Normal-Form

In the preceding paragraph two restricted forms of context-sensi
tive productions were discussed; they may be called normal-forms.
The first of them contains two types of production, a -* fi with
a and /? in V% and |a| < |/?j, and A->a. The second is the context-
sensitive form A -*fi/xi—oc2, with a,\ and a2 in V* and p in K+.
We shall now introduce a third normal-form, developed by
Kuroda, which is relevant not only to the discussion of the relation
ship between context-sensitive grammars and automata (chapter 6),
but also to the proof of certain essential properties of trans
formational grammars (Volume II, chapter 5).

THEOREM 2.11. Every context-sensitive grammar is equivalent to

32 THE HIERARCHY OF GRAMMARS

a context-sensitive grammar with productions exclusively in the
following forms:

(i) 5 -» SB, (ii) CD -» EF, (iii) G -> H, (iv) A -*• a, where the
variables .4, J?, C, Z>, F, F, and H are different from the start symbol
5 (G may be identical to S).

PROOF. It is striking that no string in these production forms has
more than two elements. We shall first show that if G is context-
sensitive, there exists a grammar G' equivalent to it, in which
for each production a -* fi, |a| < 2, and]/?| < 2. In the second
place we will prove that there is a grammar Gn in the Kuroda
normal-form which is equivalent to G'.

Let G = (VN, VT, P, S) be a context-sensitive grammar. We
already know that there is an equivalent grammar G" of the first
normal-form, i.e. with production types A -* a and a -*■ /?, where
a and /? are strings of variables such that \f}\ ^ \<x\ > 0. Suppose
that the maximum length of any string of a production of G" is n.
We must construct a grammar G'" = (V%, VT, P'", S) equivalent
to G" (and thus also to G), for which the maximum string length
for any production is not greater than n — 1. To do so, we let Pm

include all the productions of P" where the string length is no
greater than 2; the remaining productions have string lengths of
3 or more. (If n — 1 or n = 2, G" already conforms to the limita
tion on string length and this step may be omitted.) Let a -> 0
be such a production; we write it then as

Aa' -> BCDp' (where |«'| > 0 and \?\ > 0).

If a' = X, we create two new variables A\ and A2, and add the
following productions to Pm:

A —y A\Az
A\ -*BC
A2 -> Dfi'

If |a'| > 0, a' can be replaced by Fa*. In that case we add the
following productions to P'":

THE HIERARCHY OF GRAMMARS 33
AE -> A'E'
A' ->J?
E'a" -> CDp'

It is clear that in both cases no string length is greater than n — J.
If we follow this procedure for all the productions of P" and add
the resulting productions to Pm, in virtue of the construction G"
will be equivalent to G", and consequently also to G. By induction
on n it follows that there is a grammar G' = (V^, VT, P', S) in
which the length of the strings in productions is limited to 2, and
which is equivalent to G.

At this point we must show that there is a grammar Gn which
is equivalent to G' and G, and which contains only productions
of types (i) through (iv). Take grammar Gn = (*$, VT, P", S'),
where F ^ f ^ u S ' u Q}. Thus we have added two new varia
bles, one of which, S", is a new start symbol. The productions
in Pn are the following:

1. S' -» S'Q
2. S' ->S

■ for all variables A in G' 3. QA -* AQ
4. AQ^QA
5. A -» B for all productions A -» B in G'
6. A -* b for all productions A -*■ b m G'
7. AB -> CZ) for all productions AB -» CD in G'
8. ^(g -» BC for all productions /(-+ BC in G"

It is clear that the productions of Gn are subject to the same
restriction of string length as the productions of C ; all strings in
productions are of a length no greater than 2. Productions 1
through 8, moreover, are all of types (i) through (iv). (Note that
the start symbol is S', while S is an ordinary variable.)

Finally, we must prove that Gn is equivalent to G"; to do so it
will be necessary to show that if x £ L(Gn), it is also true that
x e L(G'), as well as the inverse. (1) If x e L(Gn), then S' =S> x.
When every 5 ' in the derivation is replaced by S and all Q's are
omitted, every step of the derivation is in G'. This may be seen

34 THE HIERARCHY OF GRAMMARS

when the same operation is performed on the eight productions
of Gn. The first and second productions become S -+ S (which
adds nothing essential); the third and fourth productions become
A - »A (which is equally uninteresting); the fifth, sixth, and
seventh productions remain unchanged, and the eighth production
becomes A ~* BC. Thus if S' => x, each step in the derivation of x
can be simulated by the application of the productions of G', and
therefore it is true that x e L(G').
(2) Let x e L(G'); then S =*• x. It is true of every production
a -» ft in G' that it is either contained in Gn or has been replaced
by a production of type 8, AQ -*■ BC. Therefore, in order to ge
nerate x in Gn we must see to it that there is exactly one Q available
for each step of derivation in which a production of the type
A -*■ BC is involved. The Q must be placed directly to the right
of the variable A to be rewritten. This can easily be done in Gn:
we first count the number of steps in the derivation S =*■ x in
which the situation occurs, for instance n times. We then begin
the derivation of x in G„ by applying the first production n times;
this may be written as S" => S'Q". Next we replace S" with S by
means of the second production, thus S'Q" =*■ SQn. The rest of the
derivation can proceed in the same way as the derivation S 4> x,
except where the eighth type of production is involved. In this
latter case we must move one Q to the position directly to the
right of the variable to be rewritten; this is done by application
of productions of the third and fourth types. The Q is then eli
minated upon application of a production of the eighth type. In
this way Gn can generate x.

It follows from (1) and (2) that L(Gn) = L(G'). Since G' is
equivalent to G, Gn in the Kuroda normal-form is also equivalent
to G. This concludes the proof of Theorem 2.11.

We would note in conclusion that Kuroda called his normal-form
a "linear bounded grammar", analogous to the equivalent auto
maton of the same name (cf. chapter 6).

3

PROBABILISTIC GRAMMARS

3.1. DEFINITIONS AND CONCEPTS

Until now we have limited the concept of grammar to a system
of rules according to which the sentences of a language may be
generated. On the basis of such a concept one can distinguish
differences in the sentences of a language only in their derivation,
also called their STRUCTURAL DESCRIPTION. However one might
also consider the differences in frequency with which sentence
types occur in a language. One reason for doing so, as we shall
see in chapter 8, is to facilitate the choice between two or more
grammars which generate the same language. One might determine
the efficiency of a grammar on the basis of the frequencies with
which particular derivations or sentence types occur in a language.
But the concept "efficiency" has not been clearly defined, and the
usefulness of a probabilistic interpretation of it will have to be
considered in each concrete situation. We shall return to this
subject in chapter 8.

We shall limit our discussion in the present chapter to an exten
sion of the concept "grammar" which will enable us to describe
the probability of occurrence of sentences in a language. There
fore, we shall first define the concept of a probabilistic grammar.

A PROBABILISTIC GRAMMAR G is a system {VN, VT, P, S) in which:

(1) VN (the nonterminal vocabulary), V? (the terminal vocabul
ary), and P (the productions) are finite, nonempty sets.
(2) VNnVT = 0.

36 PROBABILISTIC GRAMMARS

(3) Let VN U VT = V; P is composed of ordered groups of

three elements (a;, ftp py), ordinarily written otj 5> J3,, where
a* e V+, Pi e F*, and pa is a real number indicating the pro
bability that a given string on will be rewritten as fa. The number
Pij is called the PRODUCTION PROBABILITY of v.% -* /fy.
(4) S e K*.

This definition differs from the original definition of grammar
only in that a probability is assigned to every production.

A probabilistic grammar is NORMALIZED if for every production
a i ~* Pj> it is true that]T p = 1 for every a£ in the productions.

J
This means that if on occurs in a derivation, the total chance that
on will be rewritten by means of some production is equal to 1.
A production whose probability is equal to 0 cannot be used; it
can simply be excluded from P. The reason for allowing the possi
bility that p = 0 is only of practical interest in some calculations.
In the following, however, we shall suppose that every pa > 0
unless otherwise mentioned.

p

We use the notation a 4- p for a derivation a => £j => {2 ... =** P,
where each step is the result of the application of one production,
and where p =f(pi,pz, ■■-,pn)- The analogy with standard nota
tion is obvious, but to avoid crowding symbols above the arrow,
we shall omit the asterisk, except where doing so might lead to
confusion, and write x=> p.

Function / is determined by the interdependence, or lack of it,
between the various steps of the derivation. A probabilistic gram
mar is called UNRESTRICTED if the steps of a derivation in it are
mutually independent; in this case p ~ pi -p2 •... • pn- As no
considerable literature exists on the subject of restricted probabil
istic grammars, we shall limit our discussion to unrestricted
probabilistic grammars. In applications of the theory, however, it
will be necessary to estimate the validity of the presupposition
that the productions are mutually independent.

A SENTENCE generated by a probabilistic grammar is a finite
string s of terminal elements, where S => s and p > 0.

PROBABILISTIC GRAMMARS 37
A probabilistic grammar G is AMBIGUOUS if at least one sentence

can be derived in it in more than one way. A sentence is &-times
ambiguous if there are k derivations S Q s, S S- s, ..., S S- s.

A PROBABILISTIC LANGUAGE L, generated by a probabilistic gram
mar G, is the set of pairs (s,p(s)), where: (1) s is a sentence generated

k

by G, and (2) p(s) = £ Pi(s) where k is the number of different

ways in which s can be derived from S. We call p(s) the PROBABILITY
of s in L. A probabilistic language can also be defined, without
reference to a grammar, as a subset of V^ for which a probability
distribution has been defined (VT is any finite vocabulary).

Two probabilistic grammars G\ and Gz are EQUIVALENT if they
generate the same probabilistic language L, i.e. the same set of
pairs (s, p(s)). Notice that equivalence here requires also that the
probabilities of the sentences be the same.

A probabilistic language L = {(s, p(s))j is NORMALIZED if
Z Ks) = !• This means that the language has a total probability

set
of 1. We shall see later that a normalized probabilistic grammar
need not generate a normalized probabilistic language.

3.2. CLASSIFICATION

Probabilistic grammars may be classified as follows in a way
completely analogous to that used in Chapter 2.

Type-0 probabilistic grammars are all probabilistic grammars
which satisfythe definition given above. Type-1 or CONTEXT-SENSITIVE
probabilistic grammars are those probabilistic grammars in which,
for all productions ak ™ pj, it is true that Jaj| < J/J,J. Type-2 or
CONTEXT-FREE probabilistic grammars are those probabilistic gram
mars in which, for all productions a, +̂ pp it is true that a; =
A, e VN. Type-3 or REGULAR probabilistic grammars are type-2
probabilistic grammars whose productions are exclusively of the
forms A -* aB and A -* a.

It is obvious that this classification is completely independent

38 PROBABILISTIC GRAMMARS

of the probabilistic aspect of the grammars. This is also true of
the classification of probabilistic LANGUAGES generated by probabil
istic grammars. Thus we have type-0 probabilistic languages,
type-1 or context-sensitive probabilistic languages, type-2 or
context-free probabilistic languages, and type-3 or regular proba
bilistic languages.

In the present chapter only regular and context-free probabilistic
grammars will be treated, as no results on the other two types are
yet available.

3.3. REGULAR PROBABILISTIC GRAMMARS

Three theorems will be treated in this paragraph. The first of them
is of direct practical interest. The second, on the other hand,
appears to be somewhat alarming from a practical point of view,
but the third, which has not as yet been proven, suggests that
things might not be as problematic as they seem.

THEOREM 3.1. Every normalized regular probabilistic grammar
generates a normalized regular probabilistic language.

In such a case, the probabilistic grammar is said to be CONSISTENT,
and the theorem is therefore called a CONSISTENCY-THEOREM.

The theorem is of practical interest in determining the frequen
cies of sentences in a language. To do so one would wish to be
certain that the sum of the corresponding probabilisties is equal
to 1. The theorem states that this is guaranteed if the regular
grammar in question is normalized.

The proof of this theorem supposes some acquaintance with
matrix algebra. For readers who prefer to omit it we shall first
present an example which holds the essence of the proof without
requiring knowledge of matrix algebra. The general proof will be
given later.

EXAMPLE 3.1. Let (7 be a regular probabilistic grammar with the
following productions:

PROBABILISTIC GRAMMARS 39

1. S X a 3. B X bA

2. S -4- aB 4. B Xb

5. A -* a

G is normalized because for every variable the total chance of
being rewritten is equal to 1. Only three sentences can be generated
by G: a, ab, aba. The derivations with their respective probabilities
are as follows:

S => a p(a) = \

S^aB^ab P(a&) = l - f = |

S => aB => abA => aba p(aba) — \ • \ • 1 = \

L(G) is evidently normalized, because £ p(s) = -| + ^ + i = l .
sei(f f)

On the basis of this example we shall now show that there is a
simple method for determining the chance that a regular probabil
istic grammar will generate sentences up to a certain length. To
do so we present the probabilities of the productions in G in matrix
form1 as follows:

S A B VT

S 0 0 -§• -§•

A 0 0 0 1

B 0 i 0 f

Fr 0 0 0 1

Let us examine the first row (row-element S). It shows the chances
for the respective column-elements to appear in direct or "one-

1 A matrix is a rectangular grid with one or more rows and one or more
columns. Each row is denoted by a ROW-ELEMENT XU and each column by a
COLUMN-ELEMENT yt. At the intersection of row /* and column/ is the MATRIX-
ELEMENT aa.

40 PROBABILISTIC GRAMMARS

step" derivations from S. There are only two productions for
rewriting S, S -*■ aB and S -* a. The matrix-element under B in
row S has the value -§■ because of the first of these productions,
and the matrix-element under VT in the same row has the value \
because of the second production. Column VT thus serves for all
productions in which a variable is rewritten as a terminal element,
regardless of which terminal element it is. Row A shows how the
variable A can be rewritten in one step, and with what probability,
thus A can be rewritten only as a terminal element, with probability
1. Row B shows to which elements the variable B can be rewritten,
and with what probability, thus it can be rewritten as A with
probability ■§- and as a terminal element with probability •§-. The
fourth row, row VT, is added to the matrix for further calculations;
it is composed of zeros, except the rightmost element which has
the value 1.

This matrix, which we shall call matrix C, has a pleasant property
which may be explained as follows. We know that by definition
sentences are derived from 5". If we wish to know the chance for
a sentence with length 1, we look at row S under VT, and find the
value \. What then is the chance for a sentence of length 1 or 2?
Such sentences are derived by going from 51 to VT by two steps
at most. The variables S, A, or B may be present in the first
derived string. Consequently there are four possibilities of arriving
at a sentence with a length of 2:

(1) From S a string is derived in which S is present, then £ is
replaced by a terminal element. One can immediately see in the
matrix that these two steps have respective probabilities of 0
and •§-. The total chance of such a derivation is thus 0 • |- = 0.

(2) From S the variable A is first derived, then a terminal element
is derived from A. The chance for this is 0 • 1 = 0 .

(3) From S a string is derived with the variable B, then a terminal
element is derived from B. The chance for this is \ • § = ■§■.

(4) A terminal element is directly derived from S. The chance for
this is \. The total chance for a sentence with length 1 or 2 is the

PROBABILISTIC GRAMMARS 41

sum of these four probabilities, 0 + 0 + i + i = | . This is pre
cisely the chance for the sentence a (§) plus the chance for the
sentence ab (4), the only two sentences of the grammar in this
category.

This operation can also be carried out systematically by means
of MATRIX-MULTIPLICATION. The four steps which we have just
performed correspond to the multiplication in pairs of the elements
in row S with the elements in column VT, followed by the addition
of the four products: (0 • |) + (0 • 1) + (| • f) + (| • 1) = | . We
say then that the row-vector S is multiplied by the column-vector VT.
Let us make a new matrix C2, and put the result -§ at the inter
section of row & and column VT- The remaining matrix-elements
of C2 are obtained in a similar way, that is the multiplication of
a given row-vector in C with a given column-vector in C yields
the matrix-element in C2 for the intersection of the row and
column in question. For example, the matrix-element in C2 for
the intersection of row S and column A is i . This is obtained
by multiplying the row-vector S in C by the column-vector A:
(0 • 0) + (0 • 0) + (I • |) + (i • 0) = i. The value £ means that
there is one chance out of six of deriving a string with A from S
in no more than two steps. Matrix C2 is called the square of matrix C.

S A B Vr

S 0 i 0 |
A 0 0 0 1 = C2

B 0 0 0 1
VT 0 0 0 1

By multiplying C by C2 (multiplying the row-vectors in C by the
column-vectors in C%) we obtain matrix C3:

S A B VT

S 0 0 0 1
A 0 0 0 1 = C3

B 0 0 0 1
VT 0 0 0 1

42 PROBABILISTIC GRAMMARS

In row S under VT we find the value 1. This means that the chance
of obtaining a sentence the length of which is three or smaller is
equal to 1. The grammar, as we have observed, generates no longer
sentences.

In this example we see that the critical matrix-element in row S
under VT increases with the power of the matrix from \ to \ to 1.
The proof of Theorem 3.1 consists of showing that this is a
generally valid theorem for matrices such as matrix C. By increasing
the power of the matrix, i.e. the sentence length, the critical
element approaches the value 1. The sum of the chances for all
sentences, i.e. for the sentences of all lengths, is thus equal to 1,
and L(G) is normalized.

PROOF. Let G be a normalized regular probabilistic grammar. We
suppose that G has no redundant variables, i.e. for each As Vu
there is at least one production A -̂ - a, a e VT, for which p > 0.
This supposition implies no loss of generality (cf. Huang and Fu
1971). Let us define a matrix C — [cij\, i,j = 1, 2, ..., n + 1, as
follows:

ctJ — £ p(Ai -> aAj) for i,j < » , and where ^ is the pro-
"£VT duction probability of At -» aAj.

cu = £ P(Ai -* ") f o r »' <n,j = n + l
aeVx

ctj = 0 for i = n +1, j < n
C B+1,B+1 = 1

C is a stochastic matrix1 because for each row the sum of the
elements is equal to 1, and G is normalized. The right hand column-
vector in matrix Ck shows the probability that a string of k or
fewer elements will be derived from the variable Ai. If A\ = S,
then c\,„+i is the probability that the grammar generates a sentence
of k or fewer elements. We are interested in the value of c\ jB+1

when k -* oo, i.e. the sum of the probabilities of all sentences
1 A STOCHASTIC MATRIX is a square matrix, the matrix-elements of which
are not negative, and the sums of the rows of which are equal to 1 (cf. Feller
1968).

PROBABILISTIC GRAMMARS 43

generated by the grammar. We have supposed that it is true of
every variable A that £ p{A -» a) > 0, that is, that there are no

aeVr
YA IB

redundant variables. C may therefore be written as C = ! L0 I 1
where all the elements of column-vector B have a value > 0. Then

A2\AB+B~\ __, , , „k n<4*P*~1+4*~2-40)fl" - 0 o
and in general, C =

Loli-

0 ! 1

. But for each of the row-vectors in A, the sum of the

row-elements is smaller than 1, and consequently lim A = 0.
k-*co

But Cn is a stochastic matrix because C is a stochastic matrix (this
theorem is treated in Feller 1968), and thus for every row in Ck

the sum of the row elements is also equal to 1. The limit of each of
the row-vectors in C* is thus [0 0 ... 0 1], and thus lim clt„+1 = 1

k->oo

is what we set out to prove.
A normalized regular grammar generates a normalized regular

language. But let us examine the situation from the other side.
Let L be a regular language for which a probability distribution
has been defined. There is thus a value p(s) for every s in L. Let us
suppose that L is normalized, i.e. that £ P(s) — 1- I s there a

seL
regular probabilistic grammar which generates precisely the pairs
0, p(s))l This is known as the PROBLEM OF REPRESENTATION. We
have the following theorem.
THEOREM 3.2. There is a regular language L, and a probability
distribution for the sentences in Lwith the property £ p(s) = 1,
for which no regular probabilistic grammar exists. s e L

There are thus normalized regular probabilistic languages for
which no normalized regular probabilistic grammar exists. The
practical implication seems to be that not every sample (corpus)
of sentences of a regular language can be described by a regular
probabilistic grammar. However, the proof of this theorem, for
which reference is made to Ellis (1969), is based on an argument

44 PROBABILISTIC GRAMMARS

which is completely without practical implications. It is shown,
in effect, that one can assign a normalized probability distribution
to a regular language such that for some sentences s, p(s) cannot
be the product of any production probabilities whatsoever. The
argument is based on the consideration that there are real numbers
which are not rational. It supposes that some sentences of L have
nonrational probabilities, and shows that in certain circumstances
it is impossible to represent those probabilities as the product of
production probabilities.

In every empirical situation, however, we have to do with
samples of the sentences of a language L, and can therefore write
the estimates of p(s) as fractions. On the basis of this considera
tion, Suppes (1970) suggests the following general representation
theorem for probabilistic languages; the theorem has not yet been
proven.

THEOREM 3.3. If L is a type-i language, and a normalized pro
bability distribution p(s) has been defined for the sentences of L,
then there is a type-i normalized probabilistic grammar which
generates a probability distribution p(s) for the sentences of L,
and for every finite sample S of L the null-hypothesis that S is
drawn from (L, p(s)) cannot be rejected.

In other words, we can find a probabilistic grammar for every
sample (corpus) of sentences, according to which the original
probability distribution can be approached so closely that it is
impossible to decide (on the basis of a statistical test) if we are
dealing with L(p') or with L(p).

3.4. CONTEXT-FREE PROBABILISTIC GRAMMARS

Two normal-forms for context-free grammars were introduced in
chapter 2, and it was shown that every context-free grammar is
equivalent to a grammar in the Chomsky normal-form and to a
grammar in the Greibach normal-form. In the present paragraph

PROBABILISTIC GRAMMARS 45

we shall show that these equivalences are also valid for context-
free probabilistic grammars. Afterwards we shall discuss the
consistency-problem for context-free probabilistic grammars.

3.4.1. Normal-Forms

Normal-forms pose an additional problem for context-free
probabilistic grammars, for not only must the normal-form
grammar be equivalent to the original one with respect to the
sentences generated, but it must also be equivalent to the original
grammar with respect to the probability of the sentences generated.
This can be done only by giving the production probabilities in
the normal-form grammar a certain relation to those of the
original grammar. It is not certain in advance that this can always
be done. For the Chomsky normal-form we shall state and derive
the relations. The Greibach normal-form will only be mentioned.

THEOREM 3.4. (Chomsky normal-form). Every normalized context-
free probabilistic grammar G is equivalent to a normalized context-
free grammar, the productions of which are exclusively of the
forms A -*■ BC and A -*■ a.

PROOF. The proof is carried out in three steps. We first construct
a grammar G' equivalent to G, and in which no productions of
the form A -^ B occur. Next we compose a grammar G" equivalent
to G', and in which the productions are exclusively of the forms
A 4- a and A -4 BXB2 •■• Bn (n 5=2). Finally we compose Gn in
the normal-form, equivalent to G", and consequently also to G.

(i) Let there be such productions in G of the form A i B that
derivations of the form A => Bx => B2 ... =*■ B„=^> a., where
a £ VN. We can replace every derivation of this kind by adding
a production to P' in the form A 4- a, where

(0 P = Pi • n • - •/>»+!

This is only possible where there are no "loops" in such a deriva-

46 PROBABILISTIC GRAMMARS

tion chain. For these cases we do the following. We speak of a
loop when productions of the following form occur in P1:

A -> a; i = l,...,n

B%Bj j = l,...,m

These productions can be replaced by the following productions
in P':

A 3- Bj j = l,...,m

J3 -*■ a; i = 1,...,«

A -4 ojj i = l,...,n

^ -► #,- jr = l,.-.,m

where,

(2) r = _M^_, t i = — ? < _ , Sj „ « £ ^ _ ; u = _ « £ _ _
J 1 - £„«,- !-!>.«<. 1 ~ Polo } 1 - JP0«0

To show this, let us examine in detail the productions A -> B3 in
G'\ the derivation for the other three types follows the same
pattern, pj can be derived in G in an infinite number of ways when
there is a loop of the form A-* B and B -? A, thus:

A => B => Bj

A£B£A£B%BJ

AZB&A&B&A&BUPJ, etc.

The total probability that fij be derived from A is thus
1 Notation: In the following probabilities p always corresponds to produc
tions where A occurs to the left of the arrow, and q corresponds to productions
where B occurs to the left of the arrow.

PROBABILISTIC GRAMMARS 47

Vol J + Po(<loPo)<lj + PotioPofqj + . . . =
CO

PA, I iloPoT = y ^ f - p
11 = 0 l PoHo

By the same procedure we can deal with U, Si, and Uj.
By eliminating all loops in this way, we obtain grammar G',

equivalent to G, and in which there are no productions of the
form A -» B.

(ii) Grammar G" will contain all the productions of G' except
those of the form A -* /?, where /? consists of terminal elements
and possibly also variables (|/?| > 2). All these productions are
rewritten as productions which contain only variables; there will
also be a set of terminal productions. If bt is a terminal element
in the string /?, we introduce a new variable Bi in G", and a new
terminal production #,- -* Z>,-. In this way all the productions of
the form A -S- /? are replaced by productions of the form A -* BlB2
... Bn. It is clear that with this set of productions A => /?,• in G",
and in general that G" is equivalent to G'.

(iii) At this point all productions in G" which are not of the form
A -> a or A -* BC must be reduced to the form A -» BC. The only
productions in question here are those of the form A -* BtB2 ■■■ Bn
(n > 2). We replace each of these productions by a set of new
productions as follows:

A 4- BiPi

Dt X B2D2

A1-2 -*■ ^«-i^«

where A is a new variable (i = 1, ... n — 2).
When G„ contains these new productions and these new variables

as well as the productions of G" of the form A -*■ fi with \B\ < 2,
then Gn is obviously equivalent to G" and therefore also to G, and
moreover Gn is of the Chomsky normal-form.

48 PROBABILISTIC GRAMMARS

This proof also shows what the relations must be between the
production probabilities of the grammar in the Chomsky normal-
form and those of the original grammar. They are found in the
proof under (1) and (2).

EXAMPLE 3.2. Let G = (VN, VT, P, S) be a context-free probabil
istic grammar where VN — {S, A, B}, VT = {a,b}, and P consists
of the following productions:

l . s -^U
2. S ^

3.A^>

4.A^>

aS

ABb

B (p. = 0.5)

a (Pl = 0.4)

5. A ±U aA
6.B±^A

7. B-^* Bb

S.B^^b

(p2= 0.1)

(a. = 0.4)

(<?! = 0.2)

(q2 = 0.4)

Grammar G is clearly normalized. To find an equivalent grammar
in Chomsky normal-form, we must first construct a grammar G',
equivalent to G, and in which the loop A -^-> B, B - ^ » A no
longer occurs. To do so, we replace productions 3 to 8 with the
following eight productions (cf. Proof (i)):

A -4 aA

A -* a

B%Bb

B %b

In order to calculate the values of/-, s, t, and w, we use the following
formulas:

r _ IWi

A

A

B

B

—*
rz

si
—*
S2

—>

Bb

b

aA

a

1 - PWo

loPz
1-Polo 0.8

0.5 x 0.2 0.1
1-0 .5x0 .4 ~ 0.8 - 0 J 2 5

p„q2 0.5 x 0.4
' l-p0q0 ' 0.8

°A101 - 0.05

= 0.25

PROBABILISTIC GRAMMARS 49

. _ 9oPi _ 0-4 x 0 . 4 _ f t ,

tx = * i _ = <" = 0.125
1 - p0 ? 0 0.8

«! 0.2

* - Pl - ° '4 0 5

1 - p0go 0.8
= 0.25

-a - , ' 2 - "Sr - 0L5 1 - p0q0 0.8

If we add the first and second productions of G to G', grammar G'
is equivalent to G.

Grammar G" is obtained by replacing the productions in G with
productions exclusively of the forms A ~* a and A -^ p, where
every fi is made up only of variables. This yields the following
productions in G":

o 0.8 , o , 0.125 „„ . 1 . 0.5

A 1 D ! I. D 0.2 D 0.25 D D

^4t -»• a 2?2 -* o B —* a B —~* BB3

S^^ABB, A ^ b A°-^A3A B3 4 6

B l h b B^A2A A3±a B^,b

Finally, grammar Gn in Chomsky normal-form can be obtained
by replacing the production S —'-* ABBl with S —'—* AC and
C -4 BBV

The grammar in Chomsky normal-form will then contain the
seventeen following productions:

l.S-22*AtS 6. A ^ b
2. S - ^ AC 7. At 4 a

3.A°-^BB2 S.Aa±a

4. A -—> A*A 9. A* -* a

10.

11.

12.

13.

B ^

B ^

B-±2*

S-24

BB3

;M
b

a

14.

15.

16.

17.

B, 4 fe
B24&
B 3 -U

C^BL
5. A —> a

50 PROBABILISTIC GRAMMARS

This grammar is clearly normalized. But one cannot immediately
see that a sentence generated by G has the same probability as a
sentence generated by Gn. This is because every sentence generated
by G has an infinity of possible leftmost derivations as a result
of the loop. This emphasizes the advantage of a grammar in the
Chomsky normal-form, since such a grammar has only a finite
number of leftmost derivations for each sentence.

THEOREM 3.5. (Greibach normal-form) Every normalized context-
free probabilistic grammar G is equivalent to a normalized context-
free probabilistic grammar G', in which all productions are of the
form A -> ax, where a e V^.

For proof of this theorem, as well as for the derivation of the
production probabilities, we refer the reader to Huang and Fu
(1971).

3.4.2. Consistency Conditions for Context-free Probabilistic Gram
mars

The theorems on the normal-forms tell us something of equi
valence for normalized probabilistic grammars. But it is of interest
to recall the definition: two normalized grammars may well
generate the same probabilistic language, but that need not mean
that the language is also normalized. The following theorem shows
that one may not take it for granted that a normalized context-free
grammar generates a normalized language. Context-free probabil
istic grammars are not necessarily consistent.

THEOREM 3.6. (Inconsistency theorem) There are normalized con
text-free probabilistic grammars which do not generate normalized
probabilistic languages.

PROOF. For proof of this theorem it is sufficient to show an example
of such a grammar. Let G = ({S}, {a}, P, S) be a grammar with
the following productions in P:

1. S X SS 2. S X a.

PROBABILISTIC GRAMMARS 51

This grammar is normalized (and moreover in Chomsky normal-
form); it generates the language L = {an}, where n > 1. The
respective derivations of sentences a and aa are as follows:

S X a p(a) = 1/3

S 4 SS =* aS =t aa p(a2) = 2/27

For the sentence aaa, there are two leftmost derivations possible:

S^SSXSSSX aSS X aaS X aaa

S =*■ SS => aS => aSS => aaS =*• aaa

The reader will notice here that these derivations correspond to
two different tree diagrams; G is therefore ambiguous. For p(a3)
wefind(f-|-i-i-|) + (| - l - f44) = 2-(|)2-®3=T |T.
In general we can state that p(a") = (n - 1) (D" - 1 (4)", where

7i > 1 . After some calculation it appears that £ p(a") = -|> instead
n = l

of the 1 required for normalization. G is therefore inconsistent.
It is possible, however, to pose conditions under which a normal

ized context-free probabilistic grammar will be consistent. For the
following discussion of such conditions, some acquaintance with
matrix algebra will again be required. We would advise readers
who wish to omit the remainder of this paragraph that in any case
every nonambiguous normalized context-free probabilistic gram
mar is consistent.

The conditions of consistency for a context-free grammar can
best be discussed on the basis of the «Xn matrix A = [at}]. Before
defining the elements aij, we must first indicate what they are to
represent. The value ay must be the total chance that the variable
At generates at least one A] in a derivation. Take the following
productions for Ai and the corresponding probabilities:

Ai -* cci p(Ai -» «i)
At -»• 0t2 , , . , . . . p(Af -*■ OE2)

with probabilities

At -► a* p(At -+ a*)

52 PROBABILISTIC GRAMMARS

and suppose that in the hih production At ->■ «h, the element Aj
appears in the derivation rriijh times. The production will thus be
as follows:

A -* hA-sPzAj ... pmtJhAjPmtJh+1,
where |j?,| > 0 for / = 1, ..., miJh+l.

We define aijh as follows: a^h = miju • p(A -+ «»). The defini-
k

tion of au is then: atJ — £ aIJh, with i,,/ = 1,2,..., JV, where N
* = i

is the number of variables in Vs.
In order to construct a consistent context-free probabilistic

grammar, we must see to it that lim A" = 0. This means that
H~*00

finally every variable, and consequently also A\ = S, is rewritten
as a terminal element. From this point of \iew, matrix A here
fulfills precisely the same function as matrix C in the proof of
Theorem 3.1. It is established (cf. Booth 1969, for example) that
the limit is equal to the null-matrix 0, when the eigenvalue of A,
with the highest absolute value Imax, is smaller than 1. If Amax > 1,
the grammar is inconsistent; Imax = 1 produces various special
problems which we will leave out of our discussion.

Let us again consider grammar G of Theorem 3.6., with pro
ductions S -* SS and S -* a. Let p(S -* SS) = p, and p(S -» a) =
1 — p. Under what conditions will G be consistent? In this case
matrix A has one cell: A = [2p], because S occurs twice to the
right of the arrow in the production S -* SS with probability p.
The only eigenvalue of A is then 2p, and the grammar is conse
quently consistent when 2p < 1 or p < ^. It is inconsistent if p>\
(as was the case in the original example where p = f). In this
case the grammar is also consistent when p = ^.

4

FINITE AUTOMATA

In the present chapter we shall regard that which generative
systems give as output, as the input of accepting systems. By
definition, grammars are finite systems of rules by which poten
tially infinite sets of sentences can be generated. In this and the
following chapters we shall show that for every language-type a
mechanism can be constructed which is able to accept precisely
the sentences of a language. In other words, given a language L
of type-i, an automaton can be devised which can decide, after
a finite number of operations, for the sentences of L and for no
other string, that a sentence belongs to L. In generating a sentence,
a grammar ascribes a structural description to it in passing; in a
similar way, when an equivalent automaton accepts a sentence,
an equivalent structural description unfolds.

It would, however, be incorrect to conclude from this symmetry
that a mechanism finite in size can accept anything which is
generated by a finite grammar. Such a mechanism can indeed be
of finite description, but in most cases it will have to contain an
infinite number of parts. In fact, only one of the language types
which we have treated — the class of regular languages — is
recognizable through finite means.

In this chapter we shall present a survey of the theory of finite
automata, and we shall show (1) that there is a finite recognition-
automaton for every regular language, and (2) that for every set
of strings which is accepted by a given finite automaton, a regular
grammar can be found which generates precisely the same strings.
Some special types of finite automata, such as nondeterministic and

54 FINITE AUTOMATA

fc-limited automata, will also be briefly discussed. In the final
paragraph we shall mention some of the properties of probabilistic
finite automata.

4.1. DEFINITIONS AND CONCEPTS

A FINITE AUTOMATON, FA, is a system (S, I, d, s0, F) in which
(1) S is a finite nonempty set of STATES. At any given moment

the automaton must be in one of these states. Individual states
are generally denoted by the letters s or t, with subscripts when
needed.

(2) / is a finite nonempty (INPUT) VOCABULARY. Its elements
("words") are represented by letters from the beginning of the
Latin alphabet. /* is the set of strings, finite in length, composed
of the elements of/, including the null-string X, Elements of/* may
be represented by letters from the end of the Latin alphabet.

(3) 5 is a (STATE) TRANSITION FUNCTION which indicates how the
automaton changes states under the influence of an input word.
The notation is as follows: S(s, a) = t means that the automaton
in state s changes to state t at the insertion of word a, where s and
t are elements of S. The transformation function is defined for
every possible pair of state and input-element: for every s e S and
every a el, d(s, a) is either a state in S, or q>, where q> means that
the automaton blocks and no further step is possible. The transi
tion function is also said to MAP the cartesian product S X / in
S U f Because S x lis finite, the transition function consists of
a finite set of rules called TRANSITION RULES.

(4) So is a particular element of S, called the INITIAL STATE. It is
the state of the automaton when the input process begins.

(5) F is a nonempty set of FINAL STATES in S.
A finite automaton FA — (S, I, 5, s0, F) is said to ACCEPT a string

x e/*, if FA, first operating in the initial state s0, passes through
a sequence of states, the last of which is a final state in F, under
the influence of the successive elements of x.

Ordinarily the <5-notation is not limited to the input of individual

FINITE AUTOMATA 55

elements of J, but is also used for the input of strings from /*.
If x = aifl2 ... an, and FA contains the following transition rules:
d(si, ai) = S2, S(s2, a%) = ss, ■ ■■, d(s„, an) = sn+i, where si = s
and J B + I = t, we may write 5(s, x) = /. Thus d(s, xd) = d(S(s, x), a).
By convention S(s, 1) = s. Expanded in this way, the transition
function maps S x / * i n S U f We may also say that the auto
maton ACCEPTS x e /* if S(s0, x) e F.

The LANGUAGE T accepted by the finite automaton FA is
{x\S(s0, x) e F}, the set of strings accepted by the automaton. Such
strings are also called SENTENCES.

Two finite automata are EQUIVALENT if they accept the same
language.

Finite automata can be pictured as in Figure 4.1. They consist
of a CONTROL-UNIT and a READING HEAD along which an INPUT
TAPE runs from right to left. A string of input symbols appears
on the tape (in the figure x = a\a% ... a»). The control-unit can be
in only one of a finite number of states at a time. When the reading

Initial Phase

In initial
state SQ

n-1

Reading head

Control-unit

n-1

~N

In final
state £ F

Final Phase

Fig. 4.1. The Accepting of a String x —aiaz ... att by a Finite Automaton.

56 FINITE AUTOMATA

head begins to read the first symbol, the control-unit is in the initial
state s0. When the first element (fli in the figure) is read, the state
of the control-unit can change (according to the transition rule
concerned). The tape then moves one space to the left. The next
input symbol (az in the figure) is read in the new state, and a
second change of state may take place, according to the respective
transition rule. The tape again moves one space to the left. This
process continues until the control-unit arrives at a final state in F.
The string of symbols read up to that point is then said to have
been accepted by the automaton. Figure 4.1. shows the initial and
final phases.
It is also possible visually to represent what occurs in the control-
unit during reading; this is done by means of a TRANSITION-
DIAGRAM. We shall illustrate this with a few examples.

EXAMPLE 4.1. Let FA — (S, I, 3, s0, F) be a finite automaton with
JS = {s0, si}, I = {a, b}, F = {si}, and where 3 contains the
following transition rules:

8(s0, a) = sx S(s0, b) = <p
S(si, b) = s0 S(si, a) = <p

The transition-diagram for this automaton is given in Figure 4.2.

Fig. 4.2. Transition-Diagram for Finite Automaton FA (Example 4.1.).
initial state is So
final state (circled twice) is si

Such a diagram should be read in the following terms. Every state
is shown by means of a circle in which the name of the state is
given. For every nonblocking transition rule S(s, a) — t, there is
an arrow in the diagram going from the circle labeled s to the circle

FINITE AUTOMATA 57

labeled t; the input symbol a is written near the arrow. In Figure
4.2. it is clear that the automaton in question has two states, that
it passes from state s0 to state si when a is read, and that it returns
from state si to state s0 when b is read. String a is obviously
accepted by this automaton, because beginning in the initial state
s0, it passes to the (only) final state s\ when a is read. Another way
of coming to the final state sx is by reading the string aba: the
automaton passes successively from s0 to si, then back to s0, and
again to si; because s0 is an initial state and si is a final state, the
string aba, by definition, is accepted. This automaton accepts all
strings a, aba, ababa, ... The language is T = {a{bdf}.

EXAMPLE 4.2. Let FA = (S, I, 5, s0, F) be a finite automaton with
S = {s0, su j 2 } , / = {a, b, c, d, e,f}, F = {s0}, and with the
following transition rules in 3:

S(s0, a) = si S(s2, e) = s0
S(si, b) = J I S{si,f) = so
S(si, c) = S2 5 (—,-—) = <p for all other pairs
3(si, d) — s2

The transition-diagram for this automaton is given in Figure 4.3.

Fig. 4.3. Transition-Diagram for Finite Automaton FA (Example 4.2.).

Here s0 is both an initial and a final state. One can easily see from
the diagram that the automaton will accept all strings which bring
it from the initial state s0 back to the final state s0; these are such
strings as adf, ace, ade, dbdf, abbce, etc. Each of these strings is

58 HNITE AUTOMATA

composed of first an a, then a string of 0 or more &'s, then either
a d or a c (d v c), and finally either an e or an / (e v /) , thus
strings of the form ab* (c v d)(e v f). As in the preceding example,
however, after returning to the final state s0, one can make still
another turn in the automaton, returning once again to s0, and
continue doing so. The language accepted by this automaton is
T = {(ab*(c v d) (e v /))*}. The machine also accepts X, because
by definition 5 (s0, X) = s0, bringing the automaton from the initial
to the final state.

Beside the fact that initial and final states are identical, this
automaton has the peculiarity of allowing LOOPS, by which a state
sx can be transformed into itself again. Moreover, there are two
pairs of EQUIVALENT INITIAL SYMBOLS, d and c, and e and/, which
under all circumstances have the same effect on the operation of
the automaton.

Instead of a transition-diagram, one can also use a TRANSITION-
TABLE to show the structure of an automaton. A transition-table
is a matrix in which the row-elements represent the states of an
automaton, and the column-elements represent the possible input
symbols. Every matrix-element shows a state (or <p) which is
reached from a given state (row-element) and a given input symbol
(column-element). An example of such a matrix is the following
transition-table for finite automaton FA of Example 4.2.

input elements
a b c d e f

So si <p q> <p (f q>
si g> si S2 S2 g> f
S2, <P <p f <p So So

Ordinarily the <p is omitted in such a matrix. A transition-table
contains precisely the same information as a transition-diagram.

Some finite automata are K-LIMITED. A ^-limited automaton is
a finite automaton the state of which is determined at every
moment by the last k (or fewer) accepted input symbols. The
automaton of Example 4.2. is 1-limited. As is clear from the

FINITE AUTOMATA 59

transition-diagram (Figure 4.3.), the automaton, after having
accepted a, can be only in state si', after accepting b, only in state si;
after accepting c, only in state s%; after accepting d, only in state sz;
after accepting e, only in state s0; and after accepting/, only in
state s0. Likewise in each column of the transition-table, only one
state is mentioned.

A 2-limited automaton is shown in Figure 4.4., both in dia
grammatic and in tabular form. It is clear that immediately after
accepting an a, the machine can be in one of two states, either si
or s%. The automaton is therefore not 1-limited, but 2-limited, for
after accepting aa, it is in state s%; after accepting ab it is in s0,
and after ba, in si. It can never accept bb.

8 i

82

Fig. 4.4. Transition-Diagram and Transition-Table for a 2-limited Automaton.

Figure 4.5. shows that not all finite automata are ^-limited; it
represents an automaton which is A>limited for no finite k. Even
when this automaton has accepted an arbitrarily long string of b's,
we do not know if it is in state s0 or in state si.

Fig. 4.5. Transition-Diagram and Transition-Table for an Automaton which
is fc-limited for no Finite k.

If So is the initial state and s\ the final state, then the language
which the automaton accepts is T = {b*ab*}. The fc-limited auto-

60 FINITE AUTOMATA

maton is of some interest in dealing with Markov processes (cf.
Volume II, 6.1., and Volume HI, 3.2.).

4.2. NONDETERMINISTIC FINITE AUTOMATA

The finite automaton defined in the preceding paragraph has the
property that for every state and input symbol, the state which
follows (or g>) is unambiguously determined. Such an automaton
is therefore called a DETERMINISTIC automaton. But, for two
reasons, it remains necessary to define the nondeterministic variant
of finite automata here. The first reason is that such a definition
will allow us more easily to establish the relationship between
finite automata and regular grammars. The second reason is that
the probabilistic automaton (cf. paragraph 4.4.) is in turn a
generalization of the finite automaton.

A NONDETERMINISTIC FINITE AUTOMATON NFA is a system
(S, J, S, So, F) which is in every way equal to a deterministic finite
automaton, except for the transition rules 8. The transition rules
of a nondeterministic finite automaton have the following form:
S(s, a) = {tu tz, ..., tn} = D, where 0 < k < oo; 5, u e S, and
D <= S. In other words, for every pair of state and input symbols,
there is a finite set of states at which the automaton can arrive.
d is said to be a mapping of S x / in the subset of S (where q> is
the empty subset). A deterministic finite automaton is actually a
particular case of nondeterministic finite automata: it covers those
cases where for all transition rules k = 1 or k = 0.

When can one say that x e I* is accepted by a nondeterministic
finite automaton? Suppose that x ~ a\az ... an, and that the finite
automaton FA contains the following transition rules: S(s0, en) =
Du st e Dr, S(si,a2) = Dz, s2 e D2; ...; 8(s„^i,a„) = D„,
sn e D„ and sn e F, then x is said to be accepted by the auto
maton. Thus, if there is some succession of states allowed by the
transition rules, according to which x brings the automaton from
s0 to a final state, the nondeterministic finite automaton is said to
accept x.

FINITE AUTOMATA 61

The operation of a nondeterministic finite automaton is also
easy to represent by way of a transition diagram, as becomes
apparent in the following example.

EXAMPLE 4.3. Let NFA = (S, f, S, .?„, F) be a nondeterministic
finite automaton where v = {s0, s\,sz\, I \a,h), F {.vaj,
and 6 contains the following transition rules:

5{s0, a) = {.So, si}
S(su a) = {s2}
S(si,b) = {sus2}
S (—, —) = for all other pairs.

Figure 4.6. shows the transition-diagram for this automaton,
Among the strings which can bring the automaton from the initial
state So to the final state s» are the following: aa, ah, aaa, aab,
aba, abb, and so forth. In general, the language accepted by this
automaton is T = {a'ab'(a v b)}.

Fig. 4.6. Transition-Diagram for the Nondetcrmmistic Finite Automaton
NFA (Example 4,3.). The final state sj is circled twice.

The following important theorem is valid for nondefcrmirmfic
finite automata.

THEOREM 4.1. For every nondeterministic finite automaton there
exists an equivalent deterministic finite automaton

The proof of this theorem, for which we refer the reader to Rabin
and Scott (1959), will be briefly discussed later. Wc shall first
illustrate it by returning to Example 4.3. We can construct a finite
automaton FA equivalent to the nondeterministic finite automaton

62 FINITE AUTOMATA

NFA of that example in the following way. NFA had three states,
i.e. S = {s„, si, sz}; the corresponding FA will have seven states,
namely, [sB], |>i], |>2], [s0, sx], [s0, sz], [sx, s2], and [s0, sx, s2]. These
states are thus called after all possible nonempty subsets of S. We
maintain the input vocabulary, and in order to establish the new
set of transition rules we proceed as follows. Let us begin with
S'([s0], a). In NFA d(s0, a) = {s0, sx}; in FA let d'([s„], a) = [s0, sx].
Notice that this latter is one state and not two. Further let
<5'(M>a) = M because S(si, a) = {52}, and ^'(M, a) = q> because
S(s2, a) = q>. For d'{[s0, sx], a) we proceed as follows. In NFA
S(s0, a) = {s0, si} and 5(si, a) = {$2}. The union of S(s0, a) and
S(si, a) is thus {s0, sx, s2}, and in FA we let S'([s0, sx], a) = [s0, sx, S2].
Again the latter is a single state. Similarly we construct 8'([so, £2], a)
= [s<>, si], etc. This procedure leads to the establishment of the
following list of transition rules:

S'&So], a) = [so, si]
nisila) = [s2\
S'dsi], b) = [sx,s2]
#([so, si], a) = [s0, si, sz]
#([so, si], b) = [sx, sz]

S'([so, sz], a) = [so, si]
#([si, sz], a) = [sz]
d'([sx, sz], b) = [si, s2]
S'([So, Si, Sz], a) = [So, Sx, Sz]
d'dso, si, sz], b) = [sx, sz]

For all other S' (- , -) , S' (- , -) =

Fig. 4.7. Deterministic Finite Automaton Equivalent to the Nondeterministic
Finite Automaton in Figure 4.6.

FINITE AUTOMATA 63

The set of final states F' in FA is defined as consisting of those
states in which the label of a final state of NFA occurs. The only
final state in NFA is ss, and therefore F' = {[52], [s0, s2], [si, s%],
[s0, si, S2]}. Finally we take [s0] as the initial state in FA, and we
affirm that FA is equivalent to NFA.

The transition-diagram for FA is given in Figure 4.7. The final
states in the diagram are circled twice. The reader should notice
that states [si\ and [s0, s%] do not appear in the figure; this is
because neither of them serves as the output of any transition rule.
They are superfluous and consequently omitted. The diagram shows
that FA accepts precisely the language {dab*(a v b)}.

PROOF OF THEOREM 4.1. (resume). The proof follows the construc
tion which we have just described. The states of FA correspond
to the nonempty subsets of S in NFA. The transition rules are
constructed as we have shown, and the set of final states F' in FA
consists of those states which have one or more elements of F in
their labels. By induction on the length of the string of input
symbols it can be shown that FA is equivalent to NFA.

Because, inversely, deterministic finite automata are special cases
of nondeterministic finite automata, we can conclude that the class
of finite automata is equivalent to the class of nondeterministic
finite automata; they accept the same class of languages.

4.3. FINITE AUTOMATA AND REGULAR GRAMMARS

In this paragraph we shall give proof of the equivalence of finite
automata and regular grammars. The languages accepted by finite
automata are exactly the same as those generated by regular
grammars, and vice versa.

THEOREM 4.2. For every finite automaton FA there exists a regular
grammar G such that T(FA) = L(G).

PROOF. Let FA = (S, /, S, s0, F) be a finite automaton. We must
construct a regular grammar G = (V&, VT, P, S) such that

64 FINITE AUTOMATA

(0 VN = S
(ii) VT = I
(iii) S = So
(iv) A -* CJB is in P as <5(.4, a) = B

A -* a is in P as <5(y4, a) = C, where C e F
(notice that B and C are used here as labels for states)

We shall now show that G is equivalent to FA. For this, two condi
tions must be fulfilled: (1) If x e T(FA), then x e L(G), and (2) if
x e L(G), then x e T(FA).

(1) x E T(FA). If this is so, then by definition S(s0, x) in F. We
write x as aiC2 ... a«. We presuppose that 1 <£ T(FA), and that
therefore n > 0. In that case S(s0, x) = <5(<5(s0, aia2 ••■ an-i), an)
(cf. paragraph 4.1. (5)), and continuing in the same way d(s0, x) =
d(d(... (s0, ai), 02), ...), an). Because 5{s0, x) in F, there is a sequence
of states s0, si, ..., sn fa e S; st and S} are not necessarily different)
such that 8(so, #1) = si, S(si, a£) — d(S(s0, a{), 02) = sz, ...,
S(sn-i, an) = %, where sn e P. But then there are also productions
S = so -> cisi, si -» CI2S2, ..., J»_I -> an in P, on the basis of the
construction of G. It is then clear that S =*■ a ^ ... a„ = x.

(2) x e L{G). By definition S =S> x. Let x be written as ata2 ... an.
Then there are productions S = s0-* aisi, si -» 02*2, ..., s»_a ->
an-iSn-i and J»_I -»a» in P for certain J« in VN. But that means that
FA contains the following transition rules: d(s0, «i) = si, 3(si, a£)
= 52, ..., d(sn-.2, a»-i) = Sn-u 8(sn-i,an) = s„ with j» in F (this
follows from the definition of G). It is evident that with these
transition rules FA accepts the string a\a% ... an = x.

It follows from (1) and (2) that FA and G are equivalent for
sentences of length > 0. If FA also accepts i , the theorem holds
only if we maintain the convention of paragraph 2.1., i.e. that by
definition G also generates X.

EXAMPLE 4.4. Let us construct a grammar equivalent to the finite
automaton FA in Example 4.1. We recall that FA — (S, 1,5, s0, F),
where S = {s0, si}, I = {a, b}, F = {s±}, and with the following

FINITE AUTOMATA 65

transition rules: 8(s0, a) = si and S(si, b) = s0 (for all other pairs
S (- , -) = *»•

The construction as shown in the proof is as follows: G =
{VN, VT, P, S), with VN = {s0 = S, Sl}, VT = {a, b}, and P =
{s0 -»• asi, % -> a, si -> fe»}. Notice that on the basis of (iv), the
transition rule 3(s0, a) = si leads to two productions in G: s0 -*■ asi
and So -»• a.

THEOREM 4.3. For every regular grammar G there exists a finite
automaton FA such that T(FA) = L(G).

PROOF. We shall prove that a nondeterministic finite automaton
NFA can be found so that T(NFA) = L(G). The theorem is then
valid because for every nondeterministic finite automaton NFA
there exists an equivalent finite automaton FA (Theorem 4.1.).

Let G = (VN, VT, P, S) be a regular grammar. We construct
NFA = (S, I, S, s0, F) as follows:

(i) S=VK\JX
(ii) I=VT
(iii) S(A, a) contains X {inter alia) if A -* a in P

S(A, a) contains every B for which A -»• aB in P
d(X, a) — <p for every a in VT

(iv) s0 = 5
(v) F = {X}, if X $ L(G); F = {X, S}, if A e L(<?)

Once again the proof of equivalence takes place in two steps.
First it must be shown that if x £ L(G), where x — aias ... an,
then x e T(NFA). Afterward the inverse must be shown.

(1) x e L(G). If x e L(G) and |x| > 0, then there is a derivation
S => aiAi =>...=> aiaz ... an-iAn-i=> aia* ... an for some se
quence A\, ..., An-i of variables in Vn. P thus contains the pro
ductions S -y aiAi, A\ -* azAs, ... An_\ -*• an. It appears, then,
from the construction of NFA that A\ e 8{S, a{), A% e S(Ai, 02),...
X e S(An-i, ««). But if the transition rules are valid, x = aiaz ... an
is in T(NFA). If X e L(G), then SeF (see (v)), and because 8 (S, X)
contains S by definition, A e T(NFA).

66 FINITE AUTOMATA

(2) x e T(NFA). If |JC| > 0 and x is accepted by NFA, then there
are states S, Ai, ..., An-i, X, where A\ e 8{S, m), A2 e d(A 1,02),
..., Z e J(^4»_i, a»). But from the construction of NFA it appears
that P must also have productions S -> ai^4i, ..., ^ _ i -» an. It
follows from this that S 4- a ta 2 ... a„ = x. If A e T(NFA), then
S e F. But 5 e F only if A e £(G) (see (v)).

The equivalence of G and iVi^ follows from arguments (1) and
(2). It follows from Theorem 4.1. that there must also exist an FA
equivalent to G.

EXAMPLE 4.5. Let us construct a nondeterministic finite auto
maton NFA which accepts the language generated by regular
grammar G in Example 2.1. We recall that G = (VN, VT, P, S)
where VN = {S, B}, VT = {a, b}, and P = {S -* aB, B -* bS,
B -> b}, and that L(G) = {(ah)*}. We shall now construct NFA =
(S, I, 5, So, F) according to the procedure given in the proof. Thus
S = {S, B, X}, I — {a,b}, S contains the following transition
rules: S(S, a) = {B}, S(B, b) = {X, S}, 3 (- , -) = q>for all other
pairs; finally, F= {X, S}. The transition-diagram for automaton
NFA is given in Figure 4.8.

Kf?j)
b

Fig. 4.8. Transition-Diagram for Nondeterministic Finite Automaton NFA
which accepts language {(ab)*}.

Together Theorems 4.2. and 4.3. show the equivalence of finite
automata and regular grammars. We can employ this equivalence
in order to prove certain theorems concerning regular grammars
by means of theorems concerning finite automata, and vice-versa.
Theorem 2.5. is a good example of this.

THEOREM 2.5. The product of two regular languages is regular.

PROOF. Let L\ and L% be regular languages; let L% consist of the

:©

FINITE AUTOMATA 67

strings xy where x e Li and y e Lz. There is a regular grammar
for Li, and therefore we know, on the basis of the equivalency
theorem, that there is also a finite automaton which accepts Li.
We shall call this finite automaton FAi — (S, h, di, s0, Fi). Like
wise there is a finite automaton FAz = (T, h, 82, t0, F2) which
precisely accepts La. Fi and F2 can always be chosen such that they
have no states in common. We must now construct a nondeter-
ministic finite automaton NFA = (U, I3, 83, u0, F3), which, in a
way, connects FAi and FAz "in series". We define NFA as follows:

(i) U= SuT
(ii) Zj = / i U h
(iii) 83(11, a) = {Si(s, a)} for every s in S — Fi. In this way NFA

can begin with a given input as if it were FAi.

83(14, a) = {8i(s, a), 82(10, a)} for every s in Fi. If NFA
arrives at a final state of FAi, it can freely (nondeterministic-
ally) either continue to another state of FAi (if this is also
possible for FAi) or pass on to FA2. This latter is possible
only when NFA has already reached a final state of Fi (the
transition rule is applicable only if s is in Fi) and when a
can be the first symbol of a sentence of L2 (notice that the
initial state of FA% is t0).
83(11, a) — {82(t, a)} for every t in T. This guarantees that
once NFA has "transferred" to FAz it will continue to
operate as FA%.

(iv) u0 = s0
(v) F3 = jFa if 2 $ Lz. This guarantees that NFA accepts the
input when the end of a sentence of Lz is reached.
F3 — Fi u F2 if 2 e 1,2. If i^4a accepts the null-string, it accepts
all sentences xX = x, i.e. the sentences of Li. The automaton
must be able to accept in each of the final states of Fi.

The construction of NFA guarantees that it will accept precisely
the sentences xy e L3. But, on the basis of Theorem 4.1., there is
also a deterministic finite automaton FA which does the same.

68 FINITE AUTOMATA

It follows from Theorem 4.2. that there is a regular grammar for
1,3, and that Lz is consequently regular.

The reader may now himself prove the lemma which was used
at the proof of Theorem 2.8., with the help of finite automata.1

4.4. PROBABILISTIC FINITE AUTOMATA

We shall mention probabilistic automata only in the present
paragraph. It is only on the subject of probabilistic finite automata
that literature of any considerable size is available.

The probabilistic finite automaton (PFA) is a generalization of
the nondeterministic finite automaton; a probability is assigned
to every possible transition. Before presenting a formal definition
of probabilistic finite automata, we shall discuss the manner, step
by step, in which the generalization is made.

If it is true for a nondeterministic finite automaton NFA that
d(s, a) = {si, sz, ...,sn}, we can define pi(s, a) for a probabilistic
finite automaton PFA as the chance that the automaton will pass
from state s to state st, given the input symbol a. We shall suppose
that every probabilistic finite automaton is normalized, i.e.

R

£ pt(s, a) — 1. In other words, the total chance for a state transi
ts i
tion under the influence of a given input is 1. We shall return to
the merits of this convention at the end of this paragraph. There
is no reason why the chance for transition to a particular state
could not be zero. In general we shall suppose that 1 > pi(s, a) > 0.
Because transitions which cannot take place in a nondeterministic
finite automaton can in a probabilistic finite automaton be con
sidered as transitions where p = 0, we may give a more general
definition of the transition function S in a probabilistic finite auto
maton. If such an automaton PFA has n states, then S(s, a) can
1 To do so one should construct a nondeterministic finite automaton NFA
which normally operates as FAi (which accepts Li) except with transitions
3(s, a) where a is the critical terminal element. In such cases FAi. (which
accepts £2) should be made to "take over" until a state in F2 is reached. This
should then act as S(s, a), in order for NFA to be able to go on functioning
as FAi.

FINITE AUTOMATA 69

unambiguously be regarded as a row (vector) (pi, p%, ..., pn),
where pi = pi(s, a). For impossible transitions/>« = 0; for all other
transitions pt is the transition probability. Thus for every pair
(s, a) where s e S and a e 7, 8 is a vector of n numbers. If, for an
element a, we wish to represent all the vectors, we can show them
in matrix form as follows:

8(JI, a)
8(s2, a)

8(si, a)

5(*», a)

si

Pu
Pai

Pa

Pnl

S2

Pa ■
P22 .

Pii ■

Pn2 ■

. S)

■ Pu ■
. Pi} .

. Pi] .

.. Pi .

Sn

■ ■ Pin

■ Pzn

Pin

Pnn

For the sake of brevity we shall call this entire matrix M(a), the
TRANSITION-MATRIX for element a. Matrix-element /># in M(a) means
that if the automaton is in state st and reads the input symbol a,
there is a chance of p^ that a transition to state *j will take place.
Normalization guarantees that the sum of the elements in a row
in this matrix is equal to 1. The matrix is square (n x n), and is
thus a stochastic matrix.

To include all the transition rules in PFA we would have to
compose similar matrices for each of the input elements. If
/ = {ei, (12, ..., am}, we define M as the set of transition-matrices
for the elements of I. Thus M = {M(m), M(a%), ..., M(am)}.

Finally, we wish to open the possibility that the initial state of
PFA is also random. For each of the n states we must define an
INITIAL PROBABILITY p(s), which represents the chance that at the
first input the automaton is in state s. Since we wish PFA with

n
certainty to be initially in one of the « states, we let £ p(s;) = 1.

One can now no longer speak of an initial state, but rather of an
INITIAL DISTRIBUTION; this simply means the string of initial pro
babilities (p(si), p(s2), ..., JP0»))- This vector is denoted by s0.

At this point we can define a probabilistic finite automaton.
A PROBABILISTIC FINITE AUTOMATON is a system PFA = (S, I,

70 FINITE AUTOMATA

M, So, F), in which S is a finite set of states, / is a finite input
vocabulary, M is the set of transition-matrices, s0 is the initial
distribution and F <= S is the set of final states.

EXAMPLE 4.6. Take the probabilistic finite automaton PFA =

({Sl, s2}, {a, b}, {M(a), M(fo)}, (1,0), {s2}) with M(a) =

and M(b) = K | • PFA has two states and the chance of starting

in si is 1 (because s0 = (1,0)). From transition-matrix M(a) we
learn that when the automaton is in state si and reads the input
symbol a, it has a chance of 1 to change to state s%; if in s ta tes
input of a leads with probability 1 to transition to st, i.e. PFA
remains in S2. Transition-matrix M(b) shows what happens when
the input is the symbol b. Once again all this is better shown by
a transition-diagram. In a transition-diagram for a probabilistic
finite automaton, the various arrows are labelled not only with the
respective input elements, but also with the corresponding transi
tion probabilities. Figure 4.9. gives the diagram for the automaton
in this example. Arrows for transitions the probabilities of which
are equal to 0 have been omitted.

Fig. 4.9. Transition-Diagram for a Probabilistic Finite Automaton
(Example 4.6.).

The diagram shows that starting in state s\ the automaton has a
chance of 1 to pass to final state 52 when the input symbol a is
read; this chance becomes % when the input symbol is b. What
will be the chance for the transition if the input is the string ab ?

FINITE AUTOMATA 71

The element a brings the automaton, with a probability of 1, to
state szi the element b will maintain the automaton in state S2
with a probability of -f. If the transitions are independent of each
other (which is our presupposition here), the string ab brings the
automaton to state s2 with a probability of 1 • f- = f-. What then
will be the chance that the string ab will bring the automaton back
to state Si? Obviously this will be 1 • ■§• = ■§■• Likewise the string ab
will take the automaton from state sz back to state s% with the
probability 1 • § = §, and from state st back to state s t with
probability 1 • ■§- = •§-. In this way we have in fact found a transi
tion-matrix for the string ab:

M(ab) = [| ? 2_
3 3-1

It is also quite easy to see that M(ab) is the matrix product of
M(a) and M(b):

M(ab) 0 1'
0 1.

■2 IT r l 2T\
3 3 _ 3 3
X A ~ A A •
.3 3J L3 3J

In general we can define the TRANSITION-MATRIX M(X) FOR A
STRING x = aifiz ... fl» as the product M(x) = Af(ai) • M{a%) • ... ■
M(an). In such a matrix one can read, for all pairs st, S], the
probability that the entry of an input x will cause the probabilistic
finite automaton to change from state si to state Sf.

For the interested reader we can likewise easily indicate, in matrix
notation, the chance that a final state be reached at all with a
given string, given vector s0, the string of initial probabilities. For
this purpose, we define a FINAL VECTORS/ as a string of n numbers,
analogous to s0> corresponding to the n states in S and in the same
order. For every state, the corresponding number is 1 if the state
is a final state, and 0 when this is not the case. Thus s/ = (qi, qz,
...,qn) where qt = 1 if st e F, and qi — 0 if st $ F. The final vector
in Example 4.6. is thus (0,1), for only sz is a final state. The chance
that JC will bring the automaton to a final state is given in matrix

72 FINITE AUTOMATA

notation as saM(x) s'f.x Thus the chance that the string ab will bring
the automaton of Example 4.6. to a final state is equal to

With these means at our disposition, we are able to define the
language which is accepted by a probabilistic finite automaton.
We should like to define that language as the set of strings by
which the automaton reaches a final state with a certain minimum
probability. What that minimum probability precisely is remains
quite arbitrary. We can call it the CUT-POINT PROBABILITY, tj.

The ^-STOCHASTIC LANGUAGE T(PFA, TJ) is the set of strings
which bring the probabilistic finite automaton PFA to a final state
with a probability > r\. Formally stated, T(PFA, rj) =
{x\s„M(x)s'f > IJ}.

If t] = 0, the situation is simple; every sentence by which a final
state can be reached belongs to T. But stricter conditions can be
posed. The opposite extreme is tj = 1. However, the chance is
never greater than 1 that a sentence will bring the automaton to
a final state, and thus T(PFA, 1) is empty for every PFA.

THEOREM 4.4. A regular language is ^-stochastic for 0 < rj < 1.

PROOF. Let Z, be a regular language, and FA, a finite automaton,
where T(FA) = L. We begin to construct probabilistic finite auto
maton PFA by borrowing I and .Ffrom FA. The set of states S'
in PFA will be S u s9, where % is a "dummy" state. A transition-
matrix is composed for every a el in PFA as follows: py = 1 if
8{st, a) = SJ; pij = 0 if dfa, a) # sj, for every pair St, Sj in S. We
let pi9 = 1 if 3(si, a) = <p, ®n&p^ = 0 in all other cases, for si e S.
Finally, we let P w = 1, and p9t — 0 for every st e S. In this way
every matrix M(a) is stochastic, and for every sentence x in T(FA)

1 s'f is the TRANSPOSITION of the row-vector, i.e. the row-vector is set up
vertically like a column, with the leftmost element at the top. Notice that the
definition of a transition-matrix for x supposes the stochastic independance of
the transitions.

(1,0) a-R = (-M)

FINITE AUTOMATA 73

there is a probability of 1 that x will be accepted by PFA, while
a final state will be reached with no other string. Because for
every sentence s in L, the probability p(s) = 1 in T(PFA), it is
true for every 0 < r\ < 1 that T(PFA, rj) — L.

The inverse of Theorem 4.4. does not hold, but the following
theorem is valid.

THEOREM 4.5. Every O-stochastic language is regular.

PROOF. Let PFA = (S, I, M, s0, F) be the probabilistic finite auto
maton which accepts the O-stochastic language T. We must first
construct a nondeterministic finite automaton NFA(i) for a state Si
with initial probability in PFA: p(st) > 0. We make NFA(i) such
that it accepts every sentence which bring PFA from state Si to a
final state, with probability > 0. For this purpose we let the initial
state of NFA(i) be Si, F be the set of final states in NFAQ), and si
in S(sj, at) if the element pji is greater than 0 in the transition-
matrix M(aic). The language T% accepted by NFAQ) is regular
(Theorems 4.1. and 4.2.).

If we construct a NFA(i) for every Si in S1 for which p(si) > 0,
it follows that every sentence which is accepted by PFA, with
probability greater than 0, will also be accepted by at least one of
the NFA, and that every sentence accepted by one of the NFA
will also be accepted by PFA with probability greater than 0. We
conclude that the union of all the languages Ti is also regular
(Theorem 2.5.).

We close this paragraph with a remark on normalization as
used with probabilistic finite automata. The basis for normaliza-

n
tion £ Pt(s,a) = 1 is the input symbol: each input symbol leads

i = i
to a transition with a probability of 1. The consequence of this
normalization is that it is not generally valid that the sentence
probabilities in a stochastic language add up to 1. In the degenerate
case, for example, where the matrix contains only l's and 0's, every
sentence of the language has a probability of 1, while the language
can indeed contain more than one sentence. There is therefore no

74 FINITE AUTOMATA

simple relationship between probabilistic finite automata and
regular probabilistic grammars which are normalized on the basis
of a nonterminal element. As we have seen, in that case a normal
ized probabilistic language is generated. Probabilistic finite auto
mata can, of course, also be normalized on another basis, namely
the state. In that case the total chance for transition from a given
state, taken over all inputs, is equal to 1, thus £ £ Pi(s, aj) = 1.

i i
It then becomes possible to show equivalences to probabilistic
grammars.

5

PUSH-DOWN AUTOMATA

In the preceding chapter we showed that regular languages can be
accepted by finite automata. For languages of a higher order we
shall have to refer to systems which are, in some way, infinite in
size. To clarify the notion, let us consider a digital computer.

A digital computer is a finite automaton because it has a finite
number of parts — for instance, n (including storage) — each of
which can be in a finite number of states — let us say k at most.
The machine will therefore have no more than kn states, a finite
number. Consequently a computer can accept, in principle, only
regular languages; it cannot accept context-free or higher order
languages.

One may wonder if there is any practical interest in studying auto
mata which can accept higher order languages, since, in principle,
they can never be built. However, the theoretical infiniteness of
such automata is of little consequence in practice. The value of n
for a sizable computer can easily reach 106, and if k is equal to 2,
kn is an astronomically high number. For practical purposes, then,
a computer is of unlimited size. It can, within limits which in
practice are never reached, accept higher order languages. Most
computer languages, such as ALGOL, are in fact context-free or
higher order languages.

In this chapter we will discuss one simple infinite automaton,
the PUSH-DOWN AUTOMATON. This automaton is infinite because
its store, the PUSH-DOWN STORE, is of unlimited capacity. In all
other respects it is a finite automaton. We shall show that push
down automata are equivalent to context-free grammars.

76 PUSH-DOWN AUTOMATA

5.1. DEFINITIONS AND CONCEPTS

A push-down automaton is a finite automaton to which an un
limited push-down store has been added. A push-down store is
somewhat comparable to a narrow knapsack. Imagine that a hiker
has placed his matches at the very bottom of his knapsack, then
put in his jacket and other articles of clothing, and finally a can
of soup, a can opener, and cooking utensils. When the hiker
becomes hungry and reaches a brook, he may wish to eat the soup.
He removes the cooking utensils, can opener, and the can of soup;
this poses no problems, as the last articles placed in the sack are
the first to come out. Also, he can add water from the brook.
But if he wishes to light a fire to warm the soup, he must first
remove the clothing and jacket before he is able to reach the
matches: the first things placed in the sack are the last to come out.

We can make an analogy between the hiker and a push-down
automaton: the knapsack can be compared to the push-down store
(with the matches as the start element), the water and firewood to
inputs, and warmth and satisfaction for hunger to state transitions.

The formal definition of a push-down automaton is as follows.
A PUSH-DOWN AUTOMATON PDA is a system (S, I, r, S, s0, y0) where:

(1) S is a finite nonempty set of STATES, with s0 e S as INITIAL
STATE.

(2) / is a finite (INPUT) VOCABULARY.
(3) r is a finite PUSH-DOWN VOCABULARY, with y0 e T a s push

down START SYMBOL, the only element in the store when input
begins. Other push-down symbols are }% y% The set of finite
strings of push-down symbols is JT*. Elements of r* are represented
by lower case letters from the end of the Greek alphabet, such as
X, ty, co. The topmost symbol which at a given moment is found
in the push-down store is called the TOP SYMBOL.

(4) 8 is the set of TRANSITION RULES. Each rule indicates what
will occur when, at a given state, with a given top symbol, a given
input symbol (possibly also A) is introduced, i.e. it shows what
the following state will be and by what the top symbol will be
replaced. The top symbol may be replaced by (a) an element of T;

PUSH-DOWN AUTOMATA 77
(b) itself — a special case of (a), the content of the store remains
unchanged; (c) an element of F", thus, a STRING of symbols replaces
the top symbol; or (d) the null-string X — a special case of (c),
this amounts to simply removing the top symbol. The notation
for these cases is as follows:

(a) S(st, a, yjc) = (SJ, yi), where Si and SJ are states in S, a is an
input symbol in /, and yt and yx are push-down symbols in r.

(b) 3(st, a, 7*) = (s}, yic)
(c) 8(st, a, yic) — (sj, x), where / is a string in T*. If x = WVn

for some yr in /**, and thus S(su a, yn) = (SJ, y/yte), then y/ is
added to the store. Notice that the last added element is
noted at the left.

(d) d(st, a, yd = (SJ, X). Because X is the null-string, this simply
means that the top symbol yjc is removed.

It can also occur that 5 ($i, a, yid = V, the automaton is then said
to BLOCK.

The function S maps the cartesian product 5 x (/ u 2) x f i n

A CONFIGURATION in a push-down automaton is a combination
of state and store content. A transition rule in 5 can bring the
automaton from one configuration to another. If there is a rule
8{$t, a, yic) — (sf, x), then the introduction of the input element a
can change the configuration from (si, yjeco) to (SJ, xw). The nota
tion for this is:

a: fa, ytco) \- (SJ,X<°)-

This change is called a TRANSITION in the automaton. Unless other
wise stated, we shall suppose that S(s, X, y) = (s, y) for every s
in S and for every y in T; in other words, the input of X changes
neither state nor store content. Thus:

X: (s, (o) \- (s, to) for every s e S and every eo e F*.

In specially mentioned cases where it is permitted that S(s, X, y) #
(s, y) (i.e. where the automaton can make a real change of state
without input), we must allow that S(s, a,y) = <p for every a in /,

78 PUSH-DOWN AUTOMATA

for otherwise the automaton could make various different transi
tions when the input a is introduced. The INITIAL CONFIGURATION
of a push-down automaton is by definition (s0, y0).

We write x = ai ai... an: (s, co) h* (s', co'), if 6 allows transitions
at: (jsucoi) h (st+i,coi+i), where i = 1, 2, ..., n, such that si = s,
©l = co, Sn+i = s', and con+i — co'. String x makes the automaton
change from configuration (s, co) to configuration (s', co').

A string x is ACCEPTED by a PDA if at the end of the processing
of x the push-down store is empty. Formally, string x is accepted
by PDA if x: (s0, y0) H*(s, X). Note that this definition is not based
on the attainment of a final state, as was the case with finite
automata. There exists a description of push-down automata
which does refer to the attainment of a final state; it is completely
equivalent to the description used here, and we shall not bring it
into the discussion.

The LANGUAGE T(PDA) accepted by a push-down automaton is
the set of strings which are accepted by that automaton, T(PDA) =
{x\x: (s0, y0) h* (s, X)}.

Figure 5.1 shows how a push-down automaton accepts a
string.

EXAMPLE 5.1. In order to demonstrate the operation of the push
down automaton, we take a PDA which only uses its store, and
never changes states. The automaton accepts strings of a's, fs,
and c's, with as many a's as b's, and one c at the end of the string:
e.g. c, abc, aabbc, baabc, etc.

PDA = (5, /, r, S, so, 7o), with S = {■?„}, J = {a, b, c},
F = i?o, 7a, 7b}, and where 5 consists of the following transition
rules:

1. S(s0, a, 7o) = (so, 7a7o) 5. S(s0, b, 70) = (s0, 7m)
2. 5{s0, a, ya) = (s0, 7a7a) 6. S(s0, b, ya) = (s0, X)
3. d(so, a, 70) = (s0, X) 7. S(s0, c, 70) = (s0, X)
4. S(so, b, 70) = (s0, 7i>7o) For all other (s, c, 7), 3(s, c, 7) = (p.
By convention 8 (s, A, y) = (s, 7) for all s, 7.

We shall now show how the automaton accepts the string

PUSH-DOWN AUTOMATA 79

- A -

In i n i t i a l
s t a t e a .

To

ei

"\

f i n i t e automaton

push-down s tore in i n i t i a l
" s ta te (before reading a.)

push-down s to re i s empty
a f te r reading of a .

Fig. 5.1. A Push-Down Automaton in Operation
a. Situation at start
b. Automaton while processing string x
c. Automaton after accepting string x

80 PUSH-DOWN AUTOMATA

aabbbbaac. The following list gives the successive transitions and
the rules applied.

(s0, y0) V (s0, yayo) (rule 1)
{s0,yay0) f- Oo, yayaYo) (rule 2)
(s0, yayayo) f- (s0, yay0) (rule 6)
(■So, yaYo) J- (50s ?0) (rule 6)
(%, y0) h (%, yby0) (rule 4)
C?0, Wo) H (*o, y&Wo) (rule 5)
(s0, ybybyo) I" (•?<>, Wo) (rule 3)
(s0, ybyo) f- (y0, 7o) (rule 3)
Ow Jo) 1- (*», A) (rule 7)

Thus aabbbbaac: (s„, y„) \r (s„, A).

EXAMPLE 5.2 Let PDA = (5, i, r, 8, s0, y0) be a push-down auto
maton where S = {s0, si}, I = {a, b, c}, F = {y0, ya, yb}, with
the following transition rules:

1. S(s0, a, y0) — (s0, yay0) 7. d(s0, c, y0) = (s0, X)
2. S(s0, a, ya) = (s0, yaya) 8. ti(s0, c, ya) = (su ya)
3. t>(s0, a, yb) = (so, yafb) 9. S(s0, c, yb) = (si, yb)
4. S(s0, b, y0) = (s0, ybYo) 10. S(si, a, ya) = (si, X)
5. d(s0, b, yb) = (s0, Wo) 11. S(si, b, yb) = (si, X)
6. d(s0, b, ya) = (s0, ybya) 12. 5(si, X, y„) = (si, A)
^(j, A, y) — (s, y) for every other s, y and in all other cases

«5fo —. ?) = ?>•
This push-down automaton accepts all symmetric sentences, where
c may occur only in the middle of the sentence. If w is a string
of a's and b's, and wB is the "mirror image" of w, then the language
accepted by PDA is {wcwR}. In essence, the PDA places a ya into
the store for every incoming a, and a yb for every incoming A until
a c is introduced. From that point the state changes from s0 to si,
and the process is reversed: for every incoming a it removes the
top symbol if it is ya, and for every incoming b it removes the top
symbol if it is yb. This continues until y0 is the top symbol, and by
rule 12 the automaton removes y0 without further input.

PUSH-DOWN AUTOMATA 81

The sequence of transitions for string aabbcbbaa is as follows:

(■Jo, ?a) r- (s0, ya7o) I" (s0, ytYaVo) H (s0, ybybyayo) V (si, ybYbYayo) r-
(si, ybyay0) I- (.si, yay0) I- (si, 70) I- (si, A).

It is obvious that push-down automata can do more than finite
automata. The languages which are accepted by the automata in
the last two examples are both context-free languages, and there
is no finite automaton which can accept them. But push-down
automata cannot accept all context-free languages; the languages
which they accept are called DETERMINISTIC LANGUAGES. A class
of grammars is known which generates precisely these deter
ministic languages, namely the class of JL2?(A:)-GRAMMARS. These
are equivalent to push-down automata. We shall not discuss
Li?(A;)-grammars here. The interested reader may consult Knuth
(1965).

However, there is equivalence between context-free languages
and nondeterministic push-down automata.

5.2. NONDETERMINISTIC PUSH-DOWN AUTOMATA
AND CONTEXT-FREE LANGUAGES

A nondeterministic push-down automaton NPDA differs from a
PDA only in that each of its transition rules is of the following
form:

S(s, a, y) = {(su yi), (s%, y2), ..., (sn, ?»)}•

This means that in each configuration the automaton is not limited
to a single possible transition, but can make a "choice" among the
elements of a set of transitions.1 The construction of a nondeter
ministic push-down automaton is completely analogous to that of
a nondeterministic finite automaton, and the same is true of the
definition of accepting. A NPDA ACCEPTS a string x, if, when x is
1 At this point we drop the condition that if Sis, X, y) ¥= <p, then S(s, a,y) — </>
for every a in /. This condition was necessary in order to exclude the possibility
of a nondeterministic transition when an input a is introduced into the auto
maton.

82 PUSH-DOWN AUTOMATA

introduced as input, there is at least one possible sequence of
transitions for which x: (s„, r0) h* (s, X).

EXAMPLE 5.3. Let us construct a simple NPDA which will accept
the language {anbn \ n > 1}. Let NPDA = ({s0}, {a, b}, {y0, 7a,
yb}, S, s0, y0), with the following transition rules in S:

1. S(s0, X, y0) = {(s0s yayb), (s„, yay0yb)}
2. d(s„, a, ya) = {(s0, X)}
3. S(s0, b, y0) = {(s0, X)}

By convention, S(s, X, y) = (s, y) for every s and y, and S(s, —,
y) = (p for all other <5.

Only rule 1 is nondeterministic. To show how NPDA operates,
we give the successive transitions in the accepting of the string
aaabbb:

X: (s0, y0) f- (s0, Vay0yb) (rule 1)
a- (so,yayoVb) \- (so,y0yb) (rule 2)
X: (s0, y0yb) f- (so, yayoyb7b) (rule 1)
a: (s0, yay0ybyb) I- (s<>, y0yb7b) (rule 2)
A: (s0, y0ybyb) \- (s0, yayb7byb) (rule 1)
a: (s„, yayb7byb) I- (*>, 7&7&7&) (rule 2)
*: fa, ybVbyb) f- (%, ytyb) (rule 3)
6: (s0, VbVb) I- (so, 7B) (rule 3)
b: (s„,yb) I- (so,A) (rule 3)

Thus aaabbb = XaXaXabbb: (s0, y0) I-* (s0, A).
This example also shows how a push-down automaton can make

spontaneous transitions (when the input is X), and how the initial
symbol y0 can be removed from the store before the store is empty.

Theorems 5.1 and 5.2 together show the equivalence of non-
deterministic push-down automata and context-free grammars.

THEOREM 5.1. For every context-free language L, there is a non-
deterministic push-down automaton which accepts L and only L,

PROOF. In fact we shall prove a somewhat stronger theorem,

PUSH-DOWN AUTOMATA 83

namely, that there is a nondeterministic push-down automaton
with only one state which can accept the context-free language L.

Let Z, be a context-free language, and G = (VN, VT, P, S), a
grammar in Greibach normal-form which generates language L
(according to Theorem 2.7., such a grammar exists). The produc
tions in G are thus exclusively of the form A -* aa, where a is a
string of 0 or more variables. We construct a nondeterministic
push-down automaton NPDA = (S, I, r, S, s0, y0) as follows:
S = {s0}, 1= VT (with elements en), r = VN U VT = V (with
elements at in VT and elements At, S in VN), y0 = S. The input
vocabulary of NPDA is the terminal vocabulary of G; the push
down symbols of NPDA are the elements of V in G, and the
push-down start symbol of NPDA is the start symbol S of G.
Let NPDA have the following transition rules:

1. 8(s0, A, A) contains (s0, aoc) for every production A -> ax in P
(where a can have length 0).

2. d(s0, a, a) = {(s0, A)} for every a in VT.

The push-down automaton will in general be nondeterministic,
for if A can be rewritten in more than one way in G (e.g. A -*■ a
and A -* /?), then S(s0,1, A) likewise has more than one possible
transition ((s0, a) and (s0, fi) in the present example).

We must show that T(NPDA) = L(G). We shall first show that
if x s L{G), then JC e L(NPDA); afterwards we shall show the
inverse.
(1) If x = ata2 ... an in L(G), then S =*• x with the following left
most derivation: S => ai«i => aiaz^z =>...=*■ flifl2 ... an-iAn-i =*■
aia2 ••• a»- This derivation is performed by rewriting the leftmost
variable of a« at each step. If we wish explicitly to show this variable
in the derivation, we can write 5 => aiAifii => aiazAzfa =>...=>
aiaz ... an-iAn-i => aifite ... an, where fit represents the string of
remaining variables. The following shows how NPDA precisely
simulates this leftmost derivation for x = aias ... an:

A: (s0,S) I- (s0,aiAifii) (rule 1)
ax: (s0,aiA!fii) h (s0,Aipi) (rule 2)

84 PUSH-DOWN AUTOMATA

X: (s0, Aifii) h (s0, azAzfe) (rule 1)
ar. (s0, azAzfiz) V (s0, A2P2) (rule 2)

' fln-i: (s0, a»-i^n-i) H (s0, An-i) (rule 2)
A: (s0, An-i) I- (s0, an) (rule 1)

an: (s0,an) h (s0, A) (rule 2)
Thus x e T(NPDA).
(2) If x = 6162 ... bm is accepted by NPDA, then Z>i e /. The
transitions in NPDA in accepting x take place when the input b
is introduced, or "spontaneously" when the input is X. We can
therefore write x = aiaz ... an, where en = A, or a* = fy, while
maintaining the order and in such a way that exactly one transition
of NPDA goes together with each en in the acceptance of x. Thus
we have the following steps for accepting x:

a\: (s0, S) f- (sB, <o\)
c 2 : (s0,a>i) t- (s0) coo)

an: (s0,co„_i) h (so, A)

With regard to rule 2, it follows directly that con^1 = a„, and
tritely ©„_! =S> a„ in grammar G. We shall now take as an inductive
hypothesis that (at =*■ ai+1 ... an in G, and show that (»;_!=> a,-
... a„. It then follows by induction (going back to n — 1, for which
the theorem is valid) that <o0 = S 4> at ... an.

We thus suppose that cot =*■ ai+1 ... a„. We know that a,:
(s0, to,-!) h (s0, (B;). There are two possibilities: at e VT or at = X.
Let us first suppose that at e VT. In that case the transition at:
(sa, to,-j) I- (s0, a>i) can only have taken place by means of rule 2,
and consequently (o^^ = atC0i. But because cot*>ai+1 ... a„
(induction hypothesis), it is true that col^l = a^a{ =4- a;a1+1 ... a„,
that which we had to prove.

Now let us suppose that at — A. In this case the transition
at — X: (s0, co,-!) 1- (s0, to;) can only have taken place by means
of rule 1, and consequently mi-1 = Aa'^x and cot = acuo'i-t.
Because A -> ax is by definition a production in G, it is true that
Aco'i-i =*■ aocco'i-i, or otherwise formulated coi^1 => to;. According

PUSH-DOWN AUTOMATA 85

to the induction hypothesis, however, eor = ai+1 ... an, and con
sequently we have the following derivation: tOj_! =*■ ai+1 ... an =
Aai+1 ... a„ = atal+1 ... a„, which is what we had to prove. We
conclude, then, that &„ = S => x.

To illustrate Theorem 5.1., we offer the following example.

EXAMPLE 5.4. Take context-free language L = {ancbn}, n > 0.
A simple grammar for L is G = ({S, B}, {a, b, c}, {S -> aSB,
B -* b, S -* c}, S), which is in Greibach normal-form. According
to the procedure given in the proof of Theorem 5.1., we construct
the following push-down automaton which accepts language L:
NPDA = (S, I, r, S, s0, y0), with S = {s0}, I = VT = {a, b, c],
r = V = {a,b, c, S, B}, y0 — S, and with the following transi
tion rules in S:

1. d(s0, X, S) = {{so, aSB), (so, c)}
2. S(s0, X, B) - {(s0, b)}
3. S(s0, a, a) = {(s0, X)}
4. ^ 0 , b, b) = {(5b, X)}
5. d(s0, c, c) = {(s0, X)}

The following list shows the various steps by which NPDA accepts
the sentence aacbb:

X: (so, S) r (s0, aSB) (rule 1)
a: (s0, aSB) b (s0, SB) (rule 3)
X: (s0, SB) b (s0, aSBB) (rule 1)
a: (so, aSBB) h (s0, SBB) (rule 3)
X: (so, SBB) h (so, cBB) (rule 1)
c: (s0, cBB) b (s0, BB) (rule 5)
X: (so, BB) b (s0, bB) (rule 2)
b: (so, bB) b (s0, B) (rule 4)
X: (s0, B) b (sB, b) (rule 2)
b: (s0, b) b (s0, X) (rule 4)

To complete the proof of equivalence between nondeterministic
push-down automata and context-free grammars, we must prove
the following theorem.

86 PUSH-DOWN AUTOMATA

THEOREM 5.2. For every language T which is accepted by a non-
deterministic push-down automaton, there is a context-free gram
mar G which generates precisely T.

PROOF. Let T be the language accepted by NPDA = (S, I, r, 6,
So, 7o)- We must construct a context-free grammar G = (Vs, VT,
P, S) as follows:

(i) Vs consists of compound elements [st, y, sj], where Si and S]
are elements of S, and y is an element of r. VN also contains S,
which is not compound.

(ii) VT = /.
(iii) P contains the following productions:

1. S -* [s0, y0, $] for every s in S.
2. {[s, y, Sn+i] -» a[si, ylt s2] [sz, yz, s$\ ... [sn, yn, sn+i] for any

numbering of states in S} for every transition rule in 3 of
the form: S(s, a, y) contains (si, yiy% ... y»).

The second rule gives productions in G for every transition rule
in NPDA. These productions are in Greibach normal-form: to the
right of the arrow there is a terminal element followed by 0 or
more variables. The case of 0 variables occurs when yiy2 ... yn = K
thus in transition rules in which d(s, a, y) includes (si, A); this gives
the following productions in G: [s, y, Si] -*■ a for all st in S.

Although the first production is not Greibach normal-form,
every leftmost derivation of G is as follows: S => <x0 => tfi«i =>
aiO20i2 =>...=> aifl2 ... an, where every a is a string of variables.
Each of these variables is composed of three elements. If we
examine the components y in these variables, we find that they
stand for every «i precisely in the order they take on in the push
down store when «i#2 ••• a% is introduced into the automaton.
Thus the grammar simulates the push-down automaton. Before
continuing the proof of the theorem, we present an example in
which this simulation is clearly to be seen.

EXAMPLE 5.5. Let NPDA = (S, I, F, 8, s0, y0) be a nondeter-
ministic push-down automaton with 5 = {s0, si}, I = {a, b},

PUSH-DOWN AUTOMATA 87

r = {y0, yx}, and the transition rules given in Table 5.1. We must
construct a grammar G = (VN, VT, P, S) according to the above
procedure: VN consists of S and all triples [si, a v b, sj]. For
convenience we use a separate upper case letter to denote each
of these compound variables:

A — fro, yo, So], B = [s0, y0, si], C = [s0, 71, s„], D = [s0, yx, sx],
E = [si, y0, s0], F = [si, y0, sx], G = [si, yx, s„], H = [sx, yx, s{\.

Further VT = {a, b}; the productions are given in Table 5.1. in
both complete and abbreviated notation, grouped according to the
corresponding transition rules. The abbreviated notation clearly
shows that only the numbered productions lead to terminal strings.

TABLE 5.1. Transition Rules of NPDA and Corresponding Productions of
Equivalent Grammar G (Example 5.5.).

Transition Rules NPDA

(a) S(s0, a, n)

(b) S(s0, b, y0)

(c) d(so, b, yj.)

(d) S{s0, X, y0)

(e) <5(si, a, y0)

= {(si,yx)}

= {(so, yiy0)}

= {(so, y m) }

= {Cso, X)}

= {(so, y0)}

l.
2.

3.

4.

5.

6.

7.

8.
9.

Productions G

S -*■ ls0, yo, so]
S -*■ [so, yo, si]

lso, yi, s0] ->- afri, yx, s0]
[so, yi, si]-^ cist, yusrf

[s0,yo,so] -*■ b[s0,yx,so] [so,yo,s0]
lso,yo,s0] -*■ bls0,yx,si] IsuVoJo]
[so,yo^ii -*■ bls0,yi,s0] [so,y0,si]
[s0,yo,si] -*■ b[s0,yx,si] [si,yo>si]

lso,yi,so] - * b[s0,yx,so] [s0,yx,s0]
ls0,yi,s0] -> b[so,yi,sx] lsx,yi,s0]
ls0,yi,si] -»- b[s0,yx,s0] lso,yiM
[s0,yi,si] -+b{so,yi,si] [ii,yi>sil

[so, y0, s0] -*■ X

l>i, yo, so] -»■ (Aso, yo, so]
bu Vo, si] ->- a[s0, y0,«]

Abbreviated
Notation

S -+A
S -*B

C-+aG
D^-aH

A-+bCA
A-+bDE
B-+bCB
B-*bDF

C-*bCC
C-ybDG
D^-bCD
D-+bDH

A-^-X

E-+aA
F^-aB

(f) S(S1,b, yi) = {(su X)} 10. f*i, n,si]-*b H-+b
[sx, », 41 ->- * G-+b

88 PUSH-DOWN AUTOMATA

In order to show how G simulates NPDA, we give first the
acceptance of the sentence bbabba by NPDA, and then the genera
tion of the same sentence by G. Acceptance by NPDA:

b: (s0, y0) 1- (s0, yiy0)
b: (s0, viy0) \- (s0, yiyiyo)
a: (s0, yiyiyo) 1- (si, yiyiyo)
b: (s±, yiyiyo) \- (su yiy0)
b: (si, yiy0) h (su y0)
a: (si, y0) 1- (s0, y0)
X: (s0, y0) 1- (so, A)

Derivation by G:

S =>A
A =*• bDE
bDE => bbDHE
bbDHE => bbaHHE
bbaHHE => bbabHE
bbabHE => bbabbE
bbabbE => bbabbaA
bbabbaA => bbabba

(rule b)
(rule c)
(rule a)
(rule f)
(rule f)
(rule e)
(rule d)

(production 1)
(production 4)
(production 6)
(production 3)
(production 10)
(production 10)
(production 8)
(production 7)

It should be noticed that the last step in this derivation is an
abbreviation although this is theoretically not permitted with a
context-free grammar. The abbreviation is a result of production 7
in Table 5.1, but this production is actually only a formalization
of the convention introduced in paragraph 2.1., that X can be
added to a context-free language.

We can now continue with the proof of Theorem 5.2. We must
show that T(NPDA) = L{G). The proof follows two steps: first
we must show that if x e T, then x is also generated by G; then
we must show the inverse of this statement.
(1) If x = axa2 ... am is in T(NPDA), then s 4 x . T o prove this
we must show by induction that for every n the following is true:
if x: (s;, v) F* (s, X) in n transitions, then [s;, y, s j =*■ x by the
productions of G. We first prove the theorem for n — 1, then
show that it is also valid for n — 1 or fewer steps, and consequently

PUSH-DOWN AUTOMATA 89

that it holds for n steps; thence follows general validity. From that
point it is not difficult to show that if x is accepted by NPDA,
then it is also generated by G.

If n — 1, then either x = a (where a E I), or x = A. In both
cases x: (st, y) h (SJ, X), and therefore (st, x, y) must include
(s], X), so that G (according to production 2) includes the pro
duction [si, y, Sj] -» x. It follows directly that [s«, y, sj] => x is a
derivation of G.

Let us now suppose that the theorem holds for fewer than «
transition steps. Let us examine x = axaz ... am(m^ 0), for which
x: (s,-, y) h* (sj, 1) in precisely n transitions. The first step in this
process is as follows: a: fa, y) h (si, yxy2 ■■■ yk)- The element a
here is either 1, or the first element ax of x. After the first step, the
push-down store thus contains yiy% ... yk, and n — 1 transitions
remain to be made before this string is completely removed from
the store. We know that this does finally occur, and that the
respective yt's are successively removed. This, however, need not
proceed directly, and might, on the contrary, follow various
detours (yt might, for example, be replaced by a whole string of
new push-down symbols, which will be removed when latter ele
ments of x are introduced into the input). Nevertheless it must
remain possible to articulate the string x — a\az ... am in such a
way that it can be written as awiH^ ... Wk where a = 1 or a — ax
(dependent on the nature of the first step), and where every
Wi leads to the removal of yu when the operation on the step began
in the proper state su But if yt can be removed from the store
with wi as input, then it also holds that if yt should be the only
element in the push-down store while the automaton is in state s%,
w i : i.sh"ii) l~* (s<+i>4)> where s i+1 is precisely the state beginning
with which w<+i would empty the store if only yt+x were in it.
For every w this process of emptying takes fewer than n steps, and
there are productions in G such that \sh yt, si+1] =*■ w; (induction
hypothesis). It holds also that the string of variables [si, yx, s%]
[s%,}% ss] ... [st, yt, Sk+x] can be rewritten by means of the pro
ductions in G as the terminal string wxW2 ... Wk. From a: (si, y) I-
(si> 7xyz ■■■ yk), however, we know that (sx, yxjz ••• Vk) is an ele-

90 PUSH-DOWN AUTOMATA

ment of S(si, a, y), and therefore G (according to production 2)
includes the production [st, y, sic+i] -* a[si, yi, s%] [S2, y%, S3] ...
[sj, VtjSt+i]. It therefore holds that [Sj,y,si+1]=5> flWiWa ... wk = x,
from which we see that the theorem also holds for n transitions.
By induction, the theorem is valid in general.

It is true of every x which is accepted by NPDA that x:
(s„, y0) f-* (s, X), and consequently, by the theorem as proven,
[so> To> s] 4. x in G. According to production 1, S -* [s0, y„, s]
for every s in S; therefore S => x.
(2) If S 4- x, then x e T(NPDA). We shall first prove that
for every n > 0, if [s;, y, s j 4 x in G in n transitions, then
x: (s;, y) h* (sj, A) in NPDA. Let n = 1. Then [s;, y, s j -» x is
a production of G, and consequently, given the construction of G,
either x eVr or x = X Likewise S(su x, y) includes (sj, X), from
which follows that the theorem holds for n — 1.

Let the theorem hold for derivations in G with fewer than n steps
(induction hypothesis). Let [s, y, i] =*• x = ata2 ... am be a deri
vation which demands exactly n steps. This is possible, given the
form of production 2, if a leftmost derivation is as follows:
[s, y, i] => a[ii] [*2] ... [tj 4 a w ^] t>3] ••■ [*J =* ... =* a w ^
... Wfc = oia2 ... aOT = x. Here [?J represents the triad [su y«, Si+i],
and Wi is a string of one or more successive elements a from x.
Every wi can be derived from [f«] by the productions of G, and in
general [f;] 4- w; in fewer than n steps. On the basis of the induc
tion hypothesis, however, w(-: (st,y,) h* (s ;+1 , A) for every i = 1,
..., fe. But then it is also the case that W{w2 ...wk: (sl5 yxy2 ... yt) r-*
(s2, y2 ••• Vt) *̂ ••• *̂ (st+i= 4)> a n d consequently also x: (s, y) F*
(I = s t + 1 , X). By induction, the theorem holds for every n > 0.

The derivation S =*■ x can be written S => [s„, y„, s] 4- x. If x
is generated by G, then [s0, y„, s] 4> x, so that, on the basis of the
theorem x: (s0, y„) h* (s, X), which by definition means that
x e T(NPDA).

It follows from Theorems 5.1. and 5.2. that the class of languages
which are accepted by nondeterministic push-down automata is
precisely the same as the class of languages generated by context-
free grammars.

6

LINEAR BOUNDED AUTOMATA

An automaton has been discovered which accepts precisely the
languages of the context-sensitive class. Like the push-down auto
maton, it is unlimited, but in an interesting way. In effect, it
disposes of as much storage capacity as the input string is long:
the store is small for a short string, large for a long string. It is
as if one had to calculate the sum of two numbers and were given
exactly the same amount of space on a blackboard for counting
as the two original numbers occupy. One would be allowed to
write and to erase as often as desired, but could use no more space
than that allowed.

The automaton in question is called LINEAR BOUNDED AUTO
MATON, LBA. In this chapter we shall show that linear bounded
automata are equivalent to context-sensitive grammars. But the
proof of this equivalence is considerably more complicated than
those in the preceding chapters, and we will not be able to discuss
it fully within the scope of this book. Therefore we shall limit
ourselves here to a global proof of the theorem that for every
context-sensitive grammar there is an equivalent linear bounded
automaton. We have chosen this particular theorem for proof
because it refers to the Kuroda normal-form which will be used
later in dealing with linguistic applications (in Volume II), and
because it provides a good illustration of the way linear bounded
automata work.

92 LINEAR BOUNDED AUTOMATA

6.1. DEFINITIONS AND CONCEPTS

In several ways linear bounded automata resemble finite automata.
In chapter 4 we observed that finite automata begin operating in
an initial state and first read the leftmost symbol on the input
tape. They then proceed to read the input symbols from left to
right, until a final state is reached. Like finite automata, linear
bounded automata also have a limited number of states, and they
too begin their operation in an initial state by reading the leftmost
symbol on the input tape. But linear bounded automata are
capable of more than finite automata in two respects. In the first
place, they can both read and write: they can write over a symbol
which they have read, and replace it with another symbol. In the
second place, they can move the input tape not only from left
to right, but also from right to left; moreover, at a transition
(a change of state and or the replacement of a symbol in the input
tape), they can remain at the same position on the tape. In writing
they can use "auxiliary symbols" which are not part of the input
vocabulary. Because linear bounded automata may write only
within the bondaries of the original input string, two boundary
symbols (#) are placed on the tape, to the left of the first element
and to the right of the last. Linear bounded automata always start
in an initial state at the left-hand boundary symbol; they are said
to accept the input when they pass over the right-hand boundary
symbol in a final state. This latter is possible, of course, only after
they have dealt with each element between the boundary symbols.
The formal definitions are as follows.

A linear bounded automaton is a system LBA = (S, I, r, 8,
So, #, F) in which:

(1) S is a finite, nonempty set of STATES, with s0 e S as INITIAL
STATE, and F<= S as the set of FINAL STATES. (States are, as usual,
denoted by the letter s with a subscript, or by r, s, t, ...)

(2) J is a finite INPUT-VOCABULARY (notation as usual).
(3) r is a finite set of TAPE SYMBOLS, the vocabulary of symbols

which can appear on the tape. I belongs to this set, as do all
auxiliary symbols which can be used in writing. (Notation: tape

LINEAR BOUNDED AUTOMATA 93

symbols are in general denoted by y with a subscript; strings of
auxiliary symbols are denoted by lower case letters from the end
of the Greek alphabet, %, y/, co. If it is known that a tape symbol
belongs to the input vocabulary, the notation for J can be used.)
There is also a special tape symbol #, the BOUNDARY SYMBOL.

(4) 5 is a finite set of TRANSITION RULES. A transition rule indica
tes for a pair of state and tape symbols what the following state and
tape symbol will be; it also indicates if the band remains at the
same place, goes one place to the right, or one place to the left.
This is written as follows: we say that (sm, y», k) is in d(st, yj) if the
automaton, in state s% and reading yj, can change to state sm and
write yn in the place of yj. The letter k shows in which direction
the automaton moves on the tape: k = — 1 indicates that it goes
to the left; k — 1 indicates that it goes to the right; k = 0 indicates
that it remains in the same place and reads the symbol it has
written in the place of yn. By convention, d(s, y) always contains
(s, y, 0). We say "can change" because linear bounded automata
are nondeterministic; a linear bounded automaton has in principal
several possible transitions for each configuration. 5 maps the
cartesian product S X T in subsets of S X r X {—1, 0, 1} u <p.
In every operation the boundary symbols must remain in place;
thus, whenever the automaton reads # it writes # over it. In
formal terms, if (s', y, k) is in d(s, #) , then y = # for every s',
and vice versa if (s\ # , k) is in S(s, y), then y = # .

The concept of "configuration" calls for some further clarifica
tion. This can best be done with a visual representation of the
operation of a linear bounded automaton, as in Figure 6.1. In that
figure we see the initial and final situations in the process of
accepting the string x = aias ... an, as well as two possible situa
tions during the operation.

A useful way of showing the entire configuration of automaton
and tape is to write the state of the automaton to the left of the
symbol which is being read. The configuration in Figure 6.1.a.
can thus be denoted by s0#ai ... a„# because the automaton is
in state s0 and is reading the left-hand boundary symbol. For the
configuration in Figure 6.Lb. we write #yiyz ... ykSjat+i ■■■ an#,

94 LINEAR BOUNDED AUTOMATA

al a2 . . . an #

e0

7i y2
. . . % ak+i

~
8 .

3

. . . an #

. . . 7i

8k

y,- . . . an #

. . . #

1
sfe?

Fig. 6.1. A Linear Bounded Automaton in Operation
a. Situation at start.

[Possible situations during operation.
d. Situation after accepting x.

in which we see that the tape symbol ak+i is being read in state Sj.
The configuration in Figure 6.I.e. is written # ... sjefiyj ... an#;
that represented in Figure 6.1.d. is written # ... #sp If the auto
maton passes from configuration C to configuration C in one step
we write C h C, and when the change takes place by an undeter
mined number of transitions, the notation is C r-* C.

A linear bounded automaton LBA ACCEPTS a string x when

LINEAR BOUNDED AUTOMATA 95

s0#x# b* #co#sf, where x e I*, a> e f, and sf e F. The LANGUAGE
T(LBA) accepted by LBA is the set of strings which are accepted
by LBA: T(LBA) = {x\s0#x# t-* #co#sf, x e l ' . o e f, sf e F}.

EXAMPLE 6.1. Let LBA = (S, I, r,S,s0, #,F)bea linear bounded
automaton in which S = {s0, si, S2, S3, s±, Sf}, I = {a, b}, r =
{a, b, ya, 7b, #}, F— {sf}, and with the following transition
rules in d:

1. d(s0, #) = {(si, # , 1)} 7. diss, 7b) = {(s3, yb, - 1) }
2. 5(5i5 a) = {(s2, ya, 1)} 8. <Jfe #) = {(53, # , - 1) }
3. d(su #) = {(*,, # , 1)} 9. ^ 3 , 6) - {(S4, y* - 1) }
4. 5(si, yb) = {(ft, y6, 1)} 10. S(s4, a) = {(s4, a, —1)}
5. «5(J2, a) = {(s2, a, 1)} 11. S(Si, b) = {(54, b, - 1) }
6. <5(*2, A) = {(S2, b, 1)} 12. S(Si, 7a) = {(si, ya, 1)}
S(s, 7) — <p for all other cases for which no convention holds.

It is immediately obvious that this automaton is deterministic:
there is never more than one possible transition. We shall first
show how the automaton accepts the string ab. The input tape
carries the string #ab#, and the first configuration is s0#ab#,
i.e. LBA is reading the left-hand boundary symbol in the initial
state s0. The successive steps are as follows:

s0#ab# b #siab# (rule 1)
#siab# b #7aszb# (rule 2)
#yaszb# b #7absz# (rule 6)
#7abs2# b #7assb# (rule 8)
#yas3b# b #Si7a7b# (rule 9)
#Si7a7b# I- #7aSi7b# (rule 12)
#7aSi7b# b #7a7bSi# (rule 4)
#7o?bSi# b y#a7b#Sf (rule 3)

The following shows in short how the automaton accepts the string
aabb: s„#aabb# b #staabb# b #yas2abb# b* #yaabbs2# b
#yaabsib# b #ya

as4.byb# b* #s4yaa6y6# I- #yaSlabyb# b
#y«7«s2fey»# ^#yttyJ>s2yb# b #y0ytts3byb# b #r„s4v0r,,y6# h
#y07flsiW6# t-* #ya7aybyb#Sf

96 LINEAR BOUNDED AUTOMATA

Thus this automaton shifts back and forth between the boundary
symbols until every a has been converted into ya, and every b
into yt>. It can reach the final state Sf only if there are as many
ya'$ as y&'s, and when the ya's are in the left-hand half of the tape,
and the y&'s in the right hand half. This automaton accepts the
language {anbn \ n ^ 0}.

6.2. LINEAR BOUNDED AUTOMATA AND
CONTEXT-SENSITIVE GRAMMARS

The equivalence of linear bounded automata and context-sensitive
grammars is established in Theorems 6.1. and 6.2.

THEOREM 6.1. For every context-sensitive language L, there is a
linear bounded automaton which accepts L and only L.

PROOF (summarized). Let I, be a context-sensitive language. Accord
ing to Theorem 2.11., there is a grammar G in Kuroda normal-form
which generates L. We must construct a linear bounded automaton
such that T(LBA) = L(G). Let G = (VN, VT, P, S). The auto
maton LB A = (S, I, r, 8, So, # , F) must have the following
construction:

(i) S = {s0, si, t0, ti, {tAJ, r0, n}, with s0 as both initial and
final state: F= {s0}.

(ii) / = VT

(iii) r = VN u VT U #
(iv) 5 contains the following transition rules:

1. S(s0, #) = {Oi, #, 1)}
2. S(Sl, a) = {(sh a, 1)}
3. S(sh #) = {(to, # , - 1) }
4. S(t0, A) contains (t0, A, 1)
5. S(t0, A) contains (t0, A, — 1)
6. S(t0, a) contains (t0, a, 1)
7. S(t0, a) contains (t0, a, —1)
8. S(t0, B) contains (t0, A, 0)

for every a in VT

for every A in V&
for every A in VN
for every a in VT
for every a in VT
for all productions
A -> J8 in P

LINEAR BOUNDED AUTOMATA 97

9. S(t0, a) contains fa, A, 0) for all productions
A -»• a in P

10. S(t0, C) contains fa, A, 1) 1 for all productions
11. 5 fa, D) contains fa, B, 0) J AB -* CD in P
12. <S(/0, 5) contains fa, S, —1)
13. 8fa, #) = {(n, # , 1)}
14. <J(n, 5) = {fa, # , 1)} 1 for all productions
15. <5(*i, i4) = {(fc, 5, 0)} j S -> SA in P
16. «5(*i, #) = {(So, #, 1)}
In all other cases where no convention holds, S(s, y) — <p.

We shall now show, without complete proof by mathematical
induction, that this linear bounded automaton simulates the deri
vations of G and only those of G. The states s0 and si function
to verify that a string of terminal elements is found between the
two boundary symbols # . Rules 1 and 2 show that the automaton
starting at the left-hand boundary symbol passes over all terminal
elements until the right-hand boundary symbol is reached. Rule 3
indicates that at that point state t0 is reached. If symbols other
than terminal elements are found between the boundary symbols,
the machine blocks and the string is not accepted. Rules 4 through
7 see to it that the automaton can move freely to the left or to
the right without altering the content of the input; it can simply
write the symbol it reads. Rules 8 through 11 see to it that the
automaton can transpose elements or pairs of elements only
according to the productions in P. Rules 12 through 15 see to
the correct inversion of productions S ~> SA, the only rules in
Kuroda normal-form in which 5" can appear to the right of the
arrow. Because these are the only expanding productions in the
grammar, it must be possible to derive the input string x in gram
mar G as S => SA => SAA => ... => SA ... i i x . This is simu
lated in reverse order by the linear bounded automaton by replacing
#SAB...#, where possible, with ##SB...#. This can occur
because when the automaton in the "work-state" t0 reads S, it
changes to state r0 (rule 12) and moves one place to the left to
see if there is an S next to the boundary symbol # . If that is the

98 LINEAR BOUNDED AUTOMATA

case, the automaton changes to state n and, provided that S -» SA
is a production of P, rules 14 and 15 replace SA with # 5 , and
the work-state t0 is again reached. The automaton then sees if SB
can be reduced to 5"; if it is, ###S...# appears on the tape, and
the process continues. In this way the string # # ... #S# will
appear on the tape only if x can be derived from S. Once the
automaton has reached state t0, rules 12, 13, and 141 see to it
that it goes on to state h and proceeds to the right in order to
read the last boundary symbol. According to rule 16, when the
automaton reaches the final state s0 and the tape is pushed out,
string x is accepted.

If we wish to have LBA also accept the null-string X, we must
add a new state tx, and two new transition rules: 8(t0, #) contains
(tx, # ,1) , and (tx, #) contains (s0, # , 1). With these, when the
input is X, the final state is reached immediately after completion
of the steps required by rules 1, 2, and 3.

EXAMPLE 6.2. Take grammar G = (VN, VT, P, S), with VN =
{S, A, B}, VT = {a, b}, and the following productions:

(a) S ->■ SA (d) A -* a
(b) S -> B (e) B -* b
(c) BA -+ AB

Because of production (c) it is clear that grammar G is context-
sensitive and that it is in Kuroda normal-form. G generates the
language L(G) = {alba^ | i +j > 0}. The sentences are thus
strings of a's with one b in them. Production (a) generates the
string SAn; production (b) replaces the single S with B; by pro
duction (c) the B can be moved any number of places to the right.
Productions (d) and (e) replace the variables with terminal symbols.
1 Notice that rule 14 exists only if there is indeed a production S -*■ SA in P.
If this were not the case, the operation would stop. When no such production
exists, language £(G) consists exclusively of sentences of length 1, and it
obviously remains possible to construct a linear bounded automaton which
accepts that language and only that language. Also rule 14 strictly violates the
convention that no new boundary symbols may be written. Paragraph 7.1 gives
an easy way out.

LINEAR BOUNDED AUTOMATA 99

We can construct a linear bounded automaton LBA which
accepts L{G), according to the procedure given in the proof of
Theorem 6.1. Thus LBA = (S, J, T, 8, s0, #, F), with S = {s0, su

U, h, tB, r0, n},I = {a, b},T= {S, A, B, a, b, # }, F = {s0}, and
the following transition rules in 8:

1. 8{s0, #)
2. S(Sl, a)
3. 8{sh b)
4. 8{su #)
5. 8{t0, S)

6. S(t„, A)

1. S(t0, B)

8. d(t0, a)

9. 8(t0, b)

10. 8{tB, B)
11. 8{r0, #)
12. 8{n, S)
13. 8{tx, A)
14. <5(ft, #)

= {(ft, # , 1)}
= {(si, a, 1)} because as VT
= {(si, b, 1)} because b e Vr
= {(?„, # , - 1) }
= {{u, s, i), {to, s, - l) , (/•<,, s, - l) }

because S e VN
= {{to, A, 1), {t„, A, - 1) , {tB, B, 1)}

because 4̂ e J^r, and iL4 -» AB in P
= {(*„, B, 1), </0, 5 , - 1) , {to, S, 0)}

because -B e VN, and S -» B in P
= {(?«,, a, 1), (/„, a, - 1) , {to, A, 0)}

because a £ VT, and 4̂ -> a in P
= {(fe, b, I), {to, b, - 1) , {t0, B, 0)}

because 6 e Fy, and 5 -> b in P
= {0o, A, 0)} because 5 4 -> AB in P
= {(n, # , 1)}
= {(ft, # , 1)} { because S -* SA in P
= {(r„, S, 0)} {
= {(*>, #, 1)}

The following shows the consecutive configurations in LBA for
the acceptance of the sentence abaa; the numbers over the transi
tion symbols h indicate the rule used in the transition.

s0#abaa# I— #s1abaa# h2- #as1baa# r— #abs1aa# I—
#abas1a# F 1 #abaas1# (^ #abat0a# I-5- #abat0A# I-1

#a2rt0a,4# I-5- #abt„AA# A #at0bAA# h2- #at„BAA# h1-
#t„aBAA# r1- #t0ABAA# r̂ - #BtBBAA# r12- #BtgAAA# \$-
#t„BAAA# h2- # t 0 S4^l^# t-1 r„#SA/4A# F 1 1 #rtSAAA#
h11 ##tiAAA# h^- ##taSAA# I5 '11,12 '13 # # # f 0 S 4 #
I5 ' " '1 2 '1 3 # # # # f 0 S # I 5 ' " ' 1 2 # # # # # f t # h ^ # # # #

100 LINEAR BOUNDED AUTOMATA

To complete the statement of equivalence between linear
bounded automata and context-sensitive grammars, we mention
the following theorem.

THEOREM 6.2. For every linear bounded automaton LBA, there is
a context-sensitive grammar G such that T(LBA) = L(G).

A large number of rules are needed for the construction of such
an equivalent context-sensitive grammar. The proof of this theorem
is beyond the scope of this book; for it we refer the reader to
Landweber (1963) and Kuroda (1964).

7

TURING MACHINES

An obvious question at this point is whether it is possible to
design an automaton which could accept type-0 languages. The
answer is affirmative; in fact some time before the theory of formal
languages came into existence, Turing had described an automaton
which later proved capable of accepting type-0 languages. The
TURING MACHINE, as the automaton is called, is in principle capable
of performing every operation which one might intuitively qualify
as a MECHANICAL (EFFECTTVE)PROCEDURE (cf. paragraph 2.1.). In
this chapter we will make the notion of "procedure" more explicit
in order to facilitate an understanding of a number of important
properties of natural languages. However, we shall first show that
Turing machines accept type-0 languages and only type-0 lan
guages, and that there exists a type-0 grammar for every language
accepted by a Turing machine.

In this chapter, more than in the preceding chapters, theorems
will be stated without proof. The theory of Turing machines has
recourse to refined fields of mathematics, such as recursive function
theory, with which we can suppose no acquaintance on the part
of the reader. Moreover Turing machines are less of interest to
Imguistics and psychohnguistics than automata of more limited
capacity. Therefore, we shall state and discuss only a limited
number of theorems which are of some importance to linguistics.

102 TUBING MACHINES

7.1. DEFINITIONS AND CONCEPTS

Several different but equivalent terminologies have been used in
describing Turing machines. The terminology which we shall use
here is closely akin to that of linear bounded automata used in the
preceding chapter

Like linear bounded automata, a Turing machine is made up of
a finite automaton and a tape. A Turing machine can read and write
tape symbols in the same way as a linear bounded automaton,
but it is not subject to linear limitation: it can read and write to
the left and to the right of the original input. We must suppose
that the length of the tape is infinite, and that at the beginning of
an operation a limited and continuous portion of the tape carries
input symbols, bordered left and right by boundary symbols. To
facilitate further formulation, we also suppose that the remainder
of the tape is filled with boundary symbols. The machine can read
the boundary symbols and replace them with other tape symbols,
but cannot itself write boundary symbols. Consequently the tape
carries a continuous string of input symbols which cannot be
interrupted by boundary symbols. On the other hand, there may
be "pseudo-boundary symbols", equivalent in every respect to the
ordinary boundary symbols except in that they may also be written;
in informal treatment of Turing machines, the distinction between
the two types of boundary symbols is often neglected.

The notation will be the same as that used for linear bounded
automata.

In formal terms, a Turing machine TM is a system (S, I, r, 8,
s0, #, F), in which:

(1) S is a finite set of STATES, with s0 as the INITIAL STATE, and
F <= S as the set of FINAL STATES.

(2) lis a finite set of INPUT SYMBOLS.
(3) r is a finite set of TAPE SYMBOLS, of which I is a subset.

Elements of J" which are not elements of / are called AUXILIARY
SYMBOLS, one of which is the BONUDARY SYMBOL # . In the initial
configuration the tape carries a string from /*, bordered on the left
and on the right by strings of boundary symbols of infinite length.

TURING MACHINES 103

(4) <5 is a finite set of TRANSITION RULES which indicate, for every
pair of state and input symbol, what the machine must write (the
boundary symbol cannot be written by the machine), what the
following state will be, and whether the machine will remain at
the same place on the tape, or move one step to the left or right.
It is also possible for the machine to block. We can therefore say
that d maps S x rinS X {r— # } x {—1, 0, 1} u <p. The transi
tion rules have the form S(s, y) = (s\ y', k), where k = —1, 0,
or 1. They should be interpreted as follows: if the Turing machine
is in state s and reads the symbol y, it passes to state s', writes /
over the symbol y, and moves the tape according to the value of k.
Turing machines are deterministic; for every combination of state
and tape symbol, only one transition is possible. It is possible, of
course, to define nondeterministic Turing machines, but these are
equivalent to deterministic Turing machines.1 (We shall use non-
deterministic Turing machines in the proof of Theorem 7.1.).

Before defining the language accepted by a Turing machine, we
must indicate what is meant here by configuration. As was the
case for linear bounded automata, a configuration in a Turing
machine includes the content of the tape, the state of the auto
maton, and the position of the tape content in relation to the
automaton. The notation is the same as for configurations in linear
bounded automata, but redundant boundary symbols are omitted.
Thus, for example, s#yiyz ... yn# stands for ...##s#yiyz ■■■
?n# ##■■■, and means that the Turing machine is in state s and
is reading the boundary symbol directly to the left of the tape
content yiys ... yn. The initial configuration is s0#w#, where
w e I*. A final configuration is every configuration in which the
Turing machine is in a final state: cos/%, where co and x are elements
of r*, and Sf is an element of F. In this case the automaton is said
to STOP (stopping should not be confused with blocking). A string
x in I* is accepted by a Turing machine when s„#x# H* cosfx. The
LANGUAGE accepted by a Turing machine is the set of the strings
in /* accepted by the machine. Figure 7.1. illustrates an initial
1 It is not known whether deterministic and nondeterministic linear bounded
automata are also equivalent.

104 TURING MACHINES

configuration, a configuration during operation, and a final con
figuration of a Turing machine in the process of accepting the
input string x — a\ ... am.

ts

rH
ts

i o

s

1 to

0y

*
%

?~

_£=.
%

w

d g o 6

1

■S 5 \ ° s.s i
ED © 3

s - s l
.2 9 8
'•S 8 c
£ P E
CI) A (j

§

60

E

TURING MACHINES 105

7.2. A FEW ELEMENTARY PROCEDURES

In this paragraph we shall give a few examples of operations which
can be performed by a Turing machine. The operations given here
will later serve as elementary procedures in the comparison of
Turing machines and type-0 grammars.

EXAMPLE 7.1. The transfer of information on the tape
In several cases it is necessary to transfer parts of the original
input, or of the tape content which develops later, to a different
place on the tape. In this way information can be stored while
other operations are carried out. A simple example of this may be
seen in the following Turing machine:

TM = (S, I, r, 6, So, #, F), with S = {s0, sA, sB, si, sz, s3},
I = {a,b}, r = {#, a, b, c, A, B}, F = {S3}, and where d con
tains te following transition rules:

1. S(s0, #)
2. S(s0, a)
3. S(s0, b)
4. S(s0, A)
5. d(s0, B)
6. S(SA, a)
7. S(sA, b)
8. 6(SA, A)
9. d(sA, B)

10. S(sA, #)
11. <5(JB, a)
12. S(SB, b)

= {So, # , 1)
= (SA, C, 1)
= (SB, C, 1)
= (S2, a, 1)
= C*2, b, 1)
= (SA, a, 1)
= (SA, b, 1)
= {SA, A, 1)
= (SA, B, 1)
= (si, A, - 1)
= {SB, a, 1)
= (sB, b, 1)

13 5{SB, A)
14. d(ss, B)
15. 8(SB, #)
16. (5(5i, a)
17. S{Sl, b)
18. d(si, c)
19. <5(5i, A)
20. S(si, B)
21. 8{s-2, A)
22. S(s2, B)
23. d(sz, #)

<*(-, - , -) =

= (SB, A, 1)
= (SB, B, 1)
= (su B, - 1)
= (si, a, - 1)
= (su b, - 1)
= (So, C, 1)
= (su A, - 1)
= (su B, - 1)
= (sz, a, 1)
= (S2, b, 1)

= (S3, #, 0)
g> in all other cases.

This Turing machine will replace every string x in /+, where
\x\ = n, with a string cnx; the original string of a's and b's is moved
exactly its length to the right and is replaced by a string of e's
whose length is equal to that of the string of a's and b's. Let us
take for example the transfer of the string aab. The following gives
the successive configurations in the machine; the number of the
transition rule involved is given over the transition symbol,

106 TURING MACHINES

except where a sequence of operations is repeated, in which case
an asterisk * appears over the transition symbol.

s0#aab# I— #s0aab# I— #csAab# I— #casAb# \r—
#cabsA# h15- #castbA# ^ #cslabA# V^ #slcabA# ^
#es0abA# r1- #ccsAbA# r* #ccbSiAA# ^ #ccsxbAA# Y^1-
#cs1cbAA# I— #ccs0bAA# h— #cccsBAA# h* #cccAAsB#
^ #cccAs1AB# h— #cccsBAAB# \^- #cccas2AB# h—
#cccaas2B# I—■ #cccaabs2# r— #cccaabs3#.

EXAMPLE 7.2. The comparison of two strings
At times it is necessary to decide whether two strings of elements
are identical. One can easily see that this is possible with a Turing
machine. Imagine that we are interested in two strings n and rz
over a vocabulary V. We place the string r\cr% on the tape, where
c £ V. The language T = wcw is then a context-sensitive language
with a vocabulary Vu {c}. This means that there is a context-
sensitive grammar which generates the sentences wcw and only
the sentences wcw. There is consequently a linear bounded autom
aton LBA which accepts language T, and since Turing machines
are a generalization of the linear bounded automaton, there is
a Turing machine which accepts language T. In other words, a
Turing machine accepts a string ncrz on condition that n = r%,
and can therefore be considered an automaton which determines
the identity of two strings.

7.3. TURING MACHINES AND TYPE-0 LANGUAGES

It is possible to construct a "Universal Turing machine" UTM,
which can simulate the operation of any given Turing machine.
A description of the TM (its transition rules, etc.) would be placed
on the input tape of the UTM, while the input of the TM would
appear in another place on the input tape of the UTM. Thus
"programmed", the UTM would imitate the operation of the TM
precisely. It is even possible to construct a UTM with only two
states, but it would need an extremely large tape vocabulary.

TURING MACHINES 107

However, it is not our intention to discuss Universal Turing
machines here. We have mentioned them only to render the propo
sition acceptable that various elementary procedures for which
Turing machines have been constructed can be combined in a
single Turing machine. Such a machine could switch over from
one procedure to another, just as a digital computer can switch
from one subroutine to another. (The only essential difference
between a computer and a Turing machine is that the latter disposes
of an unlimited store: all information presented can be stored on
a tape of infinite length.) With this background, we can discuss
the following theorem.

THEOREM 7.1. For every type-0 language L there is a Turing
machine such that T(TM) = L.

PROOF (summary). The construction of a TM which accepts lan
guage L is roughly as follows. Let L be a type-0 language, and G the
type-0 grammar which generates it. Let x be a sentence in L. We
put the string x on the input tape as #x#, and build in a procedure
according to which the symbols c and S (neither of which are ele
ments of VT) are added to the string as follows: #xcS#. For every
production a -» fi in G we construct such transition rules for TM
that a string a can be rewritten on the tape as fi. If a is not of the
same length as fi, it will be necessary at rewriting to transfer the
information directly to the right of a, either to the left or to the
right, so that fi will fit precisely into place. Therefore we must
include a transfer procedure in the Turing machine, similar to
that of Example 7.2.

TM can nondeterministically replace S with some fi, where
iS -> fi is a production in G. Let fi — B\ B% ... 3n (where B% is an
element of V, but not necessarily of VN). In that case the tape
shows #xcBiBz ... Bn#.

Next we must build a procedure into TM according to which
the left-hand members (ai) of the productions ai -* fi% can be
rewritten as an identification symbol. The automaton now non-
determmistically chooses an ai and a Bj from the string mentioned

108 TURING MACHINES

above, and switches over to a comparison procedure which com
pares at element for element with BJBJ+I Example 7.2. showed
that such a comparison procedure is possible in principle. If string
at is identical to string BjBj+i ..., it is replaced by Pi, the right-hand
member of the production cm -*• pi. By continued replacement of
strings between c and # according to the productions of G, a
string of terminal elements is (nondeterministically) composed
between c and # . At this point the Turing machine can switch
back to the comparison procedure in order to compare this new
string with string x. If the two are identical, the machine reaches a
final state and stops. It is clear that the terminal strings between c
and # can only be sentences of L(G), and that any sentence in
L(G) can appear there. Thus TM accepts the sentences of L(G)
and only the sentences of L(G). If there is a nondeterministic
Turing machine which accepts L(G) and only L(G), then there is
a deterministic Turing machine which does the same.

THEOREM 7.2. For every language T accepted by a TM, there is a
type-0 grammar G such that L(G) = T(TM).

PROOF (summary). Let T be the language accepted by Turing
machine TM. For every x in T, TM goes from its initial state to
a final state in a finite number of operations: s„#x# F* #a>Sf%#,
with Sf e F and co, x e F*. We write x as 01^2 ... an(n> 0). The
first step in the process of accepting is as follows: s0#aia2...an# I-
#s0ala2-..an#. Another transition arbitrarily chosen is #^ry1S72o-

I- #^s'y1y2(T# if TM moves to the left (with s, s' e S, yu

?2> y'ie F> a n d &, 0 e r*). This can be described as rewriting triads:

(i) 7 1 % -* s'yivi-
Nothing else changes in the configuration, and given the construc
tion of TM, the transition is completely determined by the triad
71*72- There is a similar pair of triads for the case that the machine
moves to the right. The transition has the form #$syly2<r# h
#xl/y'is'y2o# and can be represented as a rewrite:

(2) syty2 -* yis'y2.

TURING MACHINES 109

If the machine remains in place, we write:

(3) sy2 -► s'y'2.

Because the number of states s and tape symbols y for each Turing
machine is finite, the number of pairs or triads is also finite. A
subset of the set of these pairs gives a complete description of the
possible operations of the Turing machine. Because Turing ma
chines are deterministic, for every triad or pair to the left of the
arrow there is only one possible triad or pair which can follow to the
right of the arrow. Therefore, we can conclude that the operation
of every Turing machine can be completely described by means of
a finite set of deterministic rewrite rules.

Let TM accept x. We have seen that the final configuration has
the form #cosfX#. It is not difficult to construct a Turing machine
TM' equivalent to TM, which has as final configuration # s/S' #. For
this purpose we build TM' in such a way that, just before reaching
a final configuration, it will follow a procedure to replace all the
remaining tape symbols with (pseudo) boundary symbols, except
the last which is replaced by the as yet unused tape symbol S".
The initial and final configurations are therefore respectively
s0#x# and #sfS'#.

We can now construct a grammar G for which L{G) = T{TM) —
T(TM'). We collect all the rules of types (1), (2), and (3) in TM'.
If fi -> a is a rule of TM', we make a -> /? a production of G.
Given the deterministic character of rules fi -*■ a, if a -> jS and
a' -> fi, then a = a'. Next we add to the productions of G the
productions S -> SfS' for every s/ in F, and the production
s0# -*■ #■ It is clear that by means of these productions, the
derivations S => sfS' =5> x and only these can be made for every x
in T and only if x e T. G is a type-0 grammar, and consequently
the theorem is proven.

It follows from Theorems 7.1. and 7.2. that Turing machines
are equivalent to type-0 grammars or unrestricted rewrite systems.

110 TURING MACHINES

7.4. MECHANICAL PROCEDURES, RECURSIVE
ENUMERABILITY, AND RECURSIVENESS

Given a type-0 grammar G with a vocabulary VT, there is a Turing
machine TM which will stop in a final state after a finite number of
transitions for every string x in V*T where x e L(G). We call
this a mechanical procedure. In general we can define a mechanical
(effective) procedure as an operation which can be performed by
a Turing machine in a finite number of steps. Thus we replace
the temporary definition of "procedure" given in paragraph 2.1.
with the more precise definition "that which can be performed by
means of a Turing machine". In paragraph 2.1. we imagined a
procedure as a computer program by which an operation can be
performed systematically. It does not at first seem evident that
anything that can be performed systematically in a mechanical
way (that is, without the use of human intuition), possibly by
computer, can also be done on a Turing machine. The Turing
machine appears to be far too simple a mechanism. But since the
publication of Turing's original article (1936) it has become
increasingly evident that the Turing machine can indeed perform
anything which we might intuitively qualify as a procedure. For
a good survey of the question, see Minsky (1967). It is therefore
clearly justified formally to define the concept "procedure", as
we have done, in terms of Turing machines. This opens the possi
bility of establishing with exactitude the problems for which no
procedure exists, for such are the problems for which no Turing
machine can be constructed. In the remainder of this chapter we
shall speak freely of Turing machines whenever it is clear that a
mechanical procedure must exist. Whenever we can explicitly
indicate the consecutive steps of an operation, we conclude that
the operation can be performed on a Turing machine.

The acceptance of a sentence by a Turing machine is by defini
tion a mechanical procedure, but the same is true of the acceptance
of sentences by more limited automata. It follows from the hierar
chy of languages that for every language which is accepted by a
finite automaton, a nondeterministic push-down automaton, or

TURING MACHINES 111

a linear bounded automaton, there exists a Turing machine which
also accepts it. We can therefore treat the acceptance of languages
and sentences by automata in general in terms of procedures.

We would point out that the definition of "accepting" has been
rather weak for all automata. We know that if x e L, there is a
procedure (TM) which will confirm that x is an element of L.
But what happens if a string in V*T which is not an element of L
is introduced as input? The Turing machine cannot reach a final
state, but rather becomes blocked or goes on endlessly computing.
We shall return to this point, but we shall first show that for every
type-0 language L there is a mechanical procedure by which each
sentence in L can be enumerated within a finite amount of time.
L is then said to be RECURSIVELY ENUMERABLE.

THEOREM 7.3. Every type-0 language is recursively enumerable.

PROOF. It is easy to see that the strings in V? can be enumerated
by means of a mechanical procedure. If VT contains k elements,
the strings of V*T can be considered as numbers in a system with
a base k, plus the null-string. If, for example, there are ten elements
in VT, we can give them the labels 0, 1, 2, . . . , 9. strings of F j are
thus numbers of the decimal system: 0,1,2, . . . , 10,11,..., 100,101,
..., and it is certainly possible to design a Turing machine which
will write these sentences in sequence on its tape (the Turing ma
chine must be able to perform the operation «+ l) . Each of these
numbers appears on the tape after a finite number of operations,
and no number is omitted. The same will hold for k. Furthermore,
we know that there is a procedure which can determine whether
a string is an element of L (Theorem 7.1.). This procedure can be
applied to every newly enumerated string of V*T, in order to
enumerate the sentences of L. There is a problem, however, for
we do not know what will occur if the string in question is not an
element of L. It is possible that the machine will go on endlessly
computing and will never come to enumerate and test the following
strings. This situation can be avoided by interrupting the test
procedure at a given moment in the following way. We number

112 TURING MACHINES

the strings in V*T: X = 1, a\ = 2, ai = 3, etc. (this is possible, as
we have seen), and we indicate by number how many transitions
the TM can undergo at a given stage of the test procedure for a
given string. The process takes place as shown in Table 7.1. In

TABLE 7.1. Test Procedure for the Enumeration of the Sentences of L.

Number of Transitions of Til to be Simulated

1 2 3 4

String X
Number

2

3

4

fact we have constructed a new Turing machine, TM', which
simulates the test procedure of TM. TM' first tests string 1 to see
if it is an element of L by simulating one transition of the procedure
of TM. If TM' finds that the string is an element of L, it enumerates
the string and proceeds to test string 2. If it is not yet clear whether
or not string 1 is an element of L, TM' still proceeds to test string 2.
According to the table, TM' may simulate again only one transition
of TM. String 2 is or is not enumerated according to the results of
this test; according to the table, TM' then goes back to string 1
and simulates two steps from TM to test the string. According
to the results of this test, the string is or is not enumerated, and
TM' then goes on to test string 3 with one step from TM. It goes
on in the same way to test string 2 with two transitions, string 1
with three transitions, string 4 with one transition, and so forth.
In this way the automaton returns to each string and performs one
step more than the preceding time to test it. Thus each string in

TURING MACHINES 113

VT is successively tested for membership in L by way of a finite
number of transitions. For each x in L the procedure finally
leads to the acceptance and enumeration of x.

We state without proof that the inverse of Theorem 7.3. is also
valid: every recursively enumerable language can be generated
by a type-0 grammar.

We have seen that the recursive enumerability of a type-0 lan
guage follows from the existence of an accepting procedure for
the sentences of L, and have remarked that this is a weak theorem.
We do not know what the Turing machine will do to a string in
VT which does not belong to the language. In order to discuss this
question further, we define the COMPLEMENT OF A LANGUAGE L,
with vocabulary VT, as V? — L. This is the set of strings over the
terminal vocabulary which are not elements of the language.
Linguists call this the set of UNGRAMMATICAL SENTENCES. The
complement of a language is denoted by CL.

A stronger form of acceptance would be a procedure according
to which for every string in V? it would be indicated if the string
belongs to L or to CL. One might imagine a "twin Turing machine"
which would reach a final state for a string in CL, while the
original Turing machine would do the same for a string in L.
One might also imagine a Turing machine with two sets of final
states, one for accepting, the other for rejecting. For every string
x in VT, the Turing machine would reach a final state: the
accepting final state when x e L, and the rejecting final state
when x e CL. If such a procedure exists for language L, the
automaton is said to RECOGNIZE (as opposed to accept) L. A recogni
tion procedure of this sort is usually called an ALGORITHM. An
algorithm is thus a procedure according to which for every x in
VT, it can be determined whether or not x belongs to L. Because
algorithms lead to decisions for every string in VT, the language
L <= VT is called a DECIDABLE (RECURSIVE) SET if an algorithm exists
for the recognition of L. It follows from the construction of the
twin Turing machines that a language is recursive if both the
language and its complement are recursively enumerable.

We know that type-0 languages, and consequently also type-l,

114 TURING MACHINES

type-2, and type-3 languages are recursively enumerable, but are
the complements of these languages also recursively enumerable?
That is not the case in general. We state without proof that there
are type-0 languages which are not recursive, because they have
complements which are not recursively enumerable. This means
that the complements are not type-0 languages. However, the
complement of a context-sensitive language is recursively enumer
able, and consequently context-sensitive; context-free and regular
languages are all recursive. There are (recognition) algorithms
for all of these languages.

We have seen that the complement of a type-0 language is not
necessarily itself of type-0, but what of the other language types?
It is not yet known if the complement of a context-sensitive
language is context-sensitive; all we know is that it is recursively
enumerable, and consequently of type-0. It has been proven that
no general procedure exists for determining whether the comple
ment of any context-free language is also context-free. In any
case it does not hold in general that the complement of a context-
free language is also context-free; the complement of a determini
stic context-free language is, however, also deterministic and con
text-free. It is also known that the complement of a regular lan
guage is likewise regular.

8

GRAMMATICAL INFERENCE

8.1. HYPOTHESES, OBSERVATIONS, AND EVALUATION

Is it possible on the basis of samples of a language to decide on an
acceptable grammar for that language? In its present form, this
question cannot be answered, but the day to day work of the
linguist, as well as the fast growing language capacity of the young
child, suggest that an affirmative answer might be expected to at
least some forms of the question. The answer depends on (1) what
is known about the grammar, (2) the composition of the sample
of data, and (3) what is understood by "acceptable". The investiga
tion of these matters is known as the study of GRAMMATICAL

INFERENCE.
That which is already known or supposed of a grammar is

referred to by the term HYPOTHESIS-SPACE. The terminal vocabulary
VT, for instance, is ordinarily given. Certain suppositions can also
be made as to the class to which the grammar belongs (regular,
context-free, etc.). In the case of a probabilistic grammar, not only
can suppositions be made about the type of grammar, but infer
ence can also have the more limited goal of finding the most
acceptable production probabilities for a grammar which is given.
This latter has rather direct possibilities of application, and we
will deal with it in some detail in paragraph 8.2. Paragraph 8.3.
will treat a number of general findings relative to nonprobabilistic
hypothesis-space, and paragraph 8.4. will discuss the most general
kind of hypothesis-space, probabilistic grammars for which both
productions and production probabilities must be found.

116 GRAMMATICAL INFERENCE

The term OBSERVATION-SPACE refers to the composition of the
data sample; it can take on various forms. If L is the language
investigated and x is a given string in V^., we can obtain positive
information, x e L, or negative information, x $ L (i.e. x e CL),
about L. In the former case we speak of a POSITIVE INSTANCE, in
the latter, of a NEGATIVE INSTANCE. The information available is
called an INFORMATION SEQUENCE. If all the instances in the sequence
are positive, we have a POSITIVE INFORMATION SEQUENCE; if negative
instances also occur, we have a MIXED INFORMATION SEQUENCE.
A COMPLETE INFORMATION SEQUENCE is a mixed information
sequence in which all positive and negative instances are enumerat
ed; such sequences are generally infinite in length. A COMPLETE
POSITIVE INFORMATION SEQUENCE is the enumeration of all positive
instances; it is called TEXT PRESENTATION, since the language is
presented, sentence for sentence, as a text. Repetitions may occur,
provided that the enumeration is complete, i.e. every sentence of
the language must occur after a finite number of other sentences.
INFORMANT PRESENTATION is the term for a complete mixed in
formation sequence, or a sequence in which every positive and
negative instance over VT occurs after a finite number of other
instances. One might picture this as a researcher who wishes to
find the grammar of a language and reads each string of V^ to an
informant who in turn tells him for every string whether it belongs
to the language or not. A STOCHASTIC TEXT PRESENTATION is an
infinite sequence / = xi, xz, ..., where Xi is an element of L, and
L is a probabilistic language in which for every xt, pQct = xt) =
pQc — x);1 this means that the chance that string x will be in
position i is constant and equal to the probability of the string in
the language. The sentences thus appear successively with their
respective probabilities in L. Notice that the definition of a stochas
tic text presentation does not include the property of completeness.
At the limit, however, the relative frequency of a sentence in a
stochastic text presentation is equal to its probability in L. The
chance of occurrence of a sentence x in L can be increased by

1 P(Z = *) is the probability of x in L. We suppose the variables xt to be
independent, i.e. pQci = xt | XJ = XJ) <= p(xt = xt).

GRAMMATICAL INFERENCE 117

increasing the length of the information sequence. A sample of
a stochastic text presentation of size A: consists of the first k elements
of that text presentation. On the basis of the assumption of inde
pendence,2 the probability of this particular sample is the product
of the probabilities of its k elements.

What is an "acceptable" grammar ? Suppose that the information
consists of an information sequence up to a given point k: xi,
X2, ■.., xjc. Any grammar which corresponds to the elements
Xi xn is, in a weak sense, acceptable. By "corresponds" we
mean that the positive instances in the sequence are generated by
the grammar, and the negative instances are not. But the criterion
of correspondence will in general allow an infinity of possible
grammars. If we concentrate our attention on the positive instances
in the text presentation, we find that the one extreme is a grammar
which generates only the k elements of the information, whereas
the other extreme is a universal (regular) grammar over Vr which
generates all the strings of V*T. Both these grammars correspond
to the information, but the former is "unnecessarily" complex,
and the latter would correspond to any sample, and therefore does
not "fit". Both complexity and fit must decidedly be included in
the standard of evaluation of the acceptability of a grammar. To
a large extent, complexity is a matter of teste and of the preferences
of the researcher. That the standard is relative is probably the
only point on which one could expect all to agree. Grammars may
be compared on the basis of various criteria, such as the number
of symbols, the number of productions, the number of alternatives
for each production, etc. These criteria make up the context of
evaluation; on it depends the complexity of a grammar. The use
of the mechanism of probabilistic grammars can permit a definition
of context (without excluding other definitions, as complexity
remains a matter of taste) in terms of the a priori probability of
alternative grammars in the hypothesis-space. This will be done
in paragraph 8.4; it will at the same time permit an evaluation,
by way of the Bayes theorem, of the fit of various probabilistic
grammars.
2 See note 1.

118 GRAMMATICAL INFERENCE

In the following paragraph, however, we shall deal only with
the classical statistical evaluation procedure. This method is more
efficient in that context, and yields results for large samples which
scarcely deviate from those of a Bayes analysis.

8.2. THE CLASSICAL ESTIMATION OF PARAMETERS
FOR PROBABILISTIC GRAMMARS

We will be dealing here with the simple case in which, except for
the production probabilities, the entire grammar is given. The
discussion will be limited to nonambiguous context-free grammars.

On the basis of a sample of language L, we must determine
which probabilistic grammar will be the best for L, that is, we
must find an optimal estimate for the production probabilities of
the grammar.

Let G be a nonambiguous context-free grammar with N produc
tions. The respective production probabilities are labelled pi,
P2, ..., PN- TO normalize the grammar, we must see to it that for
every variable A in VN, £ p (A -» «!) = 1. If there are /(/ > 0)

i

productions in which A occurs to the left of the arrow, then for the
productions A ->aj (where i = 1, 2, . . . , /) , /—1 production pro
babilities must be found. (If G has only one production, A -> x, then
p(A -> x) = 1.) If VN has M variables, and the number of inde
pendent production probabilities in the grammar is denoted
by k, then k = N — M. On the basis of the sample, estimates
must be found for these k parameters, q\, qz, ..., q^. When that
is done, the production probabilities^!,pz, ...,PN will follow direct
ly from the normalization.

Given a sample from language L, we proceed as follows. Let
the sample contain n different sentences (or sentence types, since
a particular sentence can occur more than once in the sample).
The leftmost derivation S =S» s; must be determined for every
sentence st (where i = 1, . . . ,»). If the productions used in the
derivation are independent, then p(S =5> s;) = p(s>) c a n De expressed
as the product of the production probabilities pt of the various

GRAMMATICAL INFERENCE 119

steps in the derivation. For the derivation S=> a => jS =>y => st,
for example, this is p(s;) = j^PtPi- This product for each of the
n sentence types is denoted by m, and each of its terms can be
expressed in parameters qi, ..., qn.

We define the likelihood function JSf for the sentences
and the parameters qi, ..., qt as follows:

^ (s j , ..., s„; qu ..., qk) = n^iti1 ... %{n,

where/f is the number of times sentence type i occurs in the sample.
Using logarithms, this is:

logj2? =filogni +/2 log7t2 + ... +/„log7t„ = X/»log%.
i

The best estimate of the parameters qi, ..., qi- is that which gives
a maximum for-S?, and thus also for log^?. With these parameters,
the chance of drawing precisely this sample is at a maximum.
The various parameter estimates q\, q%, ..., qn, are found by
expressing every m in parameters, and then determining the k
partial derivatives of SP according to q\, ..., qic. This yields a

system of k equations ^ — = 0, the solutions of which are the
dqi

desired estimates qi,..., #*. At this point the probabilities j>\, ...,PN
can be calculated.

EXAMPLE 8.1. Let I, be a language over the vocabulary {a, b, c}.
Suppose we have a sample of L consisting of 100 sentences with
the following distribution of sentence types: c (22 times), aca
(42 times), abcba (I9t\mes),abbcbba(\2 times), abbbcbbba (4 times),
and abbbbcbbbba (once). A possible grammar for these sentence
types has the following productions:

S -» aAa A -* bAb
c l - 9 i , l - « 2
S — * c A —>■ c

Above the arrows we find the production probabilities expressed
in parameters, and in such a way that the grammar is normalized.
The leftmost derivations of the sentences in the sample are given

120 GRAMMATICAL INFERENCE

below with the probability of the production concerned at each
step.

S => c p(c) = 1 — qt

S=>aAa => aca piacd) = q^l — q2)

S=>aAa=>abAba => abcba p(abcba) = qiq2(l —q2)

etc. p(abbcbba) = qiq2(l — q2)

p(abbbcbbba) = qiq2(l — q2)

p(abbbbcbbbba) = qiq%(l — q2)

The likelihood function then becomes:

& = [d-«i)]22 bid-42)]43 [«i«2d-«2)]19 bxald-aa)]12 x
natural logarithm of 3? is:

ln^P = 78 In qi + 59 In q2 + 22 In (1 -qi) + 78 In (1 -q2). The
most likely values of q\ and q% are found by taking partial deriva
tives of ln=SP with respect to q\ and qi, putting them equal to zero,
and solving the equations:

glnJSP _ 78 22 glnJSP 59 78

thus £1 = 0.78 thus q2 = 0.43

With these estimates of the parameters, we can calculate the proba
bilities of the sentence types in the sample. For c we have l-qi —
0.22, for aca, qi(l-qz) = 0.78 X 0.57 = 0.445, and so forth. In
a sample of 100 sentences we would expect the sentence c 22 times,
and the sentence aca, 44.5 times, etc. All the values are given in
Table 8.1., together with the observed values. The correspondence
between observed and expected values can be measured and evalu
ated with standard statistical tests such as, for example, the chi-
square test for goodness of fit.

GRAMMATICAL INFERENCE 121
TABLE 8.1. Observed and Expected Frequencies of Sentence Types

(Example 8.1.).

Sentence Type

c
aca
abcba
abbcbba

Observed

22
42
19
12

Expected

22
44.5
19.1

8.2

Sentence Type

abbbcbbba
abbbbcbbbba
other

Observed

4
1
0

Expected

3.5
1.5
1.2

8.3. THE "LEARNABILITY" OF NONPROBABILISTIC
LANGUAGES

A number of theorems concerning the "learnability" of non-
probabilistic languages were presented by Gold in a fundamental
article (1967). In this paragraph we shall state some of his more
important findings without proving them.

Suppose we have a complete (text or informant) information
sequence for a language of a given class (finite, regular, etc.). An
algorithm must be found with the following characteristics :1

(1) each time a new input element xi is introduced, the algorithm
produces a grammar (or a code for a grammar) of the given class
which is consistent with the information received up to that point.
(2) after a finite number of elements has been received, the output
remains constant: the grammar produced as output is always the
same or equivalent, and is a grammar of L.

A language is said to be IDENTIFIABLE IN THE LIMIT or LEARN-
ABLE if such an algorithm exists for it for every complete informa
tion sequence. A class of languages is learnable if every language
in it is learnable. The most important conclusions drawn by Gold
from his investigation concerning the various classes of languages
are given in Table 8.2.; in it, the symbol + denotes "learnable",
and the symbol —, "not learnable".

1 "Algorithm" is used in the same sense here as in the preceding chapter:
a Turing machine which stops (produces an output) after every input. Gold
also analyzes learnability as a procedure, but we will not discuss his findings
here; they are not much different from the results for algorithms.

122 GRAMMATICAL INFERENCE

TABLE 8.2. "Leamability" of Languages of Various Classes according to Text
or Informant Presentation

Language Class Text Informant

Type-0
Type-0 (recursive)
Type-0 (primitive recursive)
Context-Sensitive
Context-Free
Regular
Finite

The table calls for some explanation on (a) the broad difference
between "learnabilty" on the basis of text presentation and "leam
ability" on the basis of informant presentation, and (b) the fine
differentiation within the class of type-0 languages.

(a) Text presentation involves leamability for finite languages
only. The fact that a finite language can be learned through text
presentation can easily be understood as follows. Every sentence
of the language appears after a finite number of earlier instances
(since the presentation is complete). The algorithm can simply
be to enumerate all different sentences which have appeared in
the presentation up till and including the last instance. This list
of sentences can as well be written as a grammar with rules S -*■ Xi
with one rule for every sentence xi. After a finite amount of time,
all the sentences of the language will have passed in review (as
the number of sentences is finite), and from that point the grammar
will remain unchanged. The grammar thus produced will certainly
be a grammar of the language.

The process, however, will only succeed with finite languages;
not even regular languages are learnable, according to Gold's
definition of the term, on the basis of text presentation. One might
imagine the following algorithm for the learning of regular lan
guages on the basis of text presentation: the first and all following
outputs of the algorithm would be a universal grammar U, with
productions S -* a and S -> aS for every a in Vr. As such a gram
mar can generate any string in Vt, all subsequent outputs would

+
+
+
+
+

GRAMMATICAL INFERENCE 123

be the same grammar, which will be consistent with all further
information. But this algorithm would not satisfy condition (2)
of the definition, because the grammar produced is not a grammar
of the language (unless the language is the universal language V J).
The grammar would then be "too broad" for the language. The
algorithm should be set up in such a way that the grammar is as
narrow as possible at first, and is broadened according to the
incoming information. As the class of finite languages is contained
by the class of regular languages (Theorem 2.3.), it is not impossible
that the language here in question be finite. The algorithm must
begin here with the narrowest conjecture, namely that the language
is finite. If it more broadly supposed the language to be infinite,
while in fact the language was finite, it would never receive informa
tion incompatible with that supposition. We might, of course,
imagine an algorithm which decides that a language is finite if it
finds k repetitions of the same set of sentences, but this still would
not solve the problem. Although such an algorithm would yield
a correct grammar for a finite language, it could mistake an infinite
for a finite language. Suppose, for example, that from infinite
language L a text presentation is prepared as follows: take from L
subsets Fx, i% ... of increasing size. Begin presenting the sentences
in Fi with k or more repetitions. The algorithm will then incorrectly
decide that the language is finite. When Ft is introduced, the
algorithm must review its judgment, but if there are also k or
more repetitions of the sentences in Ft, it will return to its original
decision that the language is finite. But the same process will
occur when Fs is introduced, and so forth. The presentation is
complete, for every sentence of the language will be presented after
a finite amount of time, but the algorithm would always produce
nothing other than grammars for finite languages. Thus an algo
rithm which functions flawlessly for finite languages cannot learn
an infinite language, and an algorithm adapted to infinite languages
will, when presented with a finite language, produce grammars
which are too broad. Therefore it is impossible to "learn" an
infinite language only on the basis of text presentation.

(b) In the preceding chapter it was stated that type-0 languages

124 GRAMMATICAL INFERENCE

are generally not recursive. However there are type-0 languages
which are recursive, but not context-sensitive; the set of recursive
type-0 languages does not coincide completely with that of context-
sensitive languages. The table shows that only "primitive recursive"
type-0 languages, a subset of recursive type-0 languages, are learn-
able according to Gold's definition of the word. Primitive recursive
languages cannot be defined without recourse to the theory of
recursive functions.1 Suffice it to note that "most" recursive
languages are primitive recursive (also, in the history of mathe
matics, it has been difficult to find exceptions to this), and that the
distinction between recursive and primitive recursive languages is
of little importance to the study of natural languages. All recursive
grammars (i.e. grammars of decidable languages) which will be
mentioned below are in fact primitive recursive.

8.4. INFERENCE BY MEANS OF BAYES' THEOREM

In paragraph 8.2. we found by "classical" means optimal statistical
parameters for a given nonambiguous context-free grammar. We
renounced the possibility of choosing from among several gram
mars. In paragraph 8.3. the procedure was inverse, in a sense.
We examined the conditions of presentation under which a gram
mar may be selected from the class of a priori possible grammars,
renouncing the probabilistic formulation. The notion of "learn-
ability" had to be defined in terms of equivalent grammars, as
the algorithms cannot select an optimal or "most efficient" (cf. 3.1.)
grammar from the class of equivalent adequate grammars.

Horning (1969) combined the two approaches, and developed
a method of selecting an optimal probabilistic grammar from a

1 A language is PRIMITIVE RECURSIVE if its characteristic function is primitive
recursive. The characteristic function CL of a language L, where L <= VT, has
the value 1 for every string in VT which is an element of L, and the value 0
for every string in VT which is not an element of L.

Definitions of recursive functions may be found in Kleene (1952), Minsky
(1967), Nelson (1968), et alibi.

GRAMMATICAL INFERENCE 125

given class on the basis of a given information sequence. We shall
state some of his most important findings here concerning non-
ambiguous context-free grammars.

We have seen that a standard of evaluation must express two
aspects: the complexity of the grammar, and the degree to which
it fits the information which is available at a given moment (para
graph 8.1.). The complexity of a grammar depends on the context,
which includes at least (1) the size of the nonterminal vocabulary,
(2) the number of alternative rewrites for a given variable, and
(3) the length of those alternatives. (In practical and linguistic
situations the context can include far more than this. The three
aspects mentioned here, however, are constant themes in the lin
guistic literature on the subject.) The relative importance to be
attributed to each of these aspects of context is a matter of taste,
but there is a method by which this can at least be done in an
exact manner. The method is by means of a so-called GRAMMAR-
GRAMMAR. We will now introduce this notion.

A grammar is a finite string of symbols; a set of grammars (an
hypothesis-space) may be regarded as a set of such strings, and
thus as a kind of "language". A grammar-grammar is a grammar
which generates such a "language". If the grammar-grammar is
probabilistic, it will define a probability distribution over the
"sentences" of the "language", and thus over the class of gram
mars which it generates. The complexity of a grammar can then
be defined as minus the base two logarithm of its probability, as in
information theory. The probabilistic grammar-grammar is thus a
precise definition of the context; moreover, the more variables, the
more alternatives for each variable, or the longer the alternatives
in a generated grammar, the smaller its probability and the greater
its complexity. The relative importance of each of the aspects can
be varied by varying the production probabilities of the grammar-
grammar.

We illustrate this with an example. To avoid confusion, name,
variables, and arrow of the grammar-grammar are given in bold
face type, while those of grammars are in ordinary type.

126 GRAMMATICAL INFERENCE

7.

8.

9.

10.

11.

A ^ T N

T ^ «

T^b
0.5

N - > A

EXAMPLE 8.2. Let G be a probabilistic grammar-grammar with the
following productions:

1. S ^ R

2. S ^ R R '

3. R 4 - N - > P

4. P ^ A

5. P ^ P , A

6. A ^ T

This grammar-grammar generates regular grammars with one
or two variables (£, A) and one or two terminal symbols (a, b).
We shall show the leftmost derivation of a regular grammar G
with the following productions:

S -> b, bS, aA A -> a, bA, aS

These are in fact six productions: the commas indicate alternative
rewrites for a single variable. If we know that G is a context-free
grammar, and thus that the first member of every production is
a single variable, the grammar can be written without ambiguity
as follows:

S -*■ b, bS, aAA -» a, bA, aS

(In the triad aAA, the reader should imagine a caesura between
A and A.) This is precisely the "sentence" which we wish to derive
from G; its leftmost derivation is as follows:

s°=̂
1

0.5

0 .5

0 .5
=5>

RR

N - »

S->

S-*

s->

PR

PR

P, AR

P, A, AR

V.J

0.5
=> S

°4s
°4s
¥s

->A

->T,

-**,
- » * .

-»&,

A,AR

A,AR

A, AR

TN, AR

6N,AR

GRAMMATICAL INFERENCE 127

°Js-+b, bS, AR

2> S -* b, bS, TNR

™ S -» b, bS, aNR

Us->b, bS, aAV.

=4 S -*■ &, &S, a 4 N -> P

™S-+b, bS, aAA -* P

™ S-*b, bS, aAA -> P,

°JS-*b, bS, aAA -* P,

2̂ 5 S -* b, bS, aAA -* A,

A

A,

A,

A

A

°^S->b, bS, aAA -» T, A, A
0.5
=> S -» b, bS, aAA ->■ a, A, A
^ S-*b, bS, aAA ->• a, TN, A

=> S ->Z>, bS, a4i4 -* a, feN, A

=i» S -» &, 6S, a/1.4 -» a, 6/4, A

°Js-+b, bS, aAA -* a, bA, TN

=> S -> ft, fcS, a/4,4 -» a, bA, a N

=*• S -* b, bS, aAA -* a, bA, aS

The product of the probabilities of the rewrites is p(G) = 0.525,
and the complexity of G in context G is thus — 2log 0.525 = 25.
The reader can verify for himself that grammar U with productions
S -» a, b, aS, bS (this is the universal grammar which generates
all strings in F£) has a complexity of 15 in context G.

If we consider it particularly important that a grammar should
have few variables, we make production 2 less probable; the
probability of a grammar with two variables decreases, and the
complexity increases. If, on the other hand, we wish the number
of alternative rewrites important, we can reduce the probability
of production 5, which determines the number of alternatives for
rewriting of a variable. Finally, if we wish to increase the impor
tance of rewrite length, we reduce the probability of production 7.
Many other variations are possible.1

We suppose that a complexity distribution is defined over the
grammars in the hypothesis-space by means either of a grammar-

1 One should, however, remain cautious. A grammar-grammar which
generates all grammars of a certain type (e.g. regular grammars) will have
a terminal vocabulary of infinite size, since the nonterminal vocabulary of
every grammar generated is a subset of the terminal vocabulary of the grammar-
grammar. Solutions to this problem have been found by Feldman, et al. (1969)
and Horning (1969).

128 GRAMMATICAL INFERENCE

grammar or of some other context. We express the "credibility"
of a grammar G« in the hypothesis-space as a number p{Gt), such
that it is an inverse function of complexity (whichever way this is
defined), with 0 < p(Gt) < 1, and]T p(Gt) = 1 for the grammars

* i

in the hypothesis-space. These propositions hold automatically
in the context of a consistent probabilistic grammar-grammar.
The ^-values will be treated in all other regards as probabilities.
We also suppose that the grammars in the hypothesis-space can
be enumerated according to the order of their a priori credibility
or "probability" p. (From this point we shall use the word "proba
bility" exclusively.)

The observation-space is assumed to be a stochastic text presen
tation (cf. paragraph 8.1.).

As the OPTIMAL GRAMMAR we consider the a priori most probable
grammar which is stochastically equivalent to the grammar by
which the text was derived.

A procedure must be devised (in the sense of a Turing machine)
which at receiving each new instance can maximalize the chance
of conjecturing the optimal grammar, i.e. it must conjecture the
grammar with the highest a posteriori probability, given the text
and the a priori probabilities of the grammars. In order to investi
gate the existence of such a procedure we must, therefore, first
explicate the relations between a priori and a posteriori probabilities
of grammars.

The a priori probability of a grammar Gt in the hypothesis-space
is denoted by p(Gi). The probability of an information sequence
(a sample) S), up to a given moment of the text presentation and
given the hypothesis-space, is p(S}). The conditional probability
that Sj will occur when Gt is really the grammar of the language is
p{S)\Gi), and this is equal to the product of the probabilities of
the sentences in the sample, given grammar Gt (cf. paragraph 8.1).
Therefore, if the sample contains the sentences si, S2, ..., sa, then
p(S}\Gi) = p(si\Gi) ■ (p(s2\Gi) ■... 'p(sic\Gi\ or simply:

(1) p(Sj\Gd = II Ks,|G,).

GRAMMATICAL INFERENCE 129

On the other hand we indicate the chance that Gi is really the
grammar of!,, given the sample Sj, as p(Gi\Sj), which, according

TltC *? A
to an elementary rule of probability theory, is equal to — '' . J ,

PV>j)
where p(Gt, Sj) is the chance that Gi is correct and that the sample
Sj occurs. Therefore:
(2) p(Gj, Sj) = piSj) ■ p(G,\Sj).

This means that the common chance of Gi and Sj is the a priori
probability of Sj, multiplied by the conditional probability that Gi
is the real grammar when Sj occurs. For the sake of symmetry,
this can also be written as follows:

(3)KG i ,S,) = p(G*)-lKSi|Gi).

On the basis of (1) and (2) we can find the a posteriori probability
ofG«:

(4) piG^) = K G i)
K ^ | G i)

(This is a form of the Bayes theorem.)

If we determine the a posteriori probabilities of all grammars in
the hypothesis space, given the sample and the a priori probabilities,
the denominator in (4), p(Sj), remains constant, and only the two
terms of the numerator vary. To find the optimal grammar, we
must therefore find the grammar which yields the greatest numer
ator p(Gt) -p(Sj\Gi). We can write this product as p'(Gt\Sj). If the
sample contains k sentences, by substitution of (1) we get:

(5) pXG^Sj) = p(G,) • n pisjfa).
J '= l

Horning has proven that a procedure does exist by which at every
new instance that G in the hypothesis-space can be found for which
(5), and thus its posteriori probability, is at a maximum. We shall
neither describe the procedure here nor prove the theorem, but
only wonder if indeed the optimal grammar can, in the long run,
be found in this way. In Gold's terms, the procedure does not

130 GRAMMATICAL INFERENCE

lead, after a finite number of instances, to the reproduction at
every new instance of the same grammar or stochastic equivalents
which are grammars of the language. It only leads to the some
what weaker result, that every nonoptimal grammar in the hypo
thesis-space is rejected after a finite number of instances. In other
words, the chance that a nonoptimal grammar be conjectured
decreases as the number of instances increases. This can also be
regarded as a definition of "learnability", although it is weaker
than that given by Gold. Taken in this sense, however, Horning
has shown that probabilistic nonambiguous context-free grammars
are "learnable" by means of a stochastic text presentation.

Until now we have assumed that the hypothesis-space consists
of probabilistic grammars. However, if the hypothesis-space is
generated by a probabilistic grammar-grammar this is not the
case. Example 8.2. showed that the output of such a grammar-
grammar is a grammar and its corresponding probability. Addi
tionally, a way must be found to obtain optimal parameter esti
mates for production probabilities in the grammars in the hypoth
esis-space. Horning presents a (Bayes) procedure for this as well,
and shows that the conclusions on learnability which we have just
mentioned still hold in essence for this complete case.

HISTORICAL AND BIBLIOGRAPHICAL REMARKS

The theory of formal languages, except for the probabilistic part,
is largely based on Chomsky's work. The original publication in
which the hierarchy of grammars was introduced is Chomsky
(1959 a, b.) A later survey is Chomsky (1963) in which the hierarchy
of grammars was somewhat refined. Grammars with productions
exclusively in the context-sensitive form were given a separate
type number, and consequently the numeration differs there from
that of the earlier work. We have followed current usage and
maintained the original numeration.

The term "regular language" has a history of its own. Originally
(Chomsky and Miller 1958; Bar-Hillel, Gaifman, and Shamir
1960) these languages were called "finite state languages" because
of the connection with finite or finite state automata. But in
mathematics, the theory of recursive functions dealt independently
with, among other things, "regular sets", which can be recursively
generated by "regular expressions", and Kleene showed the equiva
lence of these sets and the sets accepted by finite automata. As
type-3 grammars are equivalent to finite automata (as in Theorems
4.2. and 4.3. proven by Chomsky and Miller 1958), type-3 languages
are regular sets. Consequently type-3 grammars and languages
are now generally called "regular grammars" and "regular lan
guages".

Context-free grammars are treated in great detail in Chomsky's
original work. The expression "normal-form" originated in Choms
ky's notion of a "normal grammar" (Chomsky 1963). He said that
normal grammars are the kind of grammars usually dealt with in

132 HISTORICAL AND BIBLIOGRAPHICAL REMARKS

linguistic discussions on constituent structure analysis: produc
tions A -> a concern the LEXICON of the language, and productions
A -* BC lead to binary divisions into CONSTITUENTS. At present,
however, the term "normal-form" is used only to denote stan
dardized forms for the productions of grammars. The Greibach
normal-form is presented in Greibach (1965). The self-embedding
theorem (Theorem 2.8.) for context-free languages was first
formulated by Chomsky (1959a); a complete proof can be found
in Salomaa (1969). The notion of ambiguity was first handled
by Parikh (1961). For later developments see Ginsburg and Ullman
(1966). For linear grammars see Greibach (1963) and (1966) and
others. A textbook on context-free grammars is Ginsburg (1966).

The equivalence of type-1 grammars and grammars with produc
tions only in the context-sensitive form was treated by Chomsky
(1963). Grammars of the form which we have called the Kuroda
normal-form were called "linear bounded grammars" by Kuroda
and several other authors, by analogy with the automaton. The
normal-form theorem (Theorem 2.11.) was first proven by Kuroda
(1964).

The earliest publications on the subject of probabilistic gram
mars are Grenander (1967), Ellis (1969), and Booth (1969). It
was an obvious matter to relate them to the Chomsky hierarchy.
The consistency theorem for regular grammars (Theorem 3.1.)
was proven by Ellis (1969) as was Theorem 3.2. The hypothesis
formulated in Theorem 3.3. may be found in Suppes (1970). The
Chomsky and Greibach normal-form theorems were originally
proven by Ellis (1969); in the proof given here, we have followed
Huang and Fu (1971). The conditions of consistency for probabi
listic context-free grammars were investigated by Booth (1969) and
Ellis (1969) where the reader may find more details on the subject.

The investigation of finite automata originated in the work of
McCulloch and Pitts (1943), in which they gave models for neural
networks which could be regarded as FINITE STATE MACHINES. Of
the many early publications on this subject, we mention Rabin
and Scott (1959), in which the proof of Theorem 4.1. can be
found, and Kleene (1956). Later surveys are those by S. Ginsburg

HISTORICAL AND BIBLIOGRAPHICAL REMARKS 133

(1962) and by A. Ginzburg (1968). The equivalence of finite
automata and regular grammars (Theorems 4.2. and 4.3.) were
proven by Chomsky and Miller (1958). Probabilistic finite auto
mata were introduced by Rabin (1963). Much work in this area
was done by Salomaa, who gives a good survey in Salomaa (1969).

The notion of the "push-down store" was introduced by Newell,
Shaw, and Simon (1959). The first formulation of the relationship
between push-down automata and formal languages is that of
Oettinger (1961). The relationship between context-free grammars
and push-down automata (Theorems 5.1. and 5.2.) was formulated
by Chomsky (1963) and Evey (1963) more or less independently.
The equivalence of deterministic push-down automata and LR(k)-
grammars was proven by Knuth (1965).

Deterministic linear bounded automata were introduced by
Myhill (1960); Landweber (1963) gave proof of Theorem 6.2. on
deterministic linear bounded automata. Kuroda (1964) introduced
the nondeterministic linear bounded automaton and proved the
equivalence of them and context-free grammars (Theorems 6.1.
and 6.2.).

The Turing machine was presented by Turing (1936) as a machine
which could perform any computation for which an explicit
procedure is known. For an introduction to the subject of mechan
ical (effective) procedures, see Minsky (1967); in the same work
models by Post and Church, similar to the Turing machine, are
also discussed. The relationship between Turing machines and
type-0 languages formulated in Theorems 7.1. and 7.2. was first
mentioned by Chomsky (1959a). We have borrowed the argumenta
tion for Theorem 7.1. from Hopcroft and Ullman (1969). The
argumentation for Theorem 7.2. was taken from Chomsky (1963),
who in turn refers to Davis (1958), starting from the fact that type-0
languages are recursively enumerable sets. The argumentation
for Theorem 7.3. was borrowed from Hopcroft and Ullman (1969).
The first surveys of the relationship between formal languages and
automata were Chomsky (1963) and Chomsky and Miller (1963)
on the one hand, and Bar-Hillel (1964) on the other.

The earliest publication on grammatical inference is Miller and

134 HISTORICAL AND BIBLIOGRAPHICAL REMARKS

Chomsky (1957). Solomonoff (1958, 1964 a, b) was the first to
develop these ideas. The Feldman group, with among them
Horning, has also done important work in this field (Feldman et
al. 1969).

The best recent surveys of the subjects treated in this volume
are Nelson (1968) where various topics are treated within the theory
of formal systems, and Hopcroft and Ullman (1969) to which
the present work is indebted and which would serve as excellent
further reading. Neither of these books, however, deals with
probabilistic grammars or probabilistic automata. For the latter,
we refer the reader to Salomaa (1969). There are no standard
texts on probabilistic grammars or grammatical inference.

BIBLIOGRAPHY

Bar-Hillel, Y.
1964 Language and Information. Selected Essays on Theory and Application

(Reading, Mass.: Addison-Wesley).
Bar-Hillel, Y., C. Gaifman, and E. Shamir

1960 "On Categorical and Phrase Structure Grammars", Bull. Res. Council
of Israel 9F: 1-16. (See also Bar-Hillel 1964.)

Booth, T. L.
1969 "Probability Representation of Formal Languages", IEEE Tenth

Annual Symposium on Switching and Automata Theory (November).
Chomsky, N.

1959a "On Certain Formal Properties of Grammars", Information and
Control!: 137-67.

1959b "A Note on Phrase Structure Grammars", Information and Control
2: 393-95.

1962 "Context-Free Grammars and Pushdown Storage" (= RLE Quart.
Prog. Rept. No. 65) (Cambridge, Mass.: MIT).

1963 "Formal Properties of Grammar", Handbook of Mathematical
Psychology, R. D. Luce, R. R. Bush, and E. Galanter (eds.) (New
York: Wiley).

Chomsky, N., and G. A. Miller
1958 "Finite State Languages", Information and Control 1: 91-112.
1963 "Introduction to the Formal Analysis of Natural Languages",

Handbook of Mathematical Psychology, R. D. Luce, R. R. Bush,
and E. Galanter (eds.) (New York: Wiley).

Chomsky, N., and M. P. Schutzenberger
1963 "The Algebraic Theory of Context-free Languages", Computer Pro

gramming and Formal Systems, P. Braffort and D. Hirschberg (eds.)
(Amsterdam: North-Holland).

Davis, Martin
1958 Computability and Unsolvability (New York: McGraw-Hill, 1958).

Ellis, G. A.
1969 "Probabilistic Languages and Automata" (= Rept. no. 355. Dept.

Comp. Sc.) (University of Illinois, Urbana, 111.).
Evey, R. J.

1963 "The Theory and Application of Pushdown Machines", Mathematical

136 BIBLIOGRAPHY

Linguistics and Automatic Translation (= Computation Lab. Rept.
NSF-10) (Cambridge, Mass.: Harvard).

Feldman, J. A., J. Gips, J. J. Horning, and S. Reder
1969 Grammatical Complexity and Inference (= Techn. Rep. No. CS 125)

(Computer Science Dept., Stanford Univ.).
Feller, W.

1968 An Introduction to Probability Theory and its Applications, third
edition (New York: Wiley).

Ginsburg, S.
1962 An Introduction to Mathematical Machine Theory (Reading, Mass.:

Edison-Wesley).
1966 The Mathematical Theory of Context-free Languages (New York:

McGraw-Hill).
Ginsburg, S., and J. Ullman

1966 "Ambiguity in Context-free Languages", / . Assoc. Comp. Mach. 13:
62-88.

Ginzburg, A.
1968 Algebraic Theory of Automata (New York: Academic Press).

Gold, E. M.
1967 "Language Identification in the Limit", Information and Control 10:

441-74.
Greibach, S. A.

1963 "The Undecidability of the Ambiguity Problem for Minimal Linear
Grammars", Information and Control 6: 117-25.

1965 "A New Normal Form Theorem for Context-free Phrase Structure
Grammars", / . Ass. Comp. Mach. 12: 42-52.

1966 "The Unsolvability of the Recognition of Linear Context-free Lan
guages", / . Ass. Comp. Mach. 13: 582-87.

Grenander, U.
1967 "Syntax-controlled Probabilities", Rept. Division Appl. Mathem.

(Brown University, Providence, R.I.).
Hopcroft, J. E., and J. D . Ullman

1969 Formal Languages and Their Relation to Automata (Reading, Mass.:
Addison-Wesley).

Horning, J. J.
1969 "A Study of Grammatical Inference" (= Technical Report CS 139

Stanford Artificial Intelligence Project) (Stanford: Computer Science
Department).

Huang, T., and K. S. Fu
1971 "On Stochastic Context-free Languages", Information Sciences 3 :

201-24.
Kleene, S. C.

1952 Introduction to Metamathematics (Princeton: Van Nostrand).
1956 "Representation of Events in Nerve Nets and Finite Automata",

Automata Studies, C. E. Shannon and J. McCarthy (eds.) (Princeton:
Princeton University Press).

i

BIBLIOGRAPHY 137

Knuth, D. E.
1965 "On the Translation of Languages from Left to Right", Information

and Control 8: 607-39.
Kuroda, S. Y.

1964 "Classes of Languages and Linear-bounded Automata", Information
and Control!': 201-23.

Landweber, P. S.
1963 "Three Theorems on Phrase Structure Grammars of Type 1", Informa

tion and Control 6, 131-36.
McCulloch, W. S., and W. Pitts

1943 "A Logical Calculus of the Ideas Immanent in Nervous Activity",
Bull. Math. Biophysics 5: 115-33.

Miller, G. A., and N. Chomsky
1957 Pattern Conception (Paper for Conference on Pattern Detection,

University of Michigan).
Minsky, M. L.

1967 Computation. Finite and Infinite Machines (Englewood Cliffs: Prentice-
Hall).

Myhill, J.
1960 Linear Bounded Automata (= WADD Technical Note 60-165)

(Wright Air Development Division, Wright-Patterson Air Force
Base, Ohio).

Nelson, R. J.
1968 Introduction to Automata (New York: Wiley).

Newell, A., J. C. Shaw, and H. A. Simon
1959 "Report on a General Problem-solving Program", Information Pro

cessing, Proc. Intern. Conf. on Information Processing, UNESCO
(Paris, June).

Oettinger, A.
1961 "Automatic Syntactic Analysis and the Pushdown Store", Structure

of Language and its Mathematical Aspects, R. Jakobson (ed.) (Pro
vidence: Amer. Math. Soc).

Parikh, R. J.
1961 "Language Generating Devices", Quart. Progr. Rep. MIT Res. Lab.

Electr. 60:199-212.
Rabin, M. O.

1963 "Probabilistic Automata", Information and Control 6: 230-54.
Rabin, M. O., and D. Scott

1959 "Finite Automata and Their Decision Problem", IBM J. Res. 3:
115-25.

Salomaa, A.
1969 Theory of Automata (Oxford: Pergamon Press).

Solomonoff, R. J.
1958 "The Mechanization of Linguistic Learning", Proc. Second Intern.

Congr. Cybernetics (Namur), 180-93.
1964a "A Formal Theory of Inductive Reference. Part I", Information and

Control!': 1-22.

138 BIBLIOGRAPHY

1964b "A Formal Theory of Inductive Reference. Part II", Information and
Control!: 224-54.

Suppes, P.
1970 "Probabilistic Grammars for Natural Languages", Synthese 22:

95-116.
Turing, A. M.

1936 "On Computable Numbers, With an Application to the Entschei-
dungsproblem", Proc. London Math. Soc. 42: 230-65.

AUTHOR INDEX

Bar-Hillel, Y., 131, 133
Bayes, T., 117, 124,129
Booth, T. L., 52,132

Chomsky, N., 1, 10, 12, 17, 18,
131,132,133,134

Church, A., 133

Davis, M., 133

Ellis, G. A., 43,132
Evey, R. J., 133

Feldman, J. A., 127,134
Feller, W., 42
Fu, K. S., 50,132

Gaifman, C , 131
Ginsburg, S., 132
Ginzburg, A., 133
Gold, E. M., 121,130
Greibach, S. A., 17, 19, 132
Grenander, U., 132

Hopcroft, J. E., 20,133,134
Horning, X X, 124, 127, 130,134
Huang, T., 50, 132

Kleene, S. C , 124,131,132
Knuth, D. E., 81, 133
Kuroda, S. Y., 31, 34,100,132,133

Landweber, P. S., 100,133

McCulloch, W. S., 132
Miller, G. A., 131, 133

. Minsky, M. L., 110,124,133
Myhill, J., 133

Nelson, J. X, 124,134
Newell, A., 133

Oettinger, A., 133

Parikh, R. X, 132
Pitts, W., 132
Post, E. L., 133

Rabin, M. O., 132,133

Salomaa, A., 133,134
Schtttzenberger, M. P., 27
Scott, D., 132
Shamir, E., 131
Shaw, X C, 133
Simon, H. A., 133
Solomonoff, R. X, 134
Suppes, P., 44,132

Turing, A. M., 101,133

Ullman, X, 20,132,133, 134

SUBJECT INDEX

(italicized numbers refer to definitions)

Accepting, passim
by finite automaton, 54, 55
by linear bounded automaton, 94
by nondeterministic FA, 60
by nondeterministic PDA, 81
by push-down automaton, 78
by Turing-machine, 103,113

Accepting systems, 2, 53
Algol, 75
Algorithm, 113, 114,121
Ambiguity, 25, 26, 31

of grammar, 26, 37, 51,118
inherent, 26
of language, 26

Automata, 2, passim
finite, 54, see also finite automaton
linear bounded, 91, 92, 93-100,133
normalized, 68, 73, 74
probabilistic, 68, 68-74, 133
push-down, 75, 7tf-90

Bayes' theorem, 117, 124,129
Boundary symbol, 93,102

Cartesian product, 5
Categorical grammar, 2
Category symbol, 4
Characteristic function, 124
Chomsky hierarchy, 12, 131
Chomsky normal-form, 17, 18, 21,

45, 47, 49
Complement of language, 113
Computer language, 3, 75
Configuration, 77, 93,103

initial, 78, 103
final, 103

Connected grammar, 22
Consistency, 38, 50,128,132

conditions, 38, 50,132
Constituent structure, 132
Context-free

grammar, 11,16-27, 37, 81-90,118,
132, 133

language, / / , 16-27,38, 114
Context-sensitive

grammar, 10, 27-34, 37, 96-100
language, / / , 38, 27-34, 96-100,

106,124
productions, 27, 28, 29, 30, 131

Control unit, 55
Corpus, 43
Credibility of grammar, 128
Cut-point probability, 72

Decidability. 113

Effective procedure, 110
Efficiency of grammar, 35, 124
Eigenvalue, 52
Equivalency, passim

strong, 5
weak, 5, 55, 66, 82, 121
of probabilistic grammars, 37, 50,

124
Evaluation context, 117, 125

Final
state, 54, 92, 102

SUBJECT INDEX 141

vector, 71
Finite automaton, 16, 22, 53-74, 131,

132
deterministic, 60, 63
A:-limited, 58
non-deterministic, 60-63
probabilistic, 68, 69, 70-74

Finite language, 16
Finite state

automaton, 131
grammar, 11
language, 11, 131
machine, 132

Formal
grammar, / , 2
system, 1, 2, 3, 134

Generate, 5, passim
Generative

grammar, 2
system, 2, 53

Grammar, 5, passim
acceptability of, 115
ambiguity of, 26,37
categorical, 2
connected, 22
complexity of, 117, 125,128
context-free, see context-free
context-sensitive, see context-sensi

tive
equivalent, 5, passim
generative, 2
-grammar, 125-12%
hierarchy, 9,131
leftylinear, 26
linear, 26,132
linear bounded, 34, 132
LR(k}-. 81, 133
normal, 131
normalized, 36-43, 48, 50
optimal, 128, 129
picture-, 3
probabilistic, 55-52, 74, 115, 117,

124,130, 132, 134
regular, / / , 12-16, 37-44, 65, 67,

126, 131, 132
right-linear, 26
self-embedding, 21, 22

transformational, 31
type-0,10, 37,101,105, 107
type-1, see context-sensitive
type-2, see context-free
type-3, see regular
universal, 117,122
unrestricted probabilistic, 36

Greibach normal-form, 17, 19, 20,
45, 50, 85, 86, 132

Hierarchy
Chomsky, 12,131
of grammars, 9, 131
of languages, 12

Hypothesis-space, 115,117,125,128,
130

Inference, 1, 3, 115-130, 133,134
Informant presentation, 116,121,122
Information sequence, 116

complete, 116, 121
mixed, 116
positive, 116

Initial
configuration, 78,103-104
distribution, 69
probability, 69
state, 54, 76, 92,102

Instance, positive, negative, 116

jfc-limited automaton, 58, 59
Kuroda normal-form, 31, 32, 96, 98,

132

Language, 5, 37, 55, 78, 95, 103,
passim
-acquisition, 3
ambiguity of, 26
complement of, 113
context-free, / / , 16-27, 38, 114
context-sensitive, / / , 38, 27-34, 96-

100, 106,124
deterministic, 81,114
finite, 16
mirror-image, 6
normalized, 37, 38
probabilistic, 37

142 SUBJECT INDEX

recursively enumerable, 9, 10, 111,
113

recursive, 113,114
regular, 11, 38, passim, 53, 66, 72,

114, 122, 123
self-embedding, 21, 22
stochastic, 72
universal, 123

"Learnability" of language, i2i-124,
130

Leftmost derivation, 25, 26, 50, 51,
83,118

Likelihood function, 119
Linear

grammar, 26, 132
production, 26

Linear-bounded
automaton, 34, 91-100, 92, 102,

106, 133
grammar, 34,132

Listener, 2
Z.R(fc)-grammar, 81,133
Logic, 1, 3

Markov-process, 60
Matrix, 39

algebra, 38
element, 39
multiplication, 41
stochastic, 42, 69

Mechanical (effective) procedure, 9,
101,110, 111, 133

Mirror-image language, 6

Natural language, 9, 101
Neural networks, 132
Normal-form, 17, 19, 28, 34, 45-50,

131, 132
Chomsky, see Chomsky normal-

form
Greibach, see Greibach normal-

form
Kuroda, see Kuroda normal-form

Normalized
automaton, 68, 74
grammar, 5(5-43,48, 50
language, 37, 38

Null-string, 4, passim

Observation space, 116
Optimal grammar, 128,129

Picture-grammar, 3
Primitive recursiveness, 122, 124
Probabilistic

context-free grammar, 44-52
finite automaton, 6"S-74,133
grammar, 55-52, 74, 115, 117,124,

130,132, 134
grammar-grammar, 125-12$
language, 37
regular grammar, 38-44

Product of languages, 16, 66
Production rule, 4, passim
Production probability, 36, 44, 48,

115, 118,119, 125,130
Psycholinguistics, 2, 101
Pushdown automaton, 75, 76-90

nondeterministic, S/-90
Pushdown store, 75,133

Reading head, 55
Recognizing, 113
Recursive, 113
Recursive enumeration, 9, 10, / / / ,

113,114, 133
Regular

expression, 131
grammar, / / , 12-16, 57-44, 65, 67,

126,131,132
language, 11, 38, passim, 53, 66,

72, 114, 122,123
set, 131

Representation problem, 43
Rewrite rule, see production rule
Right-branching, 14
Right-linear

grammar, 14, 26
production, 26

Self-embedding, 21-24-, 132
Sentence, 5, 36, 55, passim
Sentence probability, 37, 73
Speaker, 2
State, initial, final, 54, 76, 92, 102,

passim
State transition function, 54

SUBJECT INDEX 143
Start symbol, 2, 5, 76
Stochastic

matrix, 42, 69
language, 72
text presentation, 116, 117, 130

Structural description, 35, 53

Turing machine, 1, 2, 101, 102-114,
121,133

Ungrammatieal sentence, 113
Universal

grammar, 117,122
language, 123
Turing machine, 106,107

Unrestricted
probabilistic grammars, 36
rewriting systems, 10,109

Variables, 4, passim
Vocabulary, 2, 3, 4, 54, passim

nonterminal, 4, passim
terminal, 4, passim
push-down, 76

Tape symbol, 92,102
Text presentation, 116, 121, 122, 128
Terminal vocabulary, 4, passim
Top symbol, 76
Transition

diagram, 56, 59, 61, 66, 70
matrix, 69, 71
rule, 54, 76, 93,103
table, 58

Tree diagram, 13, passim

