Displaying 1 - 4 of 4
  • Ozyurek, A. (2020). From hands to brains: How does human body talk, think and interact in face-to-face language use? In K. Truong, D. Heylen, & M. Czerwinski (Eds.), ICMI '20: Proceedings of the 2020 International Conference on Multimodal Interaction (pp. 1-2). New York, NY, USA: Association for Computing Machinery. doi:10.1145/3382507.3419442.
  • Rasenberg, M., Dingemanse, M., & Ozyurek, A. (2020). Lexical and gestural alignment in interaction and the emergence of novel shared symbols. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 356-358). Nijmegen: The Evolution of Language Conferences.
  • Van Arkel, J., Woensdregt, M., Dingemanse, M., & Blokpoel, M. (2020). A simple repair mechanism can alleviate computational demands of pragmatic reasoning: simulations and complexity analysis. In R. Fern├índez, & T. Linzen (Eds.), Proceedings of the 24th Conference on Computational Natural Language Learning (CoNLL 2020) (pp. 177-194). Stroudsburg, PA, USA: The Association for Computational Linguistics.

    Abstract

    How can people communicate successfully while keeping resource costs low in the face of ambiguity? We present a principled theoretical analysis comparing two strategies for disambiguation in communication: (i) pragmatic reasoning, where communicators reason about each other, and (ii) other-initiated repair, where communicators signal and resolve trouble interactively. Using agent-based simulations and computational complexity analyses, we compare the efficiency of these strategies in terms of communicative success, computation cost and interaction cost. We show that agents with a simple repair mechanism can increase efficiency, compared to pragmatic agents, by reducing their computational burden at the cost of longer interactions. We also find that efficiency is highly contingent on the mechanism, highlighting the importance of explicit formalisation and computational rigour.
  • Perniss, P. M., Zwitserlood, I., & Ozyurek, A. (2011). Does space structure spatial language? Linguistic encoding of space in sign languages. In L. Carlson, C. Holscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Meeting of the Cognitive Science Society (pp. 1595-1600). Austin, TX: Cognitive Science Society.

Share this page