Displaying 1 - 7 of 7
  • Ozyurek, A. (2020). From hands to brains: How does human body talk, think and interact in face-to-face language use? In K. Truong, D. Heylen, & M. Czerwinski (Eds.), ICMI '20: Proceedings of the 2020 International Conference on Multimodal Interaction (pp. 1-2). New York, NY, USA: Association for Computing Machinery. doi:10.1145/3382507.3419442.
  • Rasenberg, M., Dingemanse, M., & Ozyurek, A. (2020). Lexical and gestural alignment in interaction and the emergence of novel shared symbols. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 356-358). Nijmegen: The Evolution of Language Conferences.
  • Van Arkel, J., Woensdregt, M., Dingemanse, M., & Blokpoel, M. (2020). A simple repair mechanism can alleviate computational demands of pragmatic reasoning: simulations and complexity analysis. In R. Fernández, & T. Linzen (Eds.), Proceedings of the 24th Conference on Computational Natural Language Learning (CoNLL 2020) (pp. 177-194). Stroudsburg, PA, USA: The Association for Computational Linguistics. doi:10.18653/v1/2020.conll-1.14.


    How can people communicate successfully while keeping resource costs low in the face of ambiguity? We present a principled theoretical analysis comparing two strategies for disambiguation in communication: (i) pragmatic reasoning, where communicators reason about each other, and (ii) other-initiated repair, where communicators signal and resolve trouble interactively. Using agent-based simulations and computational complexity analyses, we compare the efficiency of these strategies in terms of communicative success, computation cost and interaction cost. We show that agents with a simple repair mechanism can increase efficiency, compared to pragmatic agents, by reducing their computational burden at the cost of longer interactions. We also find that efficiency is highly contingent on the mechanism, highlighting the importance of explicit formalisation and computational rigour.
  • Furman, R., Ozyurek, A., & Küntay, A. C. (2010). Early language-specificity in Turkish children's caused motion event expressions in speech and gesture. In K. Franich, K. M. Iserman, & L. L. Keil (Eds.), Proceedings of the 34th Boston University Conference on Language Development. Volume 1 (pp. 126-137). Somerville, MA: Cascadilla Press.
  • Kita, S., Ozyurek, A., Allen, S., & Ishizuka, T. (2010). Early links between iconic gestures and sound symbolic words: Evidence for multimodal protolanguage. In A. D. Smith, M. Schouwstra, B. de Boer, & K. Smith (Eds.), Proceedings of the 8th International conference on the Evolution of Language (EVOLANG 8) (pp. 429-430). Singapore: World Scientific.
  • Ozyurek, A. (2010). The role of iconic gestures in production and comprehension of language: Evidence from brain and behavior. In S. Kopp, & I. Wachsmuth (Eds.), Gesture in embodied communication and human-computer interaction: 8th International Gesture Workshop, GW 2009, Bielefeld, Germany, February 25-27 2009. Revised selected papers (pp. 1-10). Berlin: Springer.
  • Senghas, A., Ozyurek, A., & Goldin-Meadow, S. (2010). The evolution of segmentation and sequencing: Evidence from homesign and Nicaraguan Sign Language. In A. D. Smith, M. Schouwstra, B. de Boer, & K. Smith (Eds.), Proceedings of the 8th International conference on the Evolution of Language (EVOLANG 8) (pp. 279-289). Singapore: World Scientific.

Share this page