
The XML Framework and Its Implications for Corpus Access and Use

Nancy Ide

Department of Computer Science
Vassar College

Poughkeepsie, NY 12604-0520 USA
ide@cs.vassar.edu

Abstract
The eXtensible Markup Language (XML) (Bray, et al., 1998) is the emerging standard for data representation and exchange on the
World Wide Web. The XML Framework includes very powerful mechanisms for accessing and manipulating XML documents that are
likely to significantly impact the way annotated corpora are created and accessed. This paper outlines a few of the possibilities.

Introduction
The eXtensible Markup Language (XML) (Bray, et al.,

1998) is the emerging standard for data representation and
exchange on the World Wide Web. At its most basic level
XML is a document markup language directly derived
from SGML (i.e., allowing tagged text (elements),
element nesting, and element references). As such,
translation of an SGML encoded document into XML is
relatively trivial. However, various features and
extensions of XML make it a far more powerful tool for
data representation and access than SGML. The following
outlines some of these mechanisms and suggests ways in
which they can be used for creation and exploitation of
annotated corpora.

XML links
The recommended practice in encoding annotated

corpora is to maintain all or most annotations in separate
documents, each of which references appropriate locations
in the document containing the original data (Ide & Brew,
2000). This strategy yields, in essence, a finely linked
hypertext format where the links specify a semantic role
rather than navigational options. That is, links signify the
location(s) where markup contained in a given annotation
document would appear in the document to which it is
linked. As such, annotation information comprises remote
or "stand-off" markup that is virtually added to the
document to which it is linked. In principle, the original
data could contain no markup at all (or, more likely,
markup for gross logical structure only); all markup could
be retained in separate documents with links into the
original based on offsets.

The standoff scheme, then, requires addressing XML
elements, as well as characters and chains of characters
within those elements. It also requires that elements and
characters can be addressed both within the same
document and in other XML documents. XML provides
the following linking mechanisms, which are substantially
more powerful than the mechanisms provided in SGML,
which satisfy these requirements:
• XLink (DeRose, et al., 2000), a mechanism for

specifying a link (uni-directional or more complex
linking structures) between two or more resources or
portions of resources;

• the XML Path Language (XPath) (Clark & DeRose,
1999), an extended addressing syntax that defines a
concise notation for element localization in the
document tree (as defined by the nesting of elements

in the document itself), and allows addressing text
fragments within a particular element by providing
predicates for manipulating chains of characters;

• XPointer (DeRose, Daniel, & Maler, 1999), which
extends XPath syntax to allow addressing points and
ranges as well as nodes, locating information by
string matching, and use of addressing expressions in
URI-references as fragment identifiers.

For example , the Xpa th express ion
/div/p[2]/s[3] specifies the third < s > (sentence)
element within the second <p> (paragraph) element within
each <div> (text division) element; /descendant::p
specifies all <p> elements in the document. In addition,
Xpath allows addressing text fragments within a particular
element by providing predicates for manipulating chains
of characters. The expression

substring(/p/s[2]/text(),6)

selects the string "one would expect that the whole sky
would be as bright as the sun, even at night." from the
following text:

<p><s id="d3p13s4">The difficulty
is that in an infinite static universe
nearly every line of sight would end
on the surface of a star.</s><s
id="d3p13s5">Thus one would expect
that the whole sky would be as bright
as the sun, even at night.</s></p>

The expression
substring(/p/s[2]/text(), 10, 12)

• selects "would expect". Thus the reference is made by
specifying (1) the address (absolute or relative) of the
element closest to the substring to be referred to, and
(2) the substring within this element.

The Xlink mechanism can be used to link corresponding
segments of two or more primary texts (As for alignment
of text or speech), or to link annotation documents to a
base document containing the primary text. For example,
in the following, annotation information (e.g., morpho-
syntactic information) about a specific token (<tok>) is
linked to the string of characters in the original text to
which it applies:
<tok

 xlink:href=
 "substring(/p/s[2]/text(),10,12)">

Although this example shows linkage for text, the
mechanism provides for linking resources in any medium
(audio, video, etc.), which allows for linking speech,

external images, video, applets, form-processing
programs, style sheets, etc.

In addition to specifying the target location for
information in the same or external documents, XLink
attributes can be used to specify the role of the link, i.e.,
how the link should be activated (by hand, or
automatically by the browser) and what to do with the
target fragment (replace it or insert it into the source
document).

In XML, annotated fragments are referenced by the
URI (remote or local) of the target resource, and an
extended pointer identifying a element and, where
necessary, the selected substring of that element's content,
as in the following:

<tok
 xlink:href=
 "http://www.loria.fr/doc.xml#xptr
 (substring(/p/s[2]/text(), 10, 12))">

Annotation resulting from automatic processing
(marking of sentence boundaries, tokens, links between
parallel texts, etc.) often includes thousands of links to the
same external document. Repetition of the document
name on every relevant element in an annotation
document would obviously significantly multiply its size.
XML includes an attribute xml:base (Marsh, 2000) that
can be used to specify inheritance of an attribute. For
example, in the following text:

<chunk
 xml:base=
 "http://www.mysite.edu/doc.xml#">
 <tok
 xlink:href="xptr(substring
 (/p/s[2]/text(), 10, 12))"/>
 <tok
 xlink:href="xptr(substring
 (/p/s[2]/text(), 24, 4))"/>
</chunk>

the value of the attribute xml:base specified on the
<chunk> element is inherited by the two <tok> elements
that are its children, and therefore need not be re-
specified. The inclusion of xml:base in the XML
specification ensures that conformant XML processors
will handle it (unlike SGML).

XML transformations
The Extensible Style Language (XSL) is a part of the

XML framework, consisting of two parts: the best known
is the XSL formatting or "style sheet" language; and a
powerful tree-traversal language, XSLT (Clark, 1999),
that can be used to convert any XML document into
another document in any form (e.g., XML, well-formed
HTML, plain text, etc.) by selecting, rearranging, and/or
adding information to it. The transformed documents may
or may not be intended for rendering data on a computer
screen, but may be used simply to move data from one
computer system or program to another (e.g., to transduce
between encoding and/or annotation formats, etc.).

XSLT supports the following kinds of document
manipulation:
• selection of elements or portions of element content

using the XPath syntax;
• rearrangement or transformation of extracted

information (including not only text content but also
element names, etc.) in the target document;

• addition of information in the target document.

A suite of documents representing a base text (or
texts) and its annotations can be manipulated to serve any
application that relies on part or all of its contents. Thus,
XSLT is likely to have the most to offer for manipulation
of and access to annotated corpora.

XSLT is relatively complex and will not be described
in detail here.1 A short example can provide some idea of
the possibilities. Using as input a document containing
morpho-syntactic information (e.g., a document
containing the fragment in Figure 12), the XSLT
document in Figure 2 can be used to create an HTML
document that displays a text in "word | lemma | pos"
form. When the resulting HTML document is loaded into
a browser, it will display the following:

It|it|PPER3 was|be|PAST3 a|a|DINT
bright|bright|ADJE cold|cold|ADJE
day|day|NN…

<?xml version="1.0">
<chunk type="BODY" lang="en"
 xml:base=
"http://www.cs.vassar.edu/~ME/Oen.xcesDoc#">
 <par xlink:href="xptr(substring(//p[1]">
 <s xlink:href="xptr(substring(//p/s[1]">
 <tok type="WORD"
 xlink:href=
 "xptr(substring(//p/s[1]/text(),1,2">
 <orth>It</orth>
 <disamb>
 <base>it</base>
 <msd>Pp3ns</msd>
 <ctag>PPER3</ctag></lex>
 <lex>
 <base>it</base>
 <msd>Pp3ns</msd>
 <ctag>PPER3</ctag></lex></tok>
 <tok type="WORD"
 xlink:href=
 "xptr(substring(//p/s[1]/text(),4,2">
 <orth>was</orth>
 <disamb>
 <base>be</base>
 <msd>Vmis3s</msd>
 <ctag>PAST3</ctag></lex>
 <lex>
 <base>be</base>
 <msd>Vais1s</msd>
 <ctag>AUX1</ctag></lex>
 <lex>
 <base>be</base>
 <msd>Vais3s</msd>
 <ctag>AUX3</ctag></lex>
 <lex>
 <base>be</base>
 <msd>Vmis1s</msd>
 <ctag>PAST1</ctag></lex>
 <lex>
 <base>be</base>
 <msd>Vmis3s</msd>
 <ctag>PAST3</ctag></lex></tok>…

Figure 1 : Fragment of a cesAna document

1 Full documentation is available at http://www.w3.org/TR/xslt.
2 Note that this document, encoded according to the xcesAna
specifications (Ide, Bonhomme, & Romary, 2000), contains full
sementation and annotation information, including full morpho-
syntactic specifications for all potential annotations and the
results of automatic disambiguation.

<xsl:stylesheet version="1.0"
 xmnls:xsl=
 "http://www.w3.org/1999/XSL/Transform">

<xsl:template match= “/”>
 <html>
 <body>
 <xsl:apply-templates/>
 </body>
 </html>
</xsl:template>

<xsl:template match="//par"/>

 <xsl:for-each select=”//tok”/>
 <xsl:value-of select=”orth”/>
 <xsl:text>|</xsl:text>
 <xsl:value-of select=”disamb/base”/>
 <xsl:text>|</xsl:text>
 <xsl:value-of select=”disamb/ctag”/>
 </xsl:for-each>
</xsl:template>

</xsl:stylesheet>

Figure 2 : XSLT document to create HTML output

The XSLT script in Figure 2 could be modified to
produce output in any desired form, or to produce another
XML document containing the merged text and
annotation documents. Similarly, XSLT can be used to
produce concordances, paired sentences or words from a
parallel text, or even a web document that displays the
orthographic representation of a text and provides the
audio rendition when the word is clicked on, etc. XSLT
can also be used to implement an inheritance mechanism
over the document tree3; for example, Ide, Kilgarriff, &
R o m a r y (2000) show how XSLT can implement
inheritance mechanism for lexical information.

XML Schemas
The XML Schema definition language (Thompson, et

al., 2000; Biron & Malhotra, 2000) enables document
creators to constrain and document the meaning, usage
and relationships of the constituent parts of XML
documents: datatypes, elements and their content, and
attributes and their values. Schemas can also be used to
provide default values for attributes and elements. As
such, XML schemas provide means to define an abstract
data model for a class of documents. While duplicating
(or making explicit) some of the capabilities provided by
XML DTDs, they significantly extend their power and
provide for much tighter validation of document form and
content.

XML schemas have considerable implications for
development of annotated corpora. The following lists
only a few possibilities for the application of XML
schemas:
• different attribute declarations and/or content
models can apply to elements with the same name in
different contexts. This allows for more tightly
constrained content models than possible with DTDs. For
example, names in headers (names of authors, etc.,
consisting of the usual "first name", "last name" elements)
and names in the text ("named entities") should have

3 See also Erjavec et al. (2000)

different content models and attributes in order to provide
for tight validation of form in each context. For example,
in the SGML-based CES (Ide, 1998a, b), header elements
are prefixed with "h." so that names in headers are tagged
with <h.name>, whose content model is different from
that of the <name> element that can appear in the body of
the text. This strategy is effectively a "kludge" to
overcome the fact that SGML provides no scoping
capabilities. XML schemas, building on definitions using
XML Namespaces (Bray, Hollander, & Layman, 1999),
solves this problem. Thus it is possible to avoid the
invention of variant element names while retaining the
ability to constrain content and attributes based on
context.
• equivalence classes can be defined for groups of
elements and/or attributes, indicating that they may be
used in the same ways as defined for a particular named
element ("the exemplar"). For example, the CES makes
extensive use of parameter entities to group together
elements that behave identically. For example, phrase-
level elements (i.e., elements that can appear within but
not outside paragraphs or paragraph-like elements, such as
name, num, etc.) are grouped using the parameter
%phrase.seq, so that all paragraph-level elements can
include this class in their content models. Again, this is a
work-around for the fact that equivalence and inheritance
of properties is not expressible in SGML. Similarly,
groups of attributes are defined in all CES DTDs, as in the
cesAna DTD fragment given in Figure 3. In the XML
version of the CES (XCES) (Ide, Bonhomme, & Romary,
2000), this is replaced by the schema in Figure 4.
• attribute or element values, or combinations of
attribute and element values, can be constrained to be
unique. That is, it is possible to indicate in a
computational lexicon that only one entry can be defined
with the value of a given word form as its content (or the
content of one of its child elements), that only one
paragraph can have an attribute indicating that it is the
23rd, or in general that a given key appears only once in a
document. Similarly, we can ensure that only one
disambiguated form is given for each token in an
annotation document, or only one correspondence for a
given sentence in an alignment document. Obviously, this
is useful for error detection and prevention.
• dependencies can be established based on values of
elements or attributes. This has similar benefits for error
detection in creating annotated corpora: nouns can be
prevented from being assigned a tense, tokens whose type
attribute has the value PUNCT can be specified to
include only <orth> elements containing specific
characters, etc. More generally, annotation labels (e.g.,
pos indicators) used in an annotation document can be
specified elsewhere, and element content can be
constrained to these values only; for example, to constrain
the values of the <msd> element in an XCES annotation
document to the EAGLES morphosyntactic specifications
(Monachini & Calzolari, 1996), the following could be
specified:

<element name="msd">

 <simpleType base="string">
 <enumeration value="Pp3ns"/>
 <enumeration value="Vmis3s"/>
 <enumeration value="Vais3s"/>
 <enumeration value="Vmis1s"/>
 ...
 </simpleType>
 </element>

<!ENTITY % a.global '
id ID #IMPLIED
n CDATA #IMPLIED
xml:lang CDATA #IMPLIED
lang IDREF #IMPLIED' >

<!ENTITY % a.ana '%a.global;
type CDATA #IMPLIED
wsd CDATA #IMPLIED'
>

<!ELEMENT cesAna (cesHeader?, chunkList)>
<!ATTLIST cesAna %a.ana;

doc CDATA #IMPLIED
version CDATA #REQUIRED>

Figure 3 : cesAna DTD fragment for global attributes

<schema>
 <attributeGroup name="globalAtt">
 <attribute name="id" type="ID"
 maxOccurs="1" minOccurs="0"/>
 <attribute name="n" type="NMTOKEN"
 maxOccurs="1" minOccurs="0"/>
 <attribute name="lang" type="IDREF"
 maxOccurs="1" minOccurs="0"/>
 </attributeGroup>
 <attributeGroup name="anaAtt">
 <attribute name="type" type="string"
 maxOccurs="1" minOccurs="0"/>
 <attribute name="wsd" type="string"
 maxOccurs="1" minOccurs="0"/>
 </attributeGroup>
 <element name="cesAna">
 <complexType>
 <element name="cesHeader" minOccurs="0"/>
 <element name="chunkList" minOccurs="1"/>
 <attributeGroup ref="globalAtt"/>
 <attributeGroup ref="anaAtt"/>
 <attribute name="doc" maxOccurs="1"
 minOccurs="0"/>
 <attribute name="version" maxOccurs="1"
 minOccurs="1"/>
 </complexType>
 </element>
</schema>

Figure 4 : XCES schema for global attributes

Conclusion
This paper outlines some of the potential uses of the

mechanisms provided within the XML framework for the
creation and use of annotated corpora. As the XML
standard develops, more ways to exploit XML will no
doubt emerge. For instance, it is likely that corpora and
their annotations will be distributed over servers

throughout the world in the future, rather than being
maintained at a single site; XML is explicitly designed to
handle distributed data. Also, XML’s provision for
accessing part or all of multiple DTDs from a single
document provides an elegant means to represent and
manipulate standoff annotation documents.

XML is an international standard that will become the
base of information exchange and access over the World
Wide Web. As we develop annotated corpora that are
intended to be maximally usable and reusable for multiple
applications, it makes sense to exploit the XML
framework to ensure the compatibility and flexibility our
applications (and future applications we cannot yet
envision) require.

Acknowledgements
The author gratefully acknowledges Laurent Romary and Patrice
Bonhomme for their contributions to the ideas in this paper, and
for providing the examples of linkage and the use of XML
schemas.

References
Biron, P. & Malhotra, A., 2000. XML Schema Part 2:

Datatypes. W3C Working Draft, 25 February 2000.
http://www.w3.org/TR/xmlschema-2/.

Bray, T., Hollander, D., Layman, M., 1999. Namespaces
in XML. World Wide Web Consortium
Recommendation, 14 January 1999.
http://www.w3.org/TR/REC-xml-names/.

Bray, T., Paoli, J., Sperberg-McQueen, C.M. (eds.), 1998.
Extensible Markup Language (XML) Version 1.0.
W3C Recommendation.

 http://www.w3.org:TR/1998/REC-xml-19980210.
Clark, J. (ed.), 1999. XSL Transformations (XSLT).

Version 1.0. W3C Recommendation.
http://www.w3.org/TR/xslt.

Clark, J. and DeRose, S., 1999. XML Path Language
(XPath). Version 1.0. W3C Recommendation.
http://www.w3.org/TR/xpath.

Clark, J., 1999. XT Version 1991105.
http://www.jclark.com/xml/xt.html

DeRose, S, Maler, E., Orchard, D., Trafford, B. (eds.),
2000. XML Linking Language (XLink). W3C Working
Draft, 21 February 2000. http://www.w3.org/TR/xlink.

DeRose, S., Daniel, R., & Maler, E., 1999. XML Pointer
Language (XPointer). W3C Working Draft, 6
December 1999. http://www.w3.org/TR/xptr.

Erjavec, T., Evans, R., Ide, N., Kilgarriff, A., 2000. The
CONCEDE model for Lexical Databases. In
Proceedings of the Second International Language
Resources and Evaluation Conference, Paris: European
Language Resources Association.

Ide, N., 1998a. Encoding Linguistic Corpora. In
Proceedings of the Sixth Workshop on Very Large
Corpora, 9-17.

Ide, N., 1998b. Corpus Encoding Standard: SGML
Guidelines for Encoding Linguistic Corpora. In
Proceedings of the First International Language
Resources and Evaluation Conference, Paris: European
Language Resources Association, 463-70.

Ide, N., Bonhomme, P., & Romary, L., 2000. XCES: An
XML-based Encoding Standard for Linguistic Corpora.
In Proceedings of the Second International Language

Resources and Evaluation Conference. Paris: European
Language Resources Association.

Ide, N. & Brew, C., 2000. Requirements, Tools, and
Architectures for Annotated Corpora. In Proceedings of
the EAGLES/ISLE Workshop on Meta-Descriptions and
Annotation Schemas for Multimodal/Multimedia
Language Resources and Data Architectures and
Software Support for Large Corpora (this volume).
Paris: European Language Resources Association.

Ide, N., Kilgarriff, A., Romary, L., 2000. A Formal Model
of Dictionary Structure and Content. In Proceedings of
EURALEX'00, to appear.

Marsh, J., 2000. XML Base (XBase). W3C Working Draft
21-February-2000. http://www.w3.org/TR/xmlbase.

Monachini, M. & Calzolari, N., 1996. Synopsis and
Comparison of Morphosyntactic Phenomena Encoded
in Lexicons and Corpora: A Common Proposal and
Applications to European Languages. EAGLES Report
EAG-CLWG-MORPHSYN/R.
http://www.ilc.pi.cnr.it/EAGLES96/morphsyn/.

Thompson, H., Beech, D., Maloney, M. Mendelsohn, N.,
2000. XML Schema Part 1: Structures. W3C Working
Draft, 25 February 2000.
http://www.w3.org/TR/xmlschema-1/.

