Anne Cutler †

Publications

Displaying 1 - 40 of 40
  • Alispahic, S., Pellicano, E., Cutler, A., & Antoniou, M. (2022). Auditory perceptual learning in autistic adults. Autism Research, 15(8), 1495-1507. doi:10.1002/aur.2778.

    Abstract

    The automatic retuning of phoneme categories to better adapt to the speech of a novel talker has been extensively documented across various (neurotypical) populations, including both adults and children. However, no studies have examined auditory perceptual learning effects in populations atypical in perceptual, social, and language processing for communication, such as populations with autism. Employing a classic lexically-guided perceptual learning paradigm, the present study investigated perceptual learning effects in Australian English autistic and non-autistic adults. The findings revealed that automatic attunement to existing phoneme categories was not activated in the autistic group in the same manner as for non-autistic control subjects. Specifically, autistic adults were able to both successfully discern lexical items and to categorize speech sounds; however, they did not show effects of perceptual retuning to talkers. These findings may have implications for the application of current sensory theories (e.g., Bayesian decision theory) to speech and language processing by autistic individuals.
    Lay Summary

    Lexically guided perceptual learning assists in the disambiguation of speech from a novel talker. The present study established that while Australian English autistic adult listeners were able to successfully discern lexical items and categorize speech sounds in their native language, perceptual flexibility in updating speaker-specific phonemic knowledge when exposed to a novel talker was not available. Implications for speech and language processing by autistic individuals as well as current sensory theories are discussed.

    Additional information

    data
  • Cutler, A., Ernestus, M., Warner, N., & Weber, A. (2022). Managing speech perception data sets. In B. McDonnell, E. Koller, & L. B. Collister (Eds.), The Open Handbook of Linguistic Data Management (pp. 565-573). Cambrdige, MA, USA: MIT Press. doi:10.7551/mitpress/12200.003.0055.
  • Ip, M. H. K., & Cutler, A. (2022). Juncture prosody across languages: Similar production but dissimilar perception. Laboratory Phonology, 13(1): 5. doi:10.16995/labphon.6464.

    Abstract

    How do speakers of languages with different intonation systems produce and perceive prosodic junctures in sentences with identical structural ambiguity? Native speakers of English and of Mandarin produced potentially ambiguous sentences with a prosodic juncture either earlier in the utterance (e.g., “He gave her # dog biscuits,” “他给她#狗饼干 ”), or later (e.g., “He gave her dog # biscuits,” “他给她狗 #饼干 ”). These productiondata showed that prosodic disambiguation is realised very similarly in the two languages, despite some differences in the degree to which individual juncture cues (e.g., pausing) were favoured. In perception experiments with a new disambiguation task, requiring speeded responses to select the correct meaning for structurally ambiguous sentences, language differences in disambiguation response time appeared: Mandarin speakers correctly disambiguated sentences with earlier juncture faster than those with later juncture, while English speakers showed the reverse. Mandarin-speakers with L2 English did not show their native-language response time pattern when they heard the English ambiguous sentences. Thus even with identical structural ambiguity and identically cued production, prosodic juncture perception across languages can differ.

    Additional information

    supplementary files
  • Liu, L., Yuan, C., Ong, J. H., Tuninetti, A., Antoniou, M., Cutler, A., & Escudero, P. (2022). Learning to perceive non-native tones via distributional training: Effects of task and acoustic cue weighting. Brain Sciences, 12(5): 559. doi:10.3390/brainsci12050559.

    Abstract

    As many distributional learning (DL) studies have shown, adult listeners can achieve discrimination of a difficult non-native contrast after a short repetitive exposure to tokens falling at the extremes of that contrast. Such studies have shown using behavioural methods that a short distributional training can induce perceptual learning of vowel and consonant contrasts. However, much less is known about the neurological correlates of DL, and few studies have examined non-native lexical tone contrasts. Here, Australian-English speakers underwent DL training on a Mandarin tone contrast using behavioural (discrimination, identification) and neural (oddball-EEG) tasks, with listeners hearing either a bimodal or a unimodal distribution. Behavioural results show that listeners learned to discriminate tones after both unimodal and bimodal training; while EEG responses revealed more learning for listeners exposed to the bimodal distribution. Thus, perceptual learning through exposure to brief sound distributions (a) extends to non-native tonal contrasts, and (b) is sensitive to task, phonetic distance, and acoustic cue-weighting. Our findings have implications for models of how auditory and phonetic constraints influence speech learning.

    Additional information

    supplementary material A-D
  • Cutler, A. (2009). Greater sensitivity to prosodic goodness in non-native than in native listeners. Journal of the Acoustical Society of America, 125, 3522-3525. doi:10.1121/1.3117434.

    Abstract

    English listeners largely disregard suprasegmental cues to stress in recognizing words. Evidence for this includes the demonstration of Fear et al. [J. Acoust. Soc. Am. 97, 1893–1904 (1995)] that cross-splicings are tolerated between stressed and unstressed full vowels (e.g., au- of autumn, automata). Dutch listeners, however, do exploit suprasegmental stress cues in recognizing native-language words. In this study, Dutch listeners were presented with English materials from the study of Fear et al. Acceptability ratings by these listeners revealed sensitivity to suprasegmental mismatch, in particular, in replacements of unstressed full vowels by higher-stressed vowels, thus evincing greater sensitivity to prosodic goodness than had been shown by the original native listener group.
  • Cutler, A. (2009). Psycholinguistics in our time. In P. Rabbitt (Ed.), Inside psychology: A science over 50 years (pp. 91-101). Oxford: Oxford University Press.
  • Cutler, A., Otake, T., & McQueen, J. M. (2009). Vowel devoicing and the perception of spoken Japanese words. Journal of the Acoustical Society of America, 125(3), 1693-1703. doi:10.1121/1.3075556.

    Abstract

    Three experiments, in which Japanese listeners detected Japanese words embedded in nonsense sequences, examined the perceptual consequences of vowel devoicing in that language. Since vowelless sequences disrupt speech segmentation [Norris et al. (1997). Cognit. Psychol. 34, 191– 243], devoicing is potentially problematic for perception. Words in initial position in nonsense sequences were detected more easily when followed by a sequence containing a vowel than by a vowelless segment (with or without further context), and vowelless segments that were potential devoicing environments were no easier than those not allowing devoicing. Thus asa, “morning,” was easier in asau or asazu than in all of asap, asapdo, asaf, or asafte, despite the fact that the /f/ in the latter two is a possible realization of fu, with devoiced [u]. Japanese listeners thus do not treat devoicing contexts as if they always contain vowels. Words in final position in nonsense sequences, however, produced a different pattern: here, preceding vowelless contexts allowing devoicing impeded word detection less strongly (so, sake was detected less accurately, but not less rapidly, in nyaksake—possibly arising from nyakusake—than in nyagusake). This is consistent with listeners treating consonant sequences as potential realizations of parts of existing lexical candidates wherever possible.
  • Kooijman, V., Hagoort, P., & Cutler, A. (2009). Prosodic structure in early word segmentation: ERP evidence from Dutch ten-month-olds. Infancy, 14, 591 -612. doi:10.1080/15250000903263957.

    Abstract

    Recognizing word boundaries in continuous speech requires detailed knowledge of the native language. In the first year of life, infants acquire considerable word segmentation abilities. Infants at this early stage in word segmentation rely to a large extent on the metrical pattern of their native language, at least in stress-based languages. In Dutch and English (both languages with a preferred trochaic stress pattern), segmentation of strong-weak words develops rapidly between 7 and 10 months of age. Nevertheless, trochaic languages contain not only strong-weak words but also words with a weak-strong stress pattern. In this article, we present electrophysiological evidence of the beginnings of weak-strong word segmentation in Dutch 10-month-olds. At this age, the ability to combine different cues for efficient word segmentation does not yet seem to be completely developed. We provide evidence that Dutch infants still largely rely on strong syllables, even for the segmentation of weak-strong words.
  • Tyler, M., & Cutler, A. (2009). Cross-language differences in cue use for speech segmentation. Journal of the Acoustical Society of America, 126, 367-376. doi:10.1121/1.3129127.

    Abstract

    Two artificial-language learning experiments directly compared English, French, and Dutch listeners’ use of suprasegmental cues for continuous-speech segmentation. In both experiments, listeners heard unbroken sequences of consonant-vowel syllables, composed of recurring three- and four-syllable “words.” These words were demarcated by(a) no cue other than transitional probabilities induced by their recurrence, (b) a consistent left-edge cue, or (c) a consistent right-edge cue. Experiment 1 examined a vowel lengthening cue. All three listener groups benefited from this cue in right-edge position; none benefited from it in left-edge position. Experiment 2 examined a pitch-movement cue. English listeners used this cue in left-edge position, French listeners used it in right-edge position, and Dutch listeners used it in both positions. These findings are interpreted as evidence of both language-universal and language-specific effects. Final lengthening is a language-universal effect expressing a more general (non-linguistic) mechanism. Pitch movement expresses prominence which has characteristically different placements across languages: typically at right edges in French, but at left edges in English and Dutch. Finally, stress realization in English versus Dutch encourages greater attention to suprasegmental variation by Dutch than by English listeners, allowing Dutch listeners to benefit from an informative pitch-movement cue even in an uncharacteristic position.
  • Cutler, A. (2001). Entries on: Acquisition of language by non-human primates; bilingualism; compound (linguistic); development of language-specific phonology; gender (linguistic); grammar; infant speech perception; language; lexicon; morphology; motor theory of speech perception; perception of second languages; phoneme; phonological store; phonology; prosody; sign language; slips of the tongue; speech perception; speech production; stress (linguistic); syntax; word recognition; words. In P. Winn (Ed.), Dictionary of biological psychology. London: Routledge.
  • Cutler, A. (2001). Listening to a second language through the ears of a first. Interpreting, 5, 1-23.
  • Cutler, A., McQueen, J. M., Norris, D., & Somejuan, A. (2001). The roll of the silly ball. In E. Dupoux (Ed.), Language, brain and cognitive development: Essays in honor of Jacques Mehler (pp. 181-194). Cambridge, MA: MIT Press.
  • Cutler, A., & Van Donselaar, W. (2001). Voornaam is not a homophone: Lexical prosody and lexical access in Dutch. Language and Speech, 44, 171-195. doi:10.1177/00238309010440020301.

    Abstract

    Four experiments examined Dutch listeners’ use of suprasegmental information in spoken-word recognition. Isolated syllables excised from minimal stress pairs such as VOORnaam/voorNAAM could be reliably assigned to their source words. In lexical decision, no priming was observed from one member of minimal stress pairs to the other, suggesting that the pairs’ segmental ambiguity was removed by suprasegmental information.Words embedded in nonsense strings were harder to detect if the nonsense string itself formed the beginning of a competing word, but a suprasegmental mismatch to the competing word significantly reduced this inhibition. The same nonsense strings facilitated recognition of the longer words of which they constituted the beginning, butagain the facilitation was significantly reduced by suprasegmental mismatch. Together these results indicate that Dutch listeners effectively exploit suprasegmental cues in recognizing spoken words. Nonetheless, suprasegmental mismatch appears to be somewhat less effective in constraining activation than segmental mismatch.
  • McQueen, J. M., & Cutler, A. (2001). Spoken word access processes: An introduction. Language and Cognitive Processes, 16, 469-490. doi:10.1080/01690960143000209.

    Abstract

    We introduce the papers in this special issue by summarising the current major issues in spoken word recognition. We argue that a full understanding of the process of lexical access during speech comprehension will depend on resolving several key representational issues: what is the form of the representations used for lexical access; how is phonological information coded in the mental lexicon; and how is the morphological and semantic information about each word stored? We then discuss a number of distinct access processes: competition between lexical hypotheses; the computation of goodness-of-fit between the signal and stored lexical knowledge; segmentation of continuous speech; whether the lexicon influences prelexical processing through feedback; and the relationship of form-based processing to the processes responsible for deriving an interpretation of a complete utterance. We conclude that further progress may well be made by swapping ideas among the different sub-domains of the discipline.
  • McQueen, J. M., Otake, T., & Cutler, A. (2001). Rhythmic cues and possible-word constraints in Japanese speech segmentation. Journal of Memory and Language, 45, 103-132. doi:10.1006/jmla.2000.2763.

    Abstract

    In two word-spotting experiments, Japanese listeners detected Japanese words faster in vowel contexts (e.g., agura, to sit cross-legged, in oagura) than in consonant contexts (e.g., tagura). In the same experiments, however, listeners spotted words in vowel contexts (e.g., saru, monkey, in sarua) no faster than in moraic nasal contexts (e.g., saruN). In a third word-spotting experiment, words like uni, sea urchin, followed contexts consisting of a consonant-consonant-vowel mora (e.g., gya) plus either a moraic nasal (gyaNuni), a vowel (gyaouni) or a consonant (gyabuni). Listeners spotted words as easily in the first as in the second context (where in each case the target words were aligned with mora boundaries), but found it almost impossible to spot words in the third (where there was a single consonant, such as the [b] in gyabuni, between the beginning of the word and the nearest preceding mora boundary). Three control experiments confirmed that these effects reflected the relative ease of segmentation of the words from their contexts.We argue that the listeners showed sensitivity to the viability of sound sequences as possible Japanese words in the way that they parsed the speech into words. Since single consonants are not possible Japanese words, the listeners avoided lexical parses including single consonants and thus had difficulty recognizing words in the consonant contexts. Even though moraic nasals are also impossible words, they were not difficult segmentation contexts because, as with the vowel contexts, the mora boundaries between the contexts and the target words signaled likely word boundaries. Moraic rhythm appears to provide Japanese listeners with important segmentation cues.
  • Norris, D., McQueen, J. M., Cutler, A., Butterfield, S., & Kearns, R. (2001). Language-universal constraints on speech segmentation. Language and Cognitive Processes, 16, 637-660. doi:10.1080/01690960143000119.

    Abstract

    Two word-spotting experiments are reported that examine whether the Possible-Word Constraint (PWC) is a language-specific or language-universal strategy for the segmentation of continuous speech. The PWC disfavours parses which leave an impossible residue between the end of a candidate word and any likely location of a word boundary, as cued in the speech signal. The experiments examined cases where the residue was either a CVC syllable with a schwa, or a CV syllable with a lax vowel. Although neither of these syllable contexts is a possible lexical word in English, word-spotting in both contexts was easier than in a context consisting of a single consonant. Two control lexical-decision experiments showed that the word-spotting results reflected the relative segmentation difficulty of the words in different contexts. The PWC appears to be language-universal rather than language-specific.
  • Soto-Faraco, S., Sebastian-Galles, N., & Cutler, A. (2001). Segmental and suprasegmental mismatch in lexical access. Journal of Memory and Language, 45, 412-432. doi:10.1006/jmla.2000.2783.

    Abstract

    Four cross-modal priming experiments in Spanish addressed the role of suprasegmental and segmental information in the activation of spoken words. Listeners heard neutral sentences ending with word fragments (e.g., princi-) and made lexical decisions on letter strings presented at fragment offset. Responses were compared for fragment primes that fully matched the spoken form of the initial portion of target words, versus primes that mismatched in a single element (stress pattern; one vowel; one consonant), versus control primes. Fully matching primes always facilitated lexical decision responses, in comparison to the control condition, while mismatching primes always produced inhibition. The respective strength of the contribution of stress, vowel, and consonant (one feature mismatch or more) information did not differ statistically. The results support a model of spoken-word recognition involving automatic activation of word forms and competition between activated words, in which the activation process is sensitive to all acoustic information relevant to the language’s phonology.
  • Warner, N., Jongman, A., Cutler, A., & Mücke, D. (2001). The phonological status of Dutch epenthetic schwa. Phonology, 18, 387-420. doi:10.1017/S0952675701004213.

    Abstract

    In this paper, we use articulatory measures to determine whether Dutch schwa epenthesis is an abstract phonological process or a concrete phonetic process depending on articulatory timing. We examine tongue position during /l/ before underlying schwa and epenthetic schwa and in coda position. We find greater tip raising before both types of schwa, indicating light /l/ before schwa and dark /l/ in coda position. We argue that the ability of epenthetic schwa to condition the /l/ alternation shows that Dutch schwa epenthesis is an abstract phonological process involving insertion of some unit, and cannot be accounted for within Articulatory Phonology.
  • Boland, J. E., & Cutler, A. (1995). Interaction with autonomy: Defining multiple output models in psycholinguistic theory. Working Papers in Linguistic, 45, 1-10. Retrieved from http://hdl.handle.net/2066/15768.

    Abstract

    There are currently a number of psycholinguistic models in which processing at a particular level of representation is characterized by the generation of multiple outputs, with resolution involving the use of information from higher levels of processing. Surprisingly, models with this architecture have been characterized as autonomous within the domain of word recognition and as interactive within the domain of sentence processing. We suggest that the apparent internal confusion is not, as might be assumed, due to fundamental differences between lexical and syntactic processing. Rather, we believe that the labels in each domain were chosen in order to obtain maximal contrast between a new model and the model or models that were currently dominating the field.
  • Boland, J. E., & Cutler, A. (1995). Interaction with autonomy: Multiple Output models and the inadequacy of the Great Divide. Cognition, 58, 309-320. doi:10.1016/0010-0277(95)00684-2.

    Abstract

    There are currently a number of psycholinguistic models in which processing at a particular level of representation is characterized by the generation of multiple outputs, with resolution - but not generation - involving the use of information from higher levels of processing. Surprisingly, models with this architecture have been characterized as autonomous within the domain of word recognition but as interactive within the domain of sentence processing. We suggest that the apparent confusion is not, as might be assumed, due to fundamental differences between lexical and syntactic processing. Rather, we believe that the labels in each domain were chosen in order to obtain maximal contrast between a new model and the model or models that were currently dominating the field. The contradiction serves to highlight the inadequacy of a simple autonomy/interaction dichotomy for characterizing the architectures of current processing models.
  • Cutler, A. (1995). Spoken word recognition and production. In J. L. Miller, & P. D. Eimas (Eds.), Speech, language and communication (pp. 97-136). New York: Academic Press.

    Abstract

    This chapter highlights that most language behavior consists of speaking and listening. The chapter also reveals differences and similarities between speaking and listening. The laboratory study of word production raises formidable problems; ensuring that a particular word is produced may subvert the spontaneous production process. Word production is investigated via slips and tip-of-the-tongue (TOT), primarily via instances of processing failure and via the technique of via the picture-naming task. The methodology of word production is explained in the chapter. The chapter also explains the phenomenon of interaction between various stages of word production and the process of speech recognition. In this context, it explores the difference between sound and meaning and examines whether or not the comparisons are appropriate between the processes of recognition and production of spoken words. It also describes the similarities and differences in the structure of the recognition and production systems. Finally, the chapter highlights the common issues in recognition and production research, which include the nuances of frequency of occurrence, morphological structure, and phonological structure.
  • Cutler, A. (1995). Spoken-word recognition. In G. Bloothooft, V. Hazan, D. Hubert, & J. Llisterri (Eds.), European studies in phonetics and speech communication (pp. 66-71). Utrecht: OTS.
  • Cutler, A. (1995). The perception of rhythm in spoken and written language. In J. Mehler, & S. Franck (Eds.), Cognition on cognition (pp. 283-288). Cambridge, MA: MIT Press.
  • Cutler, A., & McQueen, J. M. (1995). The recognition of lexical units in speech. In B. De Gelder, & J. Morais (Eds.), Speech and reading: A comparative approach (pp. 33-47). Hove, UK: Erlbaum.
  • Fear, B. D., Cutler, A., & Butterfield, S. (1995). The strong/weak syllable distinction in English. Journal of the Acoustical Society of America, 97, 1893-1904. doi:10.1121/1.412063.

    Abstract

    Strong and weak syllables in English can be distinguished on the basis of vowel quality, of stress, or of both factors. Critical for deciding between these factors are syllables containing unstressed unreduced vowels, such as the first syllable of automata. In this study 12 speakers produced sentences containing matched sets of words with initial vowels ranging from stressed to reduced, at normal and at fast speech rates. Measurements of the duration, intensity, F0, and spectral characteristics of the word-initial vowels showed that unstressed unreduced vowels differed significantly from both stressed and reduced vowels. This result held true across speaker sex and dialect. The vowels produced by one speaker were then cross-spliced across the words within each set, and the resulting words' acceptability was rated by listeners. In general, cross-spliced words were only rated significantly less acceptable than unspliced words when reduced vowels interchanged with any other vowel. Correlations between rated acceptability and acoustic characteristics of the cross-spliced words demonstrated that listeners were attending to duration, intensity, and spectral characteristics. Together these results suggest that unstressed unreduced vowels in English pattern differently from both stressed and reduced vowels, so that no acoustic support for a binary categorical distinction exists; nevertheless, listeners make such a distinction, grouping unstressed unreduced vowels by preference with stressed vowels
  • McQueen, J. M., Cutler, A., Briscoe, T., & Norris, D. (1995). Models of continuous speech recognition and the contents of the vocabulary. Language and Cognitive Processes, 10, 309-331. doi:10.1080/01690969508407098.

    Abstract

    Several models of spoken word recognition postulate that recognition is achieved via a process of competition between lexical hypotheses. Competition not only provides a mechanism for isolated word recognition, it also assists in continuous speech recognition, since it offers a means of segmenting continuous input into individual words. We present statistics on the pattern of occurrence of words embedded in the polysyllabic words of the English vocabulary, showing that an overwhelming majority (84%) of polysyllables have shorter words embedded within them. Positional analyses show that these embeddings are most common at the onsets of the longer word. Although both phonological and syntactic constraints could rule out some embedded words, they do not remove the problem. Lexical competition provides a means of dealing with lexical embedding. It is also supported by a growing body of experimental evidence. We present results which indicate that competition operates both between word candidates that begin at the same point in the input and candidates that begin at different points (McQueen, Norris, & Cutler, 1994, Noms, McQueen, & Cutler, in press). We conclude that lexical competition is an essential component in models of continuous speech recognition.
  • Norris, D., McQueen, J. M., & Cutler, A. (1995). Competition and segmentation in spoken word recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 1209-1228.

    Abstract

    Spoken utterances contain few reliable cues to word boundaries, but listeners nonetheless experience little difficulty identifying words in continuous speech. The authors present data and simulations that suggest that this ability is best accounted for by a model of spoken-word recognition combining competition between alternative lexical candidates and sensitivity to prosodic structure. In a word-spotting experiment, stress pattern effects emerged most clearly when there were many competing lexical candidates for part of the input. Thus, competition between simultaneously active word candidates can modulate the size of prosodic effects, which suggests that spoken-word recognition must be sensitive both to prosodic structure and to the effects of competition. A version of the Shortlist model ( D. G. Norris, 1994b) incorporating the Metrical Segmentation Strategy ( A. Cutler & D. Norris, 1988) accurately simulates the results using a lexicon of more than 25,000 words.
  • Cutler, A. (1989). Auditory lexical access: Where do we start? In W. Marslen-Wilson (Ed.), Lexical representation and process (pp. 342-356). Cambridge, MA: MIT Press.

    Abstract

    The lexicon, considered as a component of the process of recognizing speech, is a device that accepts a sound image as input and outputs meaning. Lexical access is the process of formulating an appropriate input and mapping it onto an entry in the lexicon's store of sound images matched with their meanings. This chapter addresses the problems of auditory lexical access from continuous speech. The central argument to be proposed is that utterance prosody plays a crucial role in the access process. Continuous listening faces problems that are not present in visual recognition (reading) or in noncontinuous recognition (understanding isolated words). Aspects of utterance prosody offer a solution to these particular problems.
  • Cutler, A., Howard, D., & Patterson, K. E. (1989). Misplaced stress on prosody: A reply to Black and Byng. Cognitive Neuropsychology, 6, 67-83.

    Abstract

    The recent claim by Black and Byng (1986) that lexical access in reading is subject to prosodic constraints is examined and found to be unsupported. The evidence from impaired reading which Black and Byng report is based on poorly controlled stimulus materials and is inadequately analysed and reported. An alternative explanation of their findings is proposed, and new data are reported for which this alternative explanation can account but their model cannot. Finally, their proposal is shown to be theoretically unmotivated and in conflict with evidence from normal reading.
  • Cutler, A. (1989). Straw modules [Commentary/Massaro: Speech perception]. Behavioral and Brain Sciences, 12, 760-762.
  • Cutler, A. (1989). The new Victorians. New Scientist, (1663), 66.
  • Patterson, R. D., & Cutler, A. (1989). Auditory preprocessing and recognition of speech. In A. Baddeley, & N. Bernsen (Eds.), Research directions in cognitive science: A european perspective: Vol. 1. Cognitive psychology (pp. 23-60). London: Erlbaum.
  • Smith, M. R., Cutler, A., Butterfield, S., & Nimmo-Smith, I. (1989). The perception of rhythm and word boundaries in noise-masked speech. Journal of Speech and Hearing Research, 32, 912-920.

    Abstract

    The present experiment tested the suggestion that human listeners may exploit durational information in speech to parse continuous utterances into words. Listeners were presented with six-syllable unpredictable utterances under noise-masking, and were required to judge between alternative word strings as to which best matched the rhythm of the masked utterances. For each utterance there were four alternative strings: (a) an exact rhythmic and word boundary match, (b) a rhythmic mismatch, and (c) two utterances with the same rhythm as the masked utterance, but different word boundary locations. Listeners were clearly able to perceive the rhythm of the masked utterances: The rhythmic mismatch was chosen significantly less often than any other alternative. Within the three rhythmically matched alternatives, the exact match was chosen significantly more often than either word boundary mismatch. Thus, listeners both perceived speech rhythm and used durational cues effectively to locate the position of word boundaries.
  • Cutler, A. (1981). Degrees of transparency in word formation. Canadian Journal of Linguistics, 26, 73-77.
  • Cutler, A. (1981). Making up materials is a confounded nuisance, or: Will we able to run any psycholinguistic experiments at all in 1990? Cognition, 10, 65-70. doi:10.1016/0010-0277(81)90026-3.
  • Cutler, A., & Darwin, C. J. (1981). Phoneme-monitoring reaction time and preceding prosody: Effects of stop closure duration and of fundamental frequency. Perception and Psychophysics, 29, 217-224. Retrieved from http://www.psychonomic.org/search/view.cgi?id=12660.

    Abstract

    In an earlier study, it was shown that listeners can use prosodic cues that predict where sentence stress will fall; phoneme-monitoring RTs are faster when the preceding prosody indicates that the word bearing the target will be stressed. Two experiments which further investigate this effect are described. In the first, it is shown that the duration of the closure preceding the release of the target stop consonant burst does not affect the RT advantage for stressed words. In the second, it is shown that fundamental frequency variation is not a necessary component of the prosodic variation that produces the predicted-stress effect. It is argued that sentence processing involves a very flexible use of prosodic information.
  • Cutler, A. (1981). The cognitive reality of suprasegmental phonology. In T. Myers, J. Laver, & J. Anderson (Eds.), The cognitive representation of speech (pp. 399-400). Amsterdam: North-Holland.
  • Cutler, A. (1981). The reliability of speech error data. Linguistics, 19, 561-582.
  • Fodor, J. A., & Cutler, A. (1981). Semantic focus and sentence comprehension. Cognition, 7, 49-59. doi:10.1016/0010-0277(79)90010-6.

    Abstract

    Reaction time to detect a phoneme target in a sentence was found to be faster when the word in which the target occurred formed part of the semantic focus of the sentence. Focus was determined by asking a question before the sentence; that part of the sentence which comprised the answer to the sentence was assumed to be focussed. This procedure made it possible to vary position offocus within the sentence while holding all acoustic aspects of the sentence itself constant. It is argued that sentence understanding is facilitated by rapid identification of focussed information. Since focussed words are usually accented, it is further argued that the active search for accented words demonstrated in previous research should be interpreted as a search for semantic focus.
  • Garnham, A., Shillcock, R. C., Brown, G. D. A., Mill, A. I. D., & Cutler, A. (1981). Slips of the tongue in the London-Lund corpus of spontaneous conversation. Linguistics, 19, 805-817.

Share this page