Publications

Displaying 1 - 100 of 126
  • Adank, P., Hagoort, P., & Bekkering, H. (2010). Imitation improves language comprehension. Psychological Science, 21, 1903-1909. doi:10.1177/0956797610389192.

    Abstract

    Humans imitate each other during social interaction. This imitative behavior streamlines social interaction and aids in learning to replicate actions. However, the effect of imitation on action comprehension is unclear. This study investigated whether vocal imitation of an unfamiliar accent improved spoken-language comprehension. Following a pretraining accent comprehension test, participants were assigned to one of six groups. The baseline group received no training, but participants in the other five groups listened to accented sentences, listened to and repeated accented sentences in their own accent, listened to and transcribed accented sentences, listened to and imitated accented sentences, or listened to and imitated accented sentences without being able to hear their own vocalizations. Posttraining measures showed that accent comprehension was most improved for participants who imitated the speaker’s accent. These results show that imitation may aid in streamlining interaction by improving spoken-language comprehension under adverse listening conditions.
  • Andics, A., McQueen, J. M., Petersson, K. M., Gál, V., Rudas, G., & Vidnyánszky, Z. (2010). Neural mechanisms for voice recognition. NeuroImage, 52, 1528-1540. doi:10.1016/j.neuroimage.2010.05.048.

    Abstract

    We investigated neural mechanisms that support voice recognition in a training paradigm with fMRI. The same listeners were trained on different weeks to categorize the mid-regions of voice-morph continua as an individual's voice. Stimuli implicitly defined a voice-acoustics space, and training explicitly defined a voice-identity space. The predefined centre of the voice category was shifted from the acoustic centre each week in opposite directions, so the same stimuli had different training histories on different tests. Cortical sensitivity to voice similarity appeared over different time-scales and at different representational stages. First, there were short-term adaptation effects: Increasing acoustic similarity to the directly preceding stimulus led to haemodynamic response reduction in the middle/posterior STS and in right ventrolateral prefrontal regions. Second, there were longer-term effects: Response reduction was found in the orbital/insular cortex for stimuli that were most versus least similar to the acoustic mean of all preceding stimuli, and, in the anterior temporal pole, the deep posterior STS and the amygdala, for stimuli that were most versus least similar to the trained voice-identity category mean. These findings are interpreted as effects of neural sharpening of long-term stored typical acoustic and category-internal values. The analyses also reveal anatomically separable voice representations: one in a voice-acoustics space and one in a voice-identity space. Voice-identity representations flexibly followed the trained identity shift, and listeners with a greater identity effect were more accurate at recognizing familiar voices. Voice recognition is thus supported by neural voice spaces that are organized around flexible ‘mean voice’ representations.
  • Araújo, S., Pacheco, A., Faísca, L., Petersson, K. M., & Reis, A. (2010). Visual rapid naming and phonological abilities: Different subtypes in dyslexic children. International Journal of Psychology, 45, 443-452. doi:10.1080/00207594.2010.499949.

    Abstract

    One implication of the double-deficit hypothesis for dyslexia is that there should be subtypes of dyslexic readers that exhibit rapid naming deficits with or without concomitant phonological processing problems. In the current study, we investigated the validity of this hypothesis for Portuguese orthography, which is more consistent than English orthography, by exploring different cognitive profiles in a sample of dyslexic children. In particular, we were interested in identifying readers characterized by a pure rapid automatized naming deficit. We also examined whether rapid naming and phonological awareness independently account for individual differences in reading performance. We characterized the performance of dyslexic readers and a control group of normal readers matched for age on reading, visual rapid naming and phonological processing tasks. Our results suggest that there is a subgroup of dyslexic readers with intact phonological processing capacity (in terms of both accuracy and speed measures) but poor rapid naming skills. We also provide evidence for an independent association between rapid naming and reading competence in the dyslexic sample, when the effect of phonological skills was controlled. Altogether, the results are more consistent with the view that rapid naming problems in dyslexia represent a second core deficit rather than an exclusive phonological explanation for the rapid naming deficits. Furthermore, additional non-phonological processes, which subserve rapid naming performance, contribute independently to reading development.
  • Baggio, G., Choma, T., Van Lambalgen, M., & Hagoort, P. (2010). Coercion and compositionality. Journal of Cognitive Neuroscience, 22, 2131-2140. doi:10.1162/jocn.2009.21303.

    Abstract

    Research in psycholinguistics and in the cognitive neuroscience of language has suggested that semantic and syntactic integration are associated with different neurophysiologic correlates, such as the N400 and the P600 in the ERPs. However, only a handful of studies have investigated the neural basis of the syntax–semantics interface, and even fewer experiments have dealt with the cases in which semantic composition can proceed independently of the syntax. Here we looked into one such case—complement coercion—using ERPs. We compared sentences such as, “The journalist wrote the article” with “The journalist began the article.” The second sentence seems to involve a silent semantic element, which is expressed in the first sentence by the head of the VP “wrote the article.” The second type of construction may therefore require the reader to infer or recover from memory a richer event sense of the VP “began the article,” such as began writing the article, and to integrate that into a semantic representation of the sentence. This operation is referred to as “complement coercion.” Consistently with earlier reading time, eye tracking, and MEG studies, we found traces of such additional computations in the ERPs: Coercion gives rise to a long-lasting negative shift, which differs at least in duration from a standard N400 effect. Issues regarding the nature of the computation involved are discussed in the light of a neurocognitive model of language processing and a formal semantic analysis of coercion.
  • Bastiaansen, M. C. M., Magyari, L., & Hagoort, P. (2010). Syntactic unification operations are reflected in oscillatory dynamics during on-line sentence comprehension. Journal of Cognitive Neuroscience, 22, 1333-1347. doi:10.1162/jocn.2009.21283.

    Abstract

    There is growing evidence suggesting that synchronization changes in the oscillatory neuronal dynamics in the EEG or MEG reflect the transient coupling and uncoupling of functional networks related to different aspects of language comprehension. In this work, we examine how sentence-level syntactic unification operations are reflected in the oscillatory dynamics of the MEG. Participants read sentences that were either correct, contained a word category violation, or were constituted of random word sequences devoid of syntactic structure. A time-frequency analysis of MEG power changes revealed three types of effects. The first type of effect was related to the detection of a (word category) violation in a syntactically structured sentence, and was found in the alpha and gamma frequency bands. A second type of effect was maximally sensitive to the syntactic manipulations: A linear increase in beta power across the sentence was present for correct sentences, was disrupted upon the occurrence of a word category violation, and was absent in syntactically unstructured random word sequences. We therefore relate this effect to syntactic unification operations. Thirdly, we observed a linear increase in theta power across the sentence for all syntactically structured sentences. The effects are tentatively related to the building of a working memory trace of the linguistic input. In conclusion, the data seem to suggest that syntactic unification is reflected by neuronal synchronization in the lower-beta frequency band.
  • Bottini, R., & Casasanto, D. (2010). Implicit spatial length modulates time estimates, but not vice versa. In C. Hölscher, T. F. Shipley, M. Olivetti Belardinelli, J. A. Bateman, & N. Newcombe (Eds.), Spatial Cognition VII. International Conference, Spatial Cognition 2010, Mt. Hood/Portland, OR, USA, August 15-19, 2010. Proceedings (pp. 152-162). Berlin Heidelberg: Springer.

    Abstract

    How are space and time represented in the human mind? Here we evaluate two theoretical proposals, one suggesting a symmetric relationship between space and time (ATOM theory) and the other an asymmetric relationship (metaphor theory). In Experiment 1, Dutch-speakers saw 7-letter nouns that named concrete objects of various spatial lengths (tr. pencil, bench, footpath) and estimated how much time they remained on the screen. In Experiment 2, participants saw nouns naming temporal events of various durations (tr. blink, party, season) and estimated the words’ spatial length. Nouns that named short objects were judged to remain on the screen for a shorter time, and nouns that named longer objects to remain for a longer time. By contrast, variations in the duration of the event nouns’ referents had no effect on judgments of the words’ spatial length. This asymmetric pattern of cross-dimensional interference supports metaphor theory and challenges ATOM.
  • Bottini, R., & Casasanto, D. (2010). Implicit spatial length modulates time estimates, but not vice versa. In S. Ohlsson, & R. Catrambone (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society (pp. 1348-1353). Austin, TX: Cognitive Science Society.

    Abstract

    Why do people accommodate to each other’s linguistic behavior? Studies of natural interactions (Giles, Taylor & Bourhis, 1973) suggest that speakers accommodate to achieve interactional goals, influencing what their interlocutor thinks or feels about them. But is this the only reason speakers accommodate? In real-world conversations, interactional motivations are ubiquitous, making it difficult to assess the extent to which they drive accommodation. Do speakers still accommodate even when interactional goals cannot be achieved, for instance, when their interlocutor cannot interpret their accommodation behavior? To find out, we asked participants to enter an immersive virtual reality (VR) environment and to converse with a virtual interlocutor. Participants accommodated to the speech rate of their virtual interlocutor even though he could not interpret their linguistic behavior, and thus accommodation could not possibly help them to achieve interactional goals. Results show that accommodation does not require explicit interactional goals, and suggest other social motivations for accommodation.
  • Bramão, I., Faísca, L., Forkstam, C., Reis, A., & Petersson, K. M. (2010). Cortical brain regions associated with color processing: An FMRI study. The Open Neuroimaging Journal, 4, 164-173. doi:10.2174/1874440001004010164.

    Abstract

    To clarify whether the neural pathways concerning color processing are the same for natural objects, for artifacts objects and for non-sense objects we examined functional magnetic resonance imaging (FMRI) responses during a covert naming task including the factors color (color vs. black&white (B&W)) and stimulus type (natural vs. artifacts vs. non-sense objects). Our results indicate that the superior parietal lobule and precuneus (BA 7) bilaterally, the right hippocampus and the right fusifom gyrus (V4) make part of a network responsible for color processing both for natural and artifacts objects, but not for non-sense objects. The recognition of non-sense colored objects compared to the recognition of color objects activated the posterior cingulate/precuneus (BA 7/23/31), suggesting that color attribute induces the mental operation of trying to associate a non-sense composition with a familiar objects. When color objects (both natural and artifacts) were contrasted with color nonobjects we observed activations in the right parahippocampal gyrus (BA 35/36), the superior parietal lobule (BA 7) bilaterally, the left inferior middle temporal region (BA 20/21) and the inferior and superior frontal regions (BA 10/11/47). These additional activations suggest that colored objects recruit brain regions that are related to visual semantic information/retrieval and brain regions related to visuo-spatial processing. Overall, the results suggest that color information is an attribute that improve object recognition (based on behavioral results) and activate a specific neural network related to visual semantic information that is more extensive than for B&W objects during object recognition
  • Bramão, I., Faísca, L., Petersson, K. M., & Reis, A. (2010). The influence of surface color information and color knowledge information in object recognition. American Journal of Psychology, 123, 437-466. Retrieved from http://www.jstor.org/stable/10.5406/amerjpsyc.123.4.0437.

    Abstract

    In order to clarify whether the influence of color knowledge information in object recognition depends on the presence of the appropriate surface color, we designed a name—object verification task. The relationship between color and shape information provided by the name and by the object photo was manipulated in order to assess color interference independently of shape interference. We tested three different versions for each object: typically colored, black and white, and nontypically colored. The response times on the nonmatching trials were used to measure the interference between the name and the photo. We predicted that the more similar the name and the photo are, the longer it would take to respond. Overall, the color similarity effect disappeared in the black-and-white and nontypical color conditions, suggesting that the influence of color knowledge on object recognition depends on the presence of the appropriate surface color information.
  • Brookshire, G., Casasanto, D., & Ivry, R. (2010). Modulation of motor-meaning congruity effects for valenced words. In S. Ohlsson, & R. Catrambone (Eds.), Proceedings of the 32nd Annual Meeting of the Cognitive Science Society (CogSci 2010) (pp. 1940-1945). Austin, TX: Cognitive Science Society.

    Abstract

    We investigated the extent to which emotionally valenced words automatically cue spatio-motor representations. Participants made speeded button presses, moving their hand upward or downward while viewing words with positive or negative valence. Only the color of the words was relevant to the response; on target trials, there was no requirement to read the words or process their meaning. In Experiment 1, upward responses were faster for positive words, and downward for negative words. This effect was extinguished, however, when words were repeated. In Experiment 2, participants performed the same primary task with the addition of distractor trials. Distractors either oriented attention toward the words’ meaning or toward their color. Congruity effects were increased with orientation to meaning, but eliminated with orientation to color. When people read words with emotional valence, vertical spatio-motor representations are activated highly automatically, but this automaticity is modulated by repetition and by attentional orientation to the words’ form or meaning.
  • Brouwer, H., Fitz, H., & Hoeks, J. C. (2010). Modeling the noun phrase versus sentence coordination ambiguity in Dutch: Evidence from Surprisal Theory. In Proceedings of the 2010 Workshop on Cognitive Modeling and Computational Linguistics, ACL 2010 (pp. 72-80). Association for Computational Linguistics.

    Abstract

    This paper investigates whether surprisal theory can account for differential processing difficulty in the NP-/S-coordination ambiguity in Dutch. Surprisal is estimated using a Probabilistic Context-Free Grammar (PCFG), which is induced from an automatically annotated corpus. We find that our lexicalized surprisal model can account for the reading time data from a classic experiment on this ambiguity by Frazier (1987). We argue that syntactic and lexical probabilities, as specified in a PCFG, are sufficient to account for what is commonly referred to as an NP-coordination preference.
  • Casasanto, D., & Bottini, R. (2010). Can mirror-reading reverse the flow of time? In C. Hölscher, T. F. Shipley, M. Olivetti Belardinelli, J. A. Bateman, & N. S. Newcombe (Eds.), Spatial Cognition VII. International Conference, Spatial Cognition 2010, Mt. Hood/Portland, OR, USA, August 15-19, 2010. Proceedings (pp. 335-345). Berlin Heidelberg: Springer.

    Abstract

    Across cultures, people conceptualize time as if it flows along a horizontal timeline, but the direction of this implicit timeline is culture-specific: in cultures with left-to-right orthography (e.g., English-speaking cultures) time appears to flow rightward, but in cultures with right-to-left orthography (e.g., Arabic-speaking cultures) time flows leftward. Can orthography influence implicit time representations independent of other cultural and linguistic factors? Native Dutch speakers performed a space-time congruity task with the instructions and stimuli written in either standard Dutch or mirror-reversed Dutch. Participants in the Standard Dutch condition were fastest to judge past-oriented phrases by pressing the left button and future-oriented phrases by pressing the right button. Participants in the Mirror-Reversed Dutch condition showed the opposite pattern of reaction times, consistent with results found previously in native Arabic and Hebrew speakers. These results demonstrate a causal role for writing direction in shaping implicit mental representations of time.
  • Casasanto, D., & Bottini, R. (2010). Can mirror-reading reverse the flow of time? In S. Ohlsson, & R. Catrambone (Eds.), Proceedings of the 32nd Annual Meeting of the Cognitive Science Society (CogSci 2010) (pp. 1342-1347). Austin, TX: Cognitive Science Society.

    Abstract

    Across cultures, people conceptualize time as if it flows along a horizontal timeline, but the direction of this implicit timeline is culture-specific: in cultures with left-to-right orthography (e.g., English-speaking cultures) time appears to flow rightward, but in cultures with right-to-left orthography (e.g., Arabic-speaking cultures) time flows leftward. Can orthography influence implicit time representations independent of other cultural and linguistic factors? Native Dutch speakers performed a space-time congruity task with the instructions and stimuli written in either standard Dutch or mirror-reversed Dutch. Participants in the Standard Dutch condition were fastest to judge past-oriented phrases by pressing the left button and future-oriented phrases by pressing the right button. Participants in the Mirror-Reversed Dutch condition showed the opposite pattern of reaction times, consistent with results found previously in native Arabic and Hebrew speakers. These results demonstrate a causal role for writing direction in shaping implicit mental representations of time.
  • Casasanto, D. (2010). En qué casos una metáfora lingüística constituye una metáfora conceptual? In D. Pérez, S. Español, L. Skidelsky, & R. Minervino (Eds.), Conceptos: Debates contemporáneos en filosofía y psicología. Buenos Airos: Catálogos.
  • Casasanto, D., & Bottini, R. (2010). Mirror-reading can reverse the flow of time [Abstract]. In Proceedings of the 16th Annual Conference on Architectures and Mechanisms for Language Processing [AMLaP 2010] (pp. 57). York: University of York.
  • Casasanto, D., & Dijkstra, K. (2010). Motor action and emotional memory. Cognition, 115, 179-185. doi:10.1016/j.cognition.2009.11.002.

    Abstract

    Can simple motor actions affect how efficiently people retrieve emotional memories, and influence what they choose to remember? In Experiment 1, participants were prompted to retell autobiographical memories with either positive or negative valence, while moving marbles either upward or downward. They retrieved memories faster when the direction of movement was congruent with the valence of the memory (upward for positive, downward for negative memories). Given neutral-valence prompts in Experiment 2, participants retrieved more positive memories when instructed to move marbles up, and more negative memories when instructed to move them down, demonstrating a causal link from motion to emotion. Results suggest that positive and negative life experiences are implicitly associated with schematic representations of upward and downward motion, consistent with theories of metaphorical mental representation. Beyond influencing the efficiency of memory retrieval, the direction of irrelevant, repetitive motor actions can also partly determine the emotional content of the memories people retrieve: moving marbles upward (an ostensibly meaningless action) can cause people to think more positive thoughts.
  • Casasanto, D., & Jasmin, K. (2010). Good and bad in the hands of politicians: Spontaneous gestures during positive and negative speech. PLoS ONE, 5(7), E11805. doi:10.1371/journal.pone.0011805.

    Abstract

    According to the body-specificity hypothesis, people with different bodily characteristics should form correspondingly different mental representations, even in highly abstract conceptual domains. In a previous test of this proposal, right- and left-handers were found to associate positive ideas like intelligence, attractiveness, and honesty with their dominant side and negative ideas with their non-dominant side. The goal of the present study was to determine whether ‘body-specific’ associations of space and valence can be observed beyond the laboratory in spontaneous behavior, and whether these implicit associations have visible consequences.
  • Casasanto, D., & Jasmin, K. (2010). Good and bad in the hands of politicians: Spontaneous gestures during positive and negative speech [Abstract]. In Proceedings of the 16th Annual Conference on Architectures and Mechanisms for Language Processing [AMLaP 2010] (pp. 137). York: University of York.
  • Casasanto, D., Fotakopoulou, O., & Boroditsky, L. (2010). Space and time in the child's mind: Evidence for a cross-dimensional asymmetry. Cognitive Science, 34, 387 -405. doi:10.1111/j.1551-6709.2010.01094.x.

    Abstract

    What is the relationship between space and time in the human mind? Studies in adults show an asymmetric relationship between mental representations of these basic dimensions of experience: Representations of time depend on space more than representations of space depend on time. Here we investigated the relationship between space and time in the developing mind. Native Greek-speaking children watched movies of two animals traveling along parallel paths for different distances or durations and judged the spatial and temporal aspects of these events (e.g., Which animal went for a longer distance, or a longer time?). Results showed a reliable cross-dimensional asymmetry. For the same stimuli, spatial information influenced temporal judgments more than temporal information influenced spatial judgments. This pattern was robust to variations in the age of the participants and the type of linguistic framing used to elicit responses. This finding demonstrates a continuity between space-time representations in children and adults, and informs theories of analog magnitude representation.
  • Casasanto, D. (2010). Wie der Körper Sprache und Vorstellungsvermögen im Gehirn formt. In Max-Planck-Gesellschaft. Jahrbuch 2010. München: Max-Planck-Gesellschaft. Retrieved from http://www.mpg.de/jahrbuch/forschungsbericht?obj=454607.

    Abstract

    Wenn unsere geistigen Fähigkeiten zum Teil von der Struktur unserer Körper abhängen, dann sollten Menschen mit unterschiedlichen Körpertypen unterschiedlich denken. Um dies zu überprüfen, haben Wissenschaftler des MPI für Psycholinguistik neurale Korrelate von Sprachverstehen und motorischen Vorstellungen untersucht, die durch Aktionsverben hervorgerufen werden. Diese Verben bezeichnen Handlungen, die Menschen zumeist mit ihrer dominanten Hand ausführen (z. B. schreiben, werfen). Das Verstehen dieser Verben sowie die Vorstellung entsprechender motorischer Handlungen wurde in Gehirnen von Rechts- und Linkshändern unterschiedlich lateralisiert. Bilden Menschen mit unterschiedlichen Körpertypen verschiedene Konzepte und Wortbedeutungen? Gemäß der Körperspezifitätshypothese sollten sie das tun [1]. Weil geistige Fähigkeiten vom Körper abhängen, sollten Menschen mit unterschiedlichen Körpertypen auch unterschiedlich denken. Diese Annahme stellt die klassische Auffassung in Frage, dass Konzepte universal und Wortbedeutungen identisch sind für alle Sprecher einer Sprache. Untersuchungen im Projekt „Sprache in Aktion“ am MPI für Psycholinguistik zeigen, dass die Art und Weise, wie Sprecher ihre Körper nutzen, die Art und Weise beeinflusst, wie sie sich im Gehirn Handlungen vorstellen und wie sie Sprache, die solche Handlungen thematisiert, im Gehirn verarbeiten.
  • Dediu, D. (2010). Linguistic and genetic diversity - how and why are they related? In M. Brüne, F. Salter, & W. McGrew (Eds.), Building bridges between anthropology, medicine and human ethology: Tributes to Wulf Schiefenhövel (pp. 169-178). Bochum: Europäischer Universitätsverlag.

    Abstract

    There are some 6000 languages spoken today, classfied in approximately 90 linguistic families and many isolates, and also differing across structural, typological, dimensions. Genetically, the human species is remarkably homogeneous, with the existant genetic diversity mostly explain by intra-population differences between individuals, but the remaining inter-population differences have a non-trivial structure. Populations splits and contacts influence both languages and genes, in principle allowing them to evolve in parallel ways. The farming/language co-dispersal hypothesis is a well-known such theory, whereby farmers spreading agriculture from its places of origin also spread their genes and languages. A different type of relationship was recently proposed, involving a genetic bias which influences the structural properties of language as it is transmitted across generations. Such a bias was proposed to explain the correlations between the distribution of tone languages and two brain development-related human genes and, if confirmed by experimental studies, it could represent a new factor explaining the distrbution of diversity. The present chapter overviews these related topics in the hope that a truly interdisciplinary approach could allow a better understanding of our complex (recent as well as evolutionary) history.
  • Dolscheid, S., Shayan, S., Ozturk, O., Majid, A., & Casasanto, D. (2010). Language shapes mental representations of musical pitch: Implications for metaphorical language processing [Abstract]. In Proceedings of the 16th Annual Conference on Architectures and Mechanisms for Language Processing [AMLaP 2010] (pp. 137). York: University of York.

    Abstract

    Speakers often use spatial metaphors to talk about musical pitch (e.g., a low note, a high soprano). Previous experiments suggest that English speakers also think about pitches as high or low in space, even when theyʼre not using language or musical notation (Casasanto, 2010). Do metaphors in language merely reflect pre-existing associations between space and pitch, or might language also shape these non-linguistic metaphorical mappings? To investigate the role of language in pitch tepresentation, we conducted a pair of non-linguistic spacepitch interference experiments in speakers of two languages that use different spatial metaphors. Dutch speakers usually describe pitches as ʻhighʼ (hoog) and ʻlowʼ (laag). Farsi speakers, however, often describe high-frequency pitches as ʻthinʼ (naazok) and low-frequency pitches as ʻthickʼ (koloft). Do Dutch and Farsi speakers mentally represent pitch differently? To find out, we asked participants to reproduce musical pitches that they heard in the presence of irrelevant spatial information (i.e., lines that varied either in height or in thickness). For the Height Interference experiment, horizontal lines bisected a vertical reference line at one of nine different locations. For the Thickness Interference experiment, a vertical line appeared in the middle of the screen in one of nine thicknesses. In each experiment, the nine different lines were crossed with nine different pitches ranging from C4 to G#4 in semitone increments, to produce 81 distinct trials. If Dutch and Farsi speakers mentally represent pitch the way they talk about it, using different kinds of spatial representations, they should show contrasting patterns of cross-dimensional interference: Dutch speakersʼ pitch estimates should be more strongly affected by irrelevant height information, and Farsi speakersʼ by irrelevant thickness information. As predicted, Dutch speakersʼ pitch estimates were significantly modulated by spatial height but not by thickness. Conversely, Farsi speakersʼ pitch estimates were modulated by spatial thickness but not by height (2x2 ANOVA on normalized slopes of the effect of space on pitch: F(1,71)=17,15 p<.001). To determine whether language plays a causal role in shaping pitch representations, we conducted a training experiment. Native Dutch speakers learned to use Farsi-like metaphors, describing pitch relationships in terms of thickness (e.g., a cello sounds ʻthickerʼ than a flute). After training, Dutch speakers showed a significant effect of Thickness interference in the non-linguistic pitch reproduction task, similar to native Farsi speakers: on average, pitches accompanied by thicker lines were reproduced as lower in pitch (effect of thickness on pitch: r=-.22, p=.002). By conducting psychophysical tasks, we tested the ʻWhorfianʼ question without using words. Yet, results also inform theories of metaphorical language processing. According to psycholinguistic theories (e.g., Bowdle & Gentner, 2005), highly conventional metaphors are processed without any active mapping from the source to the target domain (e.g., from space to pitch). Our data, however, suggest that when people use verbal metaphors they activate a corresponding non-linguistic mapping from either height or thickness to pitch, strengthening this association at the expense of competing associations. As a result, people who use different metaphors in their native languages form correspondingly different representations of musical pitch. Casasanto, D. (2010). Space for Thinking. In Language, Cognition and Space: State of the art and new directions. V. Evans & P. Chilton (Eds.), 453-478, London: Equinox Publishing. Bowdle, B. & Gentner, D. (2005). The career of metaphor. Psychological Review, 112, 193-216.
  • Folia, V., Uddén, J., De Vries, M., Forkstam, C., & Petersson, K. M. (2010). Artificial language learning in adults and children. In M. Gullberg, & P. Indefrey (Eds.), The earliest stages of language learning (pp. 188-220). Malden, MA: Wiley-Blackwell.
  • Folia, V., Uddén, J., De Vries, M., Forkstam, C., & Petersson, K. M. (2010). Artificial language learning in adults and children. Language learning, 60(s2), 188-220. doi:10.1111/j.1467-9922.2010.00606.x.

    Abstract

    This article briefly reviews some recent work on artificial language learning in children and adults. The final part of the article is devoted to a theoretical formulation of the language learning problem from a mechanistic neurobiological viewpoint and we show that it is logically possible to combine the notion of innate language constraints with, for example, the notion of domain general learning mechanisms. A growing body of empirical evidence suggests that the mechanisms involved in artificial language learning and in structured sequence processing are shared with those of natural language acquisition and natural language processing. Finally, by theoretically analyzing a formal learning model, we highlight Fodor’s insight that it is logically possible to combine innate, domain-specific constraints with domain-general learning mechanisms.
  • Fournier, R., Gussenhoven, C., Jensen, O., & Hagoort, P. (2010). Lateralization of tonal and intonational pitch processing: An MEG study. Brain Research, 1328, 79-88. doi:10.1016/j.brainres.2010.02.053.

    Abstract

    An MEG experiment was carried out in order to compare the processing of lexical-tonal and intonational contrasts, based on the tonal dialect of Roermond (the Netherlands). A set of words with identical phoneme sequences but distinct pitch contours, which represented different lexical meanings or discourse meanings (statement vs. question), were presented to native speakers as well as to a control group of speakers of Standard Dutch, a non-tone language. The stimuli were arranged in a mismatch paradigm, under three experimental conditions: in the first condition (lexical), the pitch contour differences between standard and deviant stimuli reflected differences between lexical meanings; in the second condition (intonational), the stimuli differed in their discourse meaning; in the third condition (combined), they differed both in their lexical and discourse meaning. In all three conditions, native as well as non-native responses showed a clear MMNm (magnetic mismatch negativity) in a time window from 150 to 250 ms after the divergence point of standard and deviant pitch contours. In the lexical condition, a stronger response was found over the left temporal cortex of native as well as non-native speakers. In the intonational condition, the same activation pattern was observed in the control group, but not in the group of native speakers, who showed a right-hemisphere dominance instead. Finally, in the combined (lexical and intonational) condition, brain reactions appeared to represent the summation of the patterns found in the other two conditions. In sum, the lateralization of pitch processing is condition-dependent in the native group only, which suggests that language experience determines how processes should be distributed over both temporal cortices, according to the functions available in the grammar.
  • Furman, R., Ozyurek, A., & Küntay, A. C. (2010). Early language-specificity in Turkish children's caused motion event expressions in speech and gesture. In K. Franich, K. M. Iserman, & L. L. Keil (Eds.), Proceedings of the 34th Boston University Conference on Language Development. Volume 1 (pp. 126-137). Somerville, MA: Cascadilla Press.
  • Groen, W. B., Tesink, C. M. J. Y., Petersson, K. M., Van Berkum, J. J. A., Van der Gaag, R. J., Hagoort, P., & Buitelaar, J. K. (2010). Semantic, factual, and social language comprehension in adolescents with autism: An fMRI study. Cerebral Cortex, 20(8), 1937-1945. doi:10.1093/cercor/bhp264.

    Abstract

    Language in high-functioning autism is characterized by pragmatic and semantic deficits, and people with autism have a reduced tendency to integrate information. Because the left and right inferior frontal (LIF and RIF) regions are implicated with integration of speaker information, world knowledge, and semantic knowledge, we hypothesized that abnormal functioning of the LIF and RIF regions might contribute to pragmatic and semantic language deficits in autism. Brain activation of sixteen 12- to 18-year-old, high-functioning autistic participants was measured with functional magnetic resonance imaging during sentence comprehension and compared with that of twenty-six matched controls. The content of the pragmatic sentence was congruent or incongruent with respect to the speaker characteristics (male/female, child/adult, and upper class/lower class). The semantic- and world-knowledge sentences were congruent or incongruent with respect to semantic expectancies and factual expectancies about the world, respectively. In the semanticknowledge and world-knowledge condition, activation of the LIF region did not differ between groups. In sentences that required integration of speaker information, the autism group showed abnormally reduced activation of the LIF region. The results suggest that people with autism may recruit the LIF region in a different manner in tasks that demand integration of social information.
  • Jasmin, K., & Casasanto, D. (2010). Stereotyping: How the QWERTY keyboard shapes the mental lexicon [Abstract]. In Proceedings of the 16th Annual Conference on Architectures and Mechanisms for Language Processing [AMLaP 2010] (pp. 159). York: University of York.
  • Junge, C., Hagoort, P., Kooijman, V., & Cutler, A. (2010). Brain potentials for word segmentation at seven months predict later language development. In K. Franich, K. M. Iserman, & L. L. Keil (Eds.), Proceedings of the 34th Annual Boston University Conference on Language Development. Volume 1 (pp. 209-220). Somerville, MA: Cascadilla Press.
  • Junge, C., Cutler, A., & Hagoort, P. (2010). Ability to segment words from speech as a precursor of later language development: Insights from electrophysiological responses in the infant brain. In M. Burgess, J. Davey, C. Don, & T. McMinn (Eds.), Proceedings of 20th International Congress on Acoustics, ICA 2010. Incorporating Proceedings of the 2010 annual conference of the Australian Acoustical Society (pp. 3727-3732). Australian Acoustical Society, NSW Division.
  • Kelly, S. D., Ozyurek, A., & Maris, E. (2010). Two sides of the same coin: Speech and gesture mutually interact to enhance comprehension. Psychological Science, 21, 260-267. doi:10.1177/0956797609357327.

    Abstract

    Gesture and speech are assumed to form an integrated system during language production. Based on this view, we propose the integrated‐systems hypothesis, which explains two ways in which gesture and speech are integrated—through mutual and obligatory interactions—in language comprehension. Experiment 1 presented participants with action primes (e.g., someone chopping vegetables) and bimodal speech and gesture targets. Participants related primes to targets more quickly and accurately when they contained congruent information (speech: “chop”; gesture: chop) than when they contained incongruent information (speech: “chop”; gesture: twist). Moreover, the strength of the incongruence affected processing, with fewer errors for weak incongruities (speech: “chop”; gesture: cut) than for strong incongruities (speech: “chop”; gesture: twist). Crucial for the integrated‐systems hypothesis, this influence was bidirectional. Experiment 2 demonstrated that gesture’s influence on speech was obligatory. The results confirm the integrated‐systems hypothesis and demonstrate that gesture and speech form an integrated system in language comprehension.
  • Kita, S., Ozyurek, A., Allen, S., & Ishizuka, T. (2010). Early links between iconic gestures and sound symbolic words: Evidence for multimodal protolanguage. In A. D. Smith, M. Schouwstra, B. de Boer, & K. Smith (Eds.), Proceedings of the 8th International conference on the Evolution of Language (EVOLANG 8) (pp. 429-430). Singapore: World Scientific.
  • Kos, M., Vosse, T. G., Van den Brink, D., & Hagoort, P. (2010). About edible restaurants: Conflicts between syntax and semantics as revealed by ERPs. Frontiers in Psychology, 1, E222. doi:10.3389/fpsyg.2010.00222.

    Abstract

    In order to investigate conflicts between semantics and syntax, we recorded ERPs, while participants read Dutch sentences. Sentences containing conflicts between syntax and semantics (Fred eats in a sandwich…/ Fred eats a restaurant…) elicited an N400. These results show that conflicts between syntax and semantics not necessarily lead to P600 effects and are in line with the processing competition account. According to this parallel account the syntactic and semantic processing streams are fully interactive and information from one level can influence the processing at another level. The relative strength of the cues of the processing streams determines which level is affected most strongly by the conflict. The processing competition account maintains the distinction between the N400 as index for semantic processing and the P600 as index for structural processing.
  • Ladd, D. R., & Dediu, D. (2010). Reply to Järvikivi et al. (2010) [Web log message]. Plos One. Retrieved from http://www.plosone.org/article/comments/info%3Adoi%2F10.1371%2Fjournal.pone.0012603.
  • Levy, J. (2010). In cerebro unveiling unconscious mechanisms during reading. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Maguire, W., McMahon, A., Heggarty, P., & Dediu, D. (2010). The past, present, and future of English dialects: Quantifying convergence, divergence, and dynamic equilibrium. Language Variation and Change, 22, 69-104. doi:10.1017/S0954394510000013.

    Abstract

    This article reports on research which seeks to compare and measure the similarities between phonetic transcriptions in the analysis of relationships between varieties of English. It addresses the question of whether these varieties have been converging, diverging, or maintaining equilibrium as a result of endogenous and exogenous phonetic and phonological changes. We argue that it is only possible to identify such patterns of change by the simultaneous comparison of a wide range of varieties of a language across a data set that has not been specifically selected to highlight those changes that are believed to be important. Our analysis suggests that although there has been an obvious reduction in regional variation with the loss of traditional dialects of English and Scots, there has not been any significant convergence (or divergence) of regional accents of English in recent decades, despite the rapid spread of a number of features such as TH-fronting.
  • Menenti, L. (2010). The right language: Differential hemispheric contributions to language production and comprehension in context. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Merritt, D. J., Casasanto, D., & Brannon, E. M. (2010). Do monkeys think in metaphors? Representations of space and time in monkeys and humans. Cognition, 117, 191-202. doi:10.1016/j.cognition.2010.08.011.

    Abstract

    Research on the relationship between the representation of space and time has produced two contrasting proposals. ATOM posits that space and time are represented via a common magnitude system, suggesting a symmetrical relationship between space and time. According to metaphor theory, however, representations of time depend on representations of space asymmetrically. Previous findings in humans have supported metaphor theory. Here, we investigate the relationship between time and space in a nonverbal species, by testing whether non-human primates show space–time interactions consistent with metaphor theory or with ATOM. We tested two rhesus monkeys and 16 adult humans in a nonverbal task that assessed the influence of an irrelevant dimension (time or space) on a relevant dimension (space or time). In humans, spatial extent had a large effect on time judgments whereas time had a small effect on spatial judgments. In monkeys, both spatial and temporal manipulations showed large bi-directional effects on judgments. In contrast to humans, spatial manipulations in monkeys did not produce a larger effect on temporal judgments than the reverse. Thus, consistent with previous findings, human adults showed asymmetrical space–time interactions that were predicted by metaphor theory. In contrast, monkeys showed patterns that were more consistent with ATOM.
  • Meulenbroek, O., Kessels, R. P. C., De Rover, M., Petersson, K. M., Olde Rikkert, M. G. M., Rijpkema, M., & Fernández, G. (2010). Age-effects on associative object-location memory. Brain Research, 1315, 100-110. doi:10.1016/j.brainres.2009.12.011.

    Abstract

    Aging is accompanied by an impairment of associative memory. The medial temporal lobe and fronto-striatal network, both involved in associative memory, are known to decline functionally and structurally with age, leading to the so-called associative binding deficit and the resource deficit. Because the MTL and fronto-striatal network interact, they might also be able to support each other. We therefore employed an episodic memory task probing memory for sequences of object–location associations, where the demand on self-initiated processing was manipulated during encoding: either all the objects were visible simultaneously (rich environmental support) or every object became visible transiently (poor environmental support). Following the concept of resource deficit, we hypothesised that the elderly probably have difficulty using their declarative memory system when demands on self-initiated processing are high (poor environmental support). Our behavioural study showed that only the young use the rich environmental support in a systematic way, by placing the objects next to each other. With the task adapted for fMRI, we found that elderly showed stronger activity than young subjects during retrieval of environmentally richly encoded information in the basal ganglia, thalamus, left middle temporal/fusiform gyrus and right medial temporal lobe (MTL). These results indicate that rich environmental support leads to recruitment of the declarative memory system in addition to the fronto-striatal network in elderly, while the young use more posterior brain regions likely related to imagery. We propose that elderly try to solve the task by additional recruitment of stimulus-response associations, which might partly compensate their limited attentional resources.
  • Noordzij, M. L., Newman-Norlund, S. E., De Ruiter, J. P., Hagoort, P., Levinson, S. C., & Toni, I. (2010). Neural correlates of intentional communication. Frontiers in Neuroscience, 4, E188. doi:10.3389/fnins.2010.00188.

    Abstract

    We know a great deal about the neurophysiological mechanisms supporting instrumental actions, i.e. actions designed to alter the physical state of the environment. In contrast, little is known about our ability to select communicative actions, i.e. actions directly designed to modify the mental state of another agent. We have recently provided novel empirical evidence for a mechanism in which a communicator selects his actions on the basis of a prediction of the communicative intentions that an addressee is most likely to attribute to those actions. The main novelty of those finding was that this prediction of intention recognition is cerebrally implemented within the intention recognition system of the communicator, is modulated by the ambiguity in meaning of the communicative acts, and not by their sensorimotor complexity. The characteristics of this predictive mechanism support the notion that human communicative abilities are distinct from both sensorimotor and linguistic processes.
  • Ozyurek, A., Zwitserlood, I., & Perniss, P. M. (2010). Locative expressions in signed languages: A view from Turkish Sign Language (TID). Linguistics, 48(5), 1111-1145. doi:10.1515/LING.2010.036.

    Abstract

    Locative expressions encode the spatial relationship between two (or more) entities. In this paper, we focus on locative expressions in signed language, which use the visual-spatial modality for linguistic expression, specifically in
    Turkish Sign Language ( Türk İşaret Dili, henceforth TİD). We show that TİD uses various strategies in discourse to encode the relation between a Ground entity (i.e., a bigger and/or backgrounded entity) and a Figure entity (i.e., a
    smaller entity, which is in the focus of attention). Some of these strategies exploit affordances of the visual modality for analogue representation and support evidence for modality-specific effects on locative expressions in sign languages.
    However, other modality-specific strategies, e.g., the simultaneous expression of Figure and Ground, which have been reported for many other sign languages, occurs only sparsely in TİD. Furthermore, TİD uses categorical as well as analogical structures in locative expressions. On the basis of
    these findings, we discuss differences and similarities between signed and spoken languages to broaden our understanding of the range of structures used in natural language (i.e., in both the visual-spatial or oral-aural modalities) to encode locative relations. A general linguistic theory of spatial relations, and specifically of locative expressions, must take all structures that
    might arise in both modalities into account before it can generalize over the human language faculty.
  • Ozyurek, A. (2010). The role of iconic gestures in production and comprehension of language: Evidence from brain and behavior. In S. Kopp, & I. Wachsmuth (Eds.), Gesture in embodied communication and human-computer interaction: 8th International Gesture Workshop, GW 2009, Bielefeld, Germany, February 25-27 2009. Revised selected papers (pp. 1-10). Berlin: Springer.
  • Petrovic, P., Kalso, E., Petersson, K. M., Andersson, J., Fransson, P., & Ingvar, M. (2010). A prefrontal non-opioid mechanism in placebo analgesia. Pain, 150, 59-65. doi:10.1016/j.pain.2010.03.011.

    Abstract

    ehavioral studies have suggested that placebo analgesia is partly mediated by the endogenous opioid system. Expanding on these results we have shown that the opioid-receptor-rich rostral anterior cingulate cortex (rACC) is activated in both placebo and opioid analgesia. However, there are also differences between the two treatments. While opioids have direct pharmacological effects, acting on the descending pain inhibitory system, placebo analgesia depends on neocortical top-down mechanisms. An important difference may be that expectations are met to a lesser extent in placebo treatment as compared with a specific treatment, yielding a larger error signal. As these processes previously have been shown to influence other types of perceptual experiences, we hypothesized that they also may drive placebo analgesia. Imaging studies suggest that lateral orbitofrontal cortex (lObfc) and ventrolateral prefrontal cortex (vlPFC) are involved in processing expectation and error signals. We re-analyzed two independent functional imaging experiments related to placebo analgesia and emotional placebo to probe for a differential processing in these regions during placebo treatment vs. opioid treatment and to test if this activity is associated with the placebo response. In the first dataset lObfc and vlPFC showed an enhanced activation in placebo analgesia vs. opioid analgesia. Furthermore, the rACC activity co-varied with the prefrontal regions in the placebo condition specifically. A similar correlation between rACC and vlPFC was reproduced in another dataset involving emotional placebo and correlated with the degree of the placebo effect. Our results thus support that placebo is different from specific treatment with a prefrontal top-down influence on rACC.
  • Pijnacker, J. (2010). Defeasible inference in autism: A behavioral and electrophysiological approach. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Pijnacker, J., Geurts, B., Van Lambalgen, M., Buitelaar, J., & Hagoort, P. (2010). Exceptions and anomalies: An ERP study on context sensitivity in autism. Neuropsychologia, 48, 2940-2951. doi:10.1016/j.neuropsychologia.2010.06.003.

    Abstract

    Several studies have demonstrated that people with ASD and intact language skills still have problems processing linguistic information in context. Given this evidence for reduced sensitivity to linguistic context, the question arises how contextual information is actually processed by people with ASD. In this study, we used event-related brain potentials (ERPs) to examine context sensitivity in high-functioning adults with autistic disorder (HFA) and Asperger syndrome at two levels: at the level of sentence processing and at the level of solving reasoning problems. We found that sentence context as well as reasoning context had an immediate ERP effect in adults with Asperger syndrome, as in matched controls. Both groups showed a typical N400 effect and a late positive component for the sentence conditions, and a sustained negativity for the reasoning conditions. In contrast, the HFA group demonstrated neither an N400 effect nor a sustained negativity. However, the HFA group showed a late positive component which was larger for semantically anomalous sentences than congruent sentences. Because sentence context had a modulating effect in a later phase, semantic integration is perhaps less automatic in HFA, and presumably more elaborate processes are needed to arrive at a sentence interpretation.
  • Reis, A., Petersson, K. M., & Faísca, L. (2010). Neuroplasticidade: Os efeitos de aprendizagens específicas no cérebro humano. In C. Nunes, & S. N. Jesus (Eds.), Temas actuais em Psicologia (pp. 11-26). Faro: Universidade do Algarve.
  • Reis, A., Faísca, L., Castro, S.-L., & Petersson, K. M. (2010). Preditores da leitura ao longo da escolaridade: Um estudo com alunos do 1 ciclo do ensino básico. In Actas do VII simpósio nacional de investigação em psicologia (pp. 3117-3132).

    Abstract

    A aquisição da leitura decorre ao longo de diversas etapas, desde o momento em que a criança inicia o contacto com o alfabeto até ao momento em que se torna um leitor competente, apto a ler correcta e fluentemente. Compreender a evolução desta competência através de uma análise da diferenciação do peso de variáveis preditoras da leitura possibilita teorizar sobre os mecanismos cognitivos envolvidos nas diferentes fases de desenvolvimento da leitura. Realizámos um estudo transversal com 568 alunos do segundo ao quarto ano do primeiro ciclo do Ensino Básico, em que se avaliou o impacto de capacidades de processamento fonológico, nomeação rápida, conhecimento letra-som e vocabulário, bem como de capacidades cognitivas mais gerais (inteligência não-verbal e memória de trabalho), na exactidão e velocidade da leitura. De uma forma geral, os resultados mostraram que, apesar da consciência fonológica permanecer como o preditor mais importante da exactidão e fluência da leitura, o seu peso decresce à medida que a escolaridade aumenta. Observou-se também que, à medida que o contributo da consciência fonológica para a explicação da velocidade de leitura diminuía, aumentava o contributo de outras variáveis mais associadas ao automatismo e reconhecimento lexical, tais como a nomeação rápida e o vocabulário. Em suma, podemos dizer que ao longo da escolaridade se observa uma alteração dinâmica dos processos cognitivos subjacentes à leitura, o que sugere que a criança evolui de uma estratégia de leitura ancorada em processamentos sub-lexicais, e como tal mais dependente de processamentos fonológicos, para uma estratégia baseada no reconhecimento ortográfico das palavras.
  • Ringersma, J., Kastens, K., Tschida, U., & Van Berkum, J. J. A. (2010). A principled approach to online publication listings and scientific resource sharing. The Code4Lib Journal, 2010(9), 2520.

    Abstract

    The Max Planck Institute (MPI) for Psycholinguistics has developed a service to manage and present the scholarly output of their researchers. The PubMan database manages publication metadata and full-texts of publications published by their scholars. All relevant information regarding a researcher’s work is brought together in this database, including supplementary materials and links to the MPI database for primary research data. The PubMan metadata is harvested into the MPI website CMS (Plone). The system developed for the creation of the publication lists, allows the researcher to create a selection of the harvested data in a variety of formats.
  • De Ruiter, J. P., Noordzij, M. L., Newman-Norlund, S., Hagoort, P., Levinson, S. C., & Toni, I. (2010). Exploring the cognitive infrastructure of communication. Interaction studies, 11, 51-77. doi:10.1075/is.11.1.05rui.

    Abstract

    Human communication is often thought about in terms of transmitted messages in a conventional code like a language. But communication requires a specialized interactive intelligence. Senders have to be able to perform recipient design, while receivers need to be able to do intention recognition, knowing that recipient design has taken place. To study this interactive intelligence in the lab, we developed a new task that taps directly into the underlying abilities to communicate in the absence of a conventional code. We show that subjects are remarkably successful communicators under these conditions, especially when senders get feedback from receivers. Signaling is accomplished by the manner in which an instrumental action is performed, such that instrumentally dysfunctional components of an action are used to convey communicative intentions. The findings have important implications for the nature of the human communicative infrastructure, and the task opens up a line of experimentation on human communication.
  • Senghas, A., Ozyurek, A., & Goldin-Meadow, S. (2010). The evolution of segmentation and sequencing: Evidence from homesign and Nicaraguan Sign Language. In A. D. Smith, M. Schouwstra, B. de Boer, & K. Smith (Eds.), Proceedings of the 8th International conference on the Evolution of Language (EVOLANG 8) (pp. 279-289). Singapore: World Scientific.
  • Simanova, I., Van Gerven, M., Oostenveld, R., & Hagoort, P. (2010). Identifying object categories from event-related EEG: Toward decoding of conceptual representations. Plos One, 5(12), E14465. doi:10.1371/journal.pone.0014465.

    Abstract

    Multivariate pattern analysis is a technique that allows the decoding of conceptual information such as the semantic category of a perceived object from neuroimaging data. Impressive single-trial classification results have been reported in studies that used fMRI. Here, we investigate the possibility to identify conceptual representations from event-related EEG based on the presentation of an object in different modalities: its spoken name, its visual representation and its written name. We used Bayesian logistic regression with a multivariate Laplace prior for classification. Marked differences in classification performance were observed for the tested modalities. Highest accuracies (89% correctly classified trials) were attained when classifying object drawings. In auditory and orthographical modalities, results were lower though still significant for some subjects. The employed classification method allowed for a precise temporal localization of the features that contributed to the performance of the classifier for three modalities. These findings could help to further understand the mechanisms underlying conceptual representations. The study also provides a first step towards the use of concept decoding in the context of real-time brain-computer interface applications.
  • Snijders, T. M., Petersson, K. M., & Hagoort, P. (2010). Effective connectivity of cortical and subcortical regions during unification of sentence structure. NeuroImage, 52, 1633-1644. doi:10.1016/j.neuroimage.2010.05.035.

    Abstract

    In a recent fMRI study we showed that left posterior middle temporal gyrus (LpMTG) subserves the retrieval of a word's lexical-syntactic properties from the mental lexicon (long-term memory), while left posterior inferior frontal gyrus (LpIFG) is involved in unifying (on-line integration of) this information into a sentence structure (Snijders et al., 2009). In addition, the right IFG, right MTG, and the right striatum were involved in the unification process. Here we report results from a psychophysical interactions (PPI) analysis in which we investigated the effective connectivity between LpIFG and LpMTG during unification, and how the right hemisphere areas and the striatum are functionally connected to the unification network. LpIFG and LpMTG both showed enhanced connectivity during the unification process with a region slightly superior to our previously reported LpMTG. Right IFG better predicted right temporal activity when unification processes were more strongly engaged, just as LpIFG better predicted left temporal activity. Furthermore, the striatum showed enhanced coupling to LpIFG and LpMTG during unification. We conclude that bilateral inferior frontal and posterior temporal regions are functionally connected during sentence-level unification. Cortico-subcortical connectivity patterns suggest cooperation between inferior frontal and striatal regions in performing unification operations on lexical-syntactic representations retrieved from LpMTG.
  • Snijders, T. M. (2010). More than words: Neural and genetic dynamics of syntactic unification. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Staum Casasanto, L., Jasmin, K., & Casasanto, D. (2010). Virtually accommodating: Speech rate accommodation to a virtual interlocutor. In S. Ohlsson, & R. Catrambone (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society (pp. 127-132). Austin, TX: Cognitive Science Society.

    Abstract

    Why do people accommodate to each other’s linguistic behavior? Studies of natural interactions (Giles, Taylor & Bourhis, 1973) suggest that speakers accommodate to achieve interactional goals, influencing what their interlocutor thinks or feels about them. But is this the only reason speakers accommodate? In real-world conversations, interactional motivations are ubiquitous, making it difficult to assess the extent to which they drive accommodation. Do speakers still accommodate even when interactional goals cannot be achieved, for instance, when their interlocutor cannot interpret their accommodation behavior? To find out, we asked participants to enter an immersive virtual reality (VR) environment and to converse with a virtual interlocutor. Participants accommodated to the speech rate of their virtual interlocutor even though he could not interpret their linguistic behavior, and thus accommodation could not possibly help them to achieve interactional goals. Results show that accommodation does not require explicit interactional goals, and suggest other social motivations for accommodation.
  • Uddén, J., Folia, V., & Petersson, K. M. (2010). The neuropharmacology of implicit learning. Current Neuropharmacology, 8, 367-381. doi:10.2174/157015910793358178.

    Abstract

    Two decades of pharmacologic research on the human capacity to implicitly acquire knowledge as well as cognitive skills and procedures have yielded surprisingly few conclusive insights. We review the empirical literature of the neuropharmacology of implicit learning. We evaluate the findings in the context of relevant computational models related to neurotransmittors such as dopamine, serotonin, acetylcholine and noradrenalin. These include models for reinforcement learning, sequence production, and categorization. We conclude, based on the reviewed literature, that one can predict improved implicit acquisition by moderately elevated dopamine levels and impaired implicit acquisition by moderately decreased dopamine levels. These effects are most prominent in the dorsal striatum. This is supported by a range of behavioral tasks in the empirical literature. Similar predictions can be made for serotonin, although there is yet a lack of support in the literature for serotonin involvement in classical implicit learning tasks. There is currently a lack of evidence for a role of the noradrenergic and cholinergic systems in implicit and related forms of learning. GABA modulators, including benzodiazepines, seem to affect implicit learning in a complex manner and further research is needed. Finally, we identify allosteric AMPA receptors modulators as a potentially interesting target for future investigation of the neuropharmacology of procedural and implicit learning.
  • Van Rees Vellinga, M., Hanulikova, A., Weber, A., & Zwitserlood, P. (2010). A neurophysiological investigation of processing phoneme substitutions in L2. In New Sounds 2010: Sixth International Symposium on the Acquisition of Second Language Speech (pp. 518-523). Poznan, Poland: Adam Mickiewicz University.
  • Van Alphen, P. M., & Van Berkum, J. J. A. (2010). Is there pain in champagne? Semantic involvement of words within words during sense-making. Journal of Cognitive Neuroscience, 22, 2618-2626. doi:10.1162/jocn.2009.21336.

    Abstract

    In an ERP experiment, we examined whether listeners, when making sense of spoken utterances, take into account the meaning of spurious words that are embedded in longer words, either at their onsets (e. g., pie in pirate) or at their offsets (e. g., pain in champagne). In the experiment, Dutch listeners heard Dutch words with initial or final embeddings presented in a sentence context that did or did not support the meaning of the embedded word, while equally supporting the longer carrier word. The N400 at the carrier words was modulated by the semantic fit of the embedded words, indicating that listeners briefly relate the meaning of initial-and final-embedded words to the sentential context, even though these words were not intended by the speaker. These findings help us understand the dynamics of initial sense-making and its link to lexical activation. In addition, they shed new light on the role of lexical competition and the debate concerning the lexical activation of final-embedded words.
  • Van Berkum, J. J. A. (2010). The brain is a prediction machine that cares about good and bad - Any implications for neuropragmatics? Italian Journal of Linguistics, 22, 181-208.

    Abstract

    Experimental pragmatics asks how people construct contextualized meaning in communication. So what does it mean for this field to add neuroas a prefix to its name? After analyzing the options for any subfield of cognitive science, I argue that neuropragmatics can and occasionally should go beyond the instrumental use of EEG or fMRI and beyond mapping classic theoretical distinctions onto Brodmann areas. In particular, if experimental pragmatics ‘goes neuro’, it should take into account that the brain evolved as a control system that helps its bearer negotiate a highly complex, rapidly changing and often not so friendly environment. In this context, the ability to predict current unknowns, and to rapidly tell good from bad, are essential ingredients of processing. Using insights from non-linguistic areas of cognitive neuroscience as well as from EEG research on utterance comprehension, I argue that for a balanced development of experimental pragmatics, these two characteristics of the brain cannot be ignored.
  • Van Leeuwen, T. M., Petersson, K. M., & Hagoort, P. (2010). Synaesthetic colour in the brain: Beyond colour areas. A functional magnetic resonance imaging study of synaesthetes and matched controls. PLoS One, 5(8), E12074. doi:10.1371/journal.pone.0012074.

    Abstract

    Background: In synaesthesia, sensations in a particular modality cause additional experiences in a second, unstimulated modality (e.g., letters elicit colour). Understanding how synaesthesia is mediated in the brain can help to understand normal processes of perceptual awareness and multisensory integration. In several neuroimaging studies, enhanced brain activity for grapheme-colour synaesthesia has been found in ventral-occipital areas that are also involved in real colour processing. Our question was whether the neural correlates of synaesthetically induced colour and real colour experience are truly shared. Methodology/Principal Findings: First, in a free viewing functional magnetic resonance imaging (fMRI) experiment, we located main effects of synaesthesia in left superior parietal lobule and in colour related areas. In the left superior parietal lobe, individual differences between synaesthetes (projector-associator distinction) also influenced brain activity, confirming the importance of the left superior parietal lobe for synaesthesia. Next, we applied a repetition suppression paradigm in fMRI, in which a decrease in the BOLD (blood-oxygenated-level-dependent) response is generally observed for repeated stimuli. We hypothesized that synaesthetically induced colours would lead to a reduction in BOLD response for subsequently presented real colours, if the neural correlates were overlapping. We did find BOLD suppression effects induced by synaesthesia, but not within the colour areas. Conclusions/Significance: Because synaesthetically induced colours were not able to suppress BOLD effects for real colour, we conclude that the neural correlates of synaesthetic colour experience and real colour experience are not fully shared. We propose that synaesthetic colour experiences are mediated by higher-order visual pathways that lie beyond the scope of classical, ventral-occipital visual areas. Feedback from these areas, in which the left parietal cortex is likely to play an important role, may induce V4 activation and the percept of synaesthetic colour.
  • Van Dijk, H. (2010). The state of the brain: How alpha oscillations shape behavior and event-related responses. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • De Vries, M., Barth, A. C. R., Maiworm, S., Knecht, S., Zwitserlood, P., & Flöel, A. (2010). Electrical stimulation of Broca’s area enhances implicit learning of an artificial grammar. Journal of Cognitive Neuroscience, 22, 2427-2436. doi:10.1162/jocn.2009.21385.

    Abstract

    Artificial grammar learning constitutes a well-established model for the acquisition of grammatical knowledge in a natural setting. Previous neuroimaging studies demonstrated that Broca's area (left BA 44/45) is similarly activated by natural syntactic processing and artificial grammar learning. The current study was conducted to investigate the causal relationship between Broca's area and learning of an artificial grammar by means of transcranial direct current stimulation (tDCS). Thirty-eight healthy subjects participated in a between-subject design, with either anodal tDCS (20 min, 1 mA) or sham stimulation, over Broca's area during the acquisition of an artificial grammar. Performance during the acquisition phase, presented as a working memory task, was comparable between groups. In the subsequent classification task, detecting syntactic violations, and specifically, those where no cues to superficial similarity were available, improved significantly after anodal tDCS, resulting in an overall better performance. A control experiment where 10 subjects received anodal tDCS over an area unrelated to artificial grammar learning further supported the specificity of these effects to Broca's area. We conclude that Broca's area is specifically involved in rule-based knowledge, and here, in an improved ability to detect syntactic violations. The results cannot be explained by better tDCS-induced working memory performance during the acquisition phase. This is the first study that demonstrates that tDCS may facilitate acquisition of grammatical knowledge, a finding of potential interest for rehabilitation of aphasia.
  • De Vries, M., Ulte, C., Zwitserlood, P., Szymanski, B., & Knecht, S. (2010). Increasing dopamine levels in the brain improves feedback-based procedural learning in healthy participants: An artificial-grammar-learning experiment. Neuropsychologia, 48, 3193-3197. doi:10.1016/j.neuropsychologia.2010.06.024.

    Abstract

    Recently, an increasing number of studies have suggested a role for the basal ganglia and related dopamine inputs in procedural learning, specifically when learning occurs through trial-by-trial feedback (Shohamy, Myers, Kalanithi, & Gluck. (2008). Basal ganglia and dopamine contributions to probabilistic category learning. Neuroscience and Biobehavioral Reviews, 32, 219–236). A necessary relationship has however only been demonstrated in patient studies. In the present study, we show for the first time that increasing dopamine levels in the brain improves the gradual acquisition of complex information in healthy participants. We implemented two artificial-grammar-learning tasks, one with and one without performance feedback. Learning was improved after levodopa intake for the feedback-based learning task only, suggesting that dopamine plays a specific role in trial-by-trial feedback-based learning. This provides promising directions for future studies on dopaminergic modulation of cognitive functioning.
  • Willems, R. M., Hagoort, P., & Casasanto, D. (2010). Body-specific representations of action verbs: Neural evidence from right- and left-handers. Psychological Science, 21, 67-74. doi:10.1177/0956797609354072.

    Abstract

    According to theories of embodied cognition, understanding a verb like throw involves unconsciously simulating the action of throwing, using areas of the brain that support motor planning. If understanding action words involves mentally simulating one’s own actions, then the neurocognitive representation of word meanings should differ for people with different kinds of bodies, who perform actions in systematically different ways. In a test of the body-specificity hypothesis, we used functional magnetic resonance imaging to compare premotor activity correlated with action verb understanding in right- and left-handers. Righthanders preferentially activated the left premotor cortex during lexical decisions on manual-action verbs (compared with nonmanual-action verbs), whereas left-handers preferentially activated right premotor areas. This finding helps refine theories of embodied semantics, suggesting that implicit mental simulation during language processing is body specific: Right- and lefthanders, who perform actions differently, use correspondingly different areas of the brain for representing action verb meanings.
  • Willems, R. M., Peelen, M. V., & Hagoort, P. (2010). Cerebral lateralization of face-selective and body-selective visual areas depends on handedness. Cerebral Cortex, 20, 1719-1725. doi:10.1093/cercor/bhp234.

    Abstract

    The left-hemisphere dominance for language is a core example of the functional specialization of the cerebral hemispheres. The degree of left-hemisphere dominance for language depends on hand preference: Whereas the majority of right-handers show left-hemispheric language lateralization, this number is reduced in left-handers. Here, we assessed whether handedness analogously has an influence upon lateralization in the visual system. Using functional magnetic resonance imaging, we localized 4 more or less specialized extrastriate areas in left- and right-handers, namely fusiform face area (FFA), extrastriate body area (EBA), fusiform body area (FBA), and human motion area (human middle temporal [hMT]). We found that lateralization of FFA and EBA depends on handedness: These areas were right lateralized in right-handers but not in left-handers. A similar tendency was observed in FBA but not in hMT. We conclude that the relationship between handedness and hemispheric lateralization extends to functionally lateralized parts of visual cortex, indicating a general coupling between cerebral lateralization and handedness. Our findings indicate that hemispheric specialization is not fixed but can vary considerably across individuals even in areas engaged relatively early in the visual system.
  • Willems, R. M., De Boer, M., De Ruiter, J. P., Noordzij, M. L., Hagoort, P., & Toni, I. (2010). A dissociation between linguistic and communicative abilities in the human brain. Psychological Science, 21, 8-14. doi:10.1177/0956797609355563.

    Abstract

    Although language is an effective vehicle for communication, it is unclear how linguistic and communicative abilities relate to each other. Some researchers have argued that communicative message generation involves perspective taking (mentalizing), and—crucially—that mentalizing depends on language. We employed a verbal communication paradigm to directly test whether the generation of a communicative action relies on mentalizing and whether the cerebral bases of communicative message generation are distinct from parts of cortex sensitive to linguistic variables. We found that dorsomedial prefrontal cortex, a brain area consistently associated with mentalizing, was sensitive to the communicative intent of utterances, irrespective of linguistic difficulty. In contrast, left inferior frontal cortex, an area known to be involved in language, was sensitive to the linguistic demands of utterances, but not to communicative intent. These findings show that communicative and linguistic abilities rely on cerebrally (and computationally) distinct mechanisms
  • Willems, R. M., Labruna, L., D'Esposito, M., Ivry, R., & Casasanto, D. (2010). A functional role for the motor system in language understanding: Evidence from rTMS [Abstract]. In Proceedings of the 16th Annual Conference on Architectures and Mechanisms for Language Processing [AMLaP 2010] (pp. 127). York: University of York.
  • Willems, R. M., & Hagoort, P. (2010). Cortical motor contributions to language understanding. In L. Hermer (Ed.), Reciprocal interactions among early sensory and motor areas and higher cognitive networks (pp. 51-72). Kerala, India: Research Signpost Press.

    Abstract

    Here we review evidence from cognitive neuroscience for a tight relation between language and action in the brain. We focus on two types of relation between language and action. First, we investigate whether the perception of speech and speech sounds leads to activation of parts of the cortical motor system also involved in speech production. Second, we evaluate whether understanding action-related language involves the activation of parts of the motor system. We conclude that whereas there is considerable evidence that understanding language can involve parts of our motor cortex, this relation is best thought of as inherently flexible. As we explain, the exact nature of the input as well as the intention with which language is perceived influences whether and how motor cortex plays a role in language processing.
  • Willems, R. M., Toni, I., Hagoort, P., & Casasanto, D. (2010). Neural dissociations between action verb understanding and motor imagery. Journal of Cognitive Neuroscience, 22(10), 2387-2400. doi:10.1162/jocn.2009.21386.

    Abstract

    According to embodied theories of language, people understand a verb like throw, at least in part, by mentally simulating throwing. This implicit simulation is often assumed to be similar or identical to motor imagery. Here we used fMRI totest whether implicit simulations of actions during language understanding involve the same cortical motor regions as explicit motor imagery Healthy participants were presented with verbs related to hand actions (e.g., to throw) and nonmanual actions (e.g., to kneel). They either read these verbs (lexical decision task) or actively imagined performing the actions named by the verbs (imagery task). Primary motor cortex showd effector-specific activation during imagery, but not during lexical decision. Parts of premotor cortex distinguished manual from nonmanual actions during both lexical decision and imagery, but there was no overlap or correlation between regions activated during the two tasks. These dissociations suggest that implicit simulation and explicit imagery cued by action verbs may involve different types of motor representations and that the construct of “mental simulation” should be distinguished from “mental imagery” in embodied theories of language.
  • Xiang, H.-D., Fonteijn, H. M., Norris, D. G., & Hagoort, P. (2010). Topographical functional connectivity pattern in the perisylvian language networks. Cerebral Cortex, 20, 549-560. doi:10.1093/cercor/bhp119.

    Abstract

    We performed a resting-state functional connectivity study to investigate directly the functional correlations within the perisylvian language networks by seeding from 3 subregions of Broca's complex (pars opercularis, pars triangularis, and pars orbitalis) and their right hemisphere homologues. A clear topographical functional connectivity pattern in the left middle frontal, parietal, and temporal areas was revealed for the 3 left seeds. This is the first demonstration that a functional connectivity topology can be observed in the perisylvian language networks. The results support the assumption of the functional division for phonology, syntax, and semantics of Broca's complex as proposed by the memory, unification, and control (MUC) model and indicated a topographical functional organization in the perisylvian language networks, which suggests a possible division of labor for phonological, syntactic, and semantic function in the left frontal, parietal, and temporal areas.
  • Aarts, E. (2009). Resisting temptation: The role of the anterior cingulate cortex in adjusting cognitive control. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Araújo, S., Faísca, L., Petersson, K. M., & Reis, A. (2009). Cognitive profiles in Portuguese children with dyslexia. In Abstracts presented at the International Neuropsychological Society, Finnish Neuropsychological Society, Joint Mid-Year Meeting July 29-August 1, 2009. Helsinki, Finland & Tallinn, Estonia (pp. 23). Retrieved from http://www.neuropsykologia.fi/ins2009/INS_MY09_Abstract.pdf.
  • Araújo, S., Faísca, L., Petersson, K. M., & Reis, A. (2009). Visual processing factors contribute to object naming difficulties in dyslexic readers. In Abstracts presented at the International Neuropsychological Society, Finnish Neuropsychological Society, Joint Mid-Year Meeting July 29-August 1, 2009. Helsinki, Finland & Tallinn, Estonia (pp. 39). Retrieved from http://www.neuropsykologia.fi/ins2009/INS_MY09_Abstract.pdf.
  • Baggio, G. (2009). Semantics and the electrophysiology of meaning: Tense, aspect, event structure. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Bastiaanse, R., De Goede, D., & Love, T. (2009). Auditory sentence processing: An introduction. Journal of Psycholinguistic Research, 38(3), 177-179. doi:10.1007/s10936-009-9109-3.
  • Bramão, I., Faísca, L., Forkstam, C., Inácio, K., Petersson, K. M., & Reis, A. (2009). Interaction between perceptual color and color knowledge information in object recognition: Behavioral and electrophysiological evidence. In Abstracts presented at the International Neuropsychological Society, Finnish Neuropsychological Society, Joint Mid-Year Meeting July 29-August 1, 2009. Helsinki, Finland & Tallinn, Estonia (pp. 39). Retrieved from http://www.neuropsykologia.fi/ins2009/INS_MY09_Abstract.pdf.
  • Casasanto, D., Willems, R. M., & Hagoort, P. (2009). Body-specific representations of action verbs: Evidence from fMRI in right- and left-handers. In N. Taatgen, & H. Van Rijn (Eds.), Proceedings of the 31st Annual Meeting of the Cognitive Science Society (pp. 875-880). Austin: Cognitive Science Society.

    Abstract

    According to theories of embodied cognition, understanding a verb like throw involves unconsciously simulating the action throwing, using areas of the brain that support motor planning. If understanding action words involves mentally simulating our own actions, then the neurocognitive representation of word meanings should differ for people with different kinds of bodies, who perform actions in systematically different ways. In a test of the body-specificity hypothesis (Casasanto, 2009), we used fMRI to compare premotor activity correlated with action verb understanding in right- and left-handers. Right-handers preferentially activated left premotor cortex during lexical decision on manual action verbs (compared with non-manual action verbs), whereas left-handers preferentially activated right premotor areas. This finding helps refine theories of embodied semantics, suggesting that implicit mental simulation during language processing is body-specific: Right and left-handers, who perform actions differently, use correspondingly different areas of the brain for representing action verb meanings.
  • Casasanto, D. (2009). Embodiment of abstract concepts: Good and bad in right- and left-handers. Journal of Experimental Psychology: General, 138, 351-367. doi:10.1037/a0015854.

    Abstract

    Do people with different kinds of bodies think differently? According to the body-specificity hypothesis, people who interact with their physical environments in systematically different ways should form correspondingly different mental representations. In a test of this hypothesis, 5 experiments investigated links between handedness and the mental representation of abstract concepts with positive or negative valence (e.g., honesty, sadness, intelligence). Mappings from spatial location to emotional valence differed between right- and left-handed participants. Right-handers tended to associate rightward space with positive ideas and leftward space with negative ideas, but left-handers showed the opposite pattern, associating rightward space with negative ideas and leftward with positive ideas. These contrasting mental metaphors for valence cannot be attributed to linguistic experience, because idioms in English associate good with right but not with left. Rather, right- and left-handers implicitly associated positive valence more strongly with the side of space on which they could act more fluently with their dominant hands. These results support the body-specificity hypothesis and provide evidence for the perceptuomotor basis of even the most abstract ideas.
  • Casasanto, D., & Jasmin, K. (2009). Emotional valence is body-specific: Evidence from spontaneous gestures during US presidential debates. In N. Taatgen, & H. Van Rijn (Eds.), Proceedings of the 31st Annual Meeting of the Cognitive Science Society (pp. 1965-1970). Austin: Cognitive Science Society.

    Abstract

    What is the relationship between motor action and emotion? Here we investigated whether people associate good things more strongly with the dominant side of their bodies, and bad things with the non-dominant side. To find out, we analyzed spontaneous gestures during speech expressing ideas with positive or negative emotional valence (e.g., freedom, pain, compassion). Samples of speech and gesture were drawn from the 2004 and 2008 US presidential debates, which involved two left-handers (Obama, McCain) and two right-handers (Kerry, Bush). Results showed a strong association between the valence of spoken clauses and the hands used to make spontaneous co-speech gestures. In right-handed candidates, right-hand gestures were more strongly associated with positive-valence clauses, and left-hand gestures with negative-valence clauses. Left-handed candidates showed the opposite pattern. Right- and left-handers implicitly associated positive valence more strongly with their dominant hand: the hand they can use more fluently. These results support the body-specificity hypothesis, (Casasanto, 2009), and suggest a perceptuomotor basis for even our most abstract ideas.
  • Casasanto, D. (2009). [Review of the book Music, language, and the brain by Aniruddh D. Patel]. Language and Cognition, 1(1), 143-146. doi:10.1515/LANGCOG.2009.007.
  • Casasanto, D., Fotakopoulou, O., & Boroditsky, L. (2009). Space and time in the child's mind: Evidence for a cross-dimensional asymmetry. In N. Taatgen, & H. Van Rijn (Eds.), Proceedings of the 31st Annual Meeting of the Cognitive Science Society (pp. 1090-1095). Austin: Cognitive Science Society.

    Abstract

    What is the relationship between space and time in the human mind? Studies in adults show an asymmetric relationship between mental representations of these basic dimensions of experience: representations of time depend on space more than representations of space depend on time. Here we investigated the relationship between space and time in the developing mind. Native Greek-speaking children (N=99) watched movies of two animals traveling along parallel paths for different distances or durations and judged the spatial and temporal aspects of these events (e.g., Which animal went for a longer time, or a longer distance?) Results showed a reliable cross-dimensional asymmetry: for the same stimuli, spatial information influenced temporal judgments more than temporal information influenced spatial judgments. This pattern was robust to variations in the age of the participants and the type of language used to elicit responses. This finding demonstrates a continuity between space-time representations in children and adults, and informs theories of analog magnitude representation.
  • Casasanto, D. (2009). Space for thinking. In V. Evans, & P. Chilton (Eds.), Language, cognition and space: State of the art and new directions (pp. 453-478). London: Equinox Publishing.
  • Casasanto, D. (2009). When is a linguistic metaphor a conceptual metaphor? In V. Evans, & S. Pourcel (Eds.), New directions in cognitive linguistics (pp. 127-145). Amsterdam: Benjamins.
  • Cavaco, P., Curuklu, B., & Petersson, K. M. (2009). Artificial grammar recognition using two spiking neural networks. Frontiers in Neuroinformatics. Conference abstracts: 2nd INCF Congress of Neuroinformatics. doi:10.3389/conf.neuro.11.2009.08.096.

    Abstract

    In this paper we explore the feasibility of artificial (formal) grammar recognition (AGR) using spiking neural networks. A biologically inspired minicolumn architecture is designed as the basic computational unit. A network topography is defined based on the minicolumn architecture, here referred to as nodes, connected with excitatory and inhibitory connections. Nodes in the network represent unique internal states of the grammar’s finite state machine (FSM). Future work to improve the performance of the networks is discussed. The modeling framework developed can be used by neurophysiological research to implement network layouts and compare simulated performance characteristics to actual subject performance.
  • Davids, N. (2009). Neurocognitive markers of phonological processing: A clinical perspective. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Davids, N., Van den Brink, D., Van Turennout, M., Mitterer, H., & Verhoeven, L. (2009). Towards neurophysiological assessment of phonemic discrimination: Context effects of the mismatch negativity. Clinical Neurophysiology, 120, 1078-1086. doi:10.1016/j.clinph.2009.01.018.

    Abstract

    This study focusses on the optimal paradigm for simultaneous assessment of auditory and phonemic discrimination in clinical populations. We investigated (a) whether pitch and phonemic deviants presented together in one sequence are able to elicit mismatch negativities (MMNs) in healthy adults and (b) whether MMN elicited by a change in pitch is modulated by the presence of the phonemic deviants.
  • Dediu, D. (2009). Genetic biasing through cultural transmission: Do simple Bayesian models of language evolution generalize? Journal of Theoretical Biology, 259, 552-561. doi:10.1016/j.jtbi.2009.04.004.

    Abstract

    The recent Bayesian approaches to language evolution and change seem to suggest that genetic biases can impact on the characteristics of language, but, at the same time, that its cultural transmission can partially free it from these same genetic constraints. One of the current debates centres on the striking differences between sampling and a posteriori maximising Bayesian learners, with the first converging on the prior bias while the latter allows a certain freedom to language evolution. The present paper shows that this difference disappears if populations more complex than a single teacher and a single learner are considered, with the resulting behaviours more similar to the sampler. This suggests that generalisations based on the language produced by Bayesian agents in such homogeneous single agent chains are not warranted. It is not clear which of the assumptions in such models are responsible, but these findings seem to support the rising concerns on the validity of the “acquisitionist” assumption, whereby the locus of language change and evolution is taken to be the first language acquirers (children) as opposed to the competent language users (the adults).
  • Fedor, A., Pléh, C., Brauer, J., Caplan, D., Friederici, A. D., Gulyás, B., Hagoort, P., Nazir, T., & Singer, W. (2009). What are the brain mechanisms underlying syntactic operations? In D. Bickerton, & E. Szathmáry (Eds.), Biological foundations and origin of syntax (pp. 299-324). Cambridge, MA: MIT Press.

    Abstract

    This chapter summarizes the extensive discussions that took place during the Forum as well as the subsequent months thereafter. It assesses current understanding of the neuronal mechanisms that underlie syntactic structure and processing.... It is posited that to understand the neurobiology of syntax, it might be worthwhile to shift the balance from comprehension to syntactic encoding in language production
  • Folia, V., Forkstam, C., Hagoort, P., & Petersson, K. M. (2009). Language comprehension: The interplay between form and content. In N. Taatgen, & H. van Rijn (Eds.), Proceedings of the 31th Annual Conference of the Cognitive Science Society (pp. 1686-1691). Austin, TX: Cognitive Science Society.

    Abstract

    In a 2x2 event-related FMRI study we find support for the idea that the inferior frontal cortex, centered on Broca’s region and its homologue, is involved in constructive unification operations during the structure-building process in parsing for comprehension. Tentatively, we provide evidence for a role of the dorsolateral prefrontal cortex centered on BA 9/46 in the control component of the language system. Finally, the left temporo-parietal cortex, in the vicinity of Wernicke’s region, supports the interaction between the syntax of gender agreement and sentence-level semantics.
  • Forkstam, C., Jansson, A., Ingvar, M., & Petersson, K. M. (2009). Modality transfer of acquired structural regularities: A preference for an acoustic route. In N. Taatgen, & H. Van Rijn (Eds.), Proceedings of the 31th Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive Science Society.

    Abstract

    Human implicit learning can be investigated with implicit artificial grammar learning, a simple model for aspects of natural language acquisition. In this paper we investigate the remaining effect of modality transfer in syntactic classification of an acquired grammatical sequence structure after implicit grammar acquisition. Participants practiced either on acoustically presented syllable sequences or visually presented consonant letter sequences. During classification we independently manipulated the statistical frequency-based and rule-based characteristics of the classification stimuli. Participants performed reliably above chance on the within modality classification task although more so for those working on syllable sequence acquisition. These subjects were also the only group that kept a significant performance level in transfer classification. We speculate that this finding is of particular relevance in consideration of an ecological validity in the input signal in the use of artificial grammar learning and in language learning paradigms at large.
  • De Goede, D., Shapiro, L. P., Wester, F., Swinney, D. A., & Bastiaanse, Y. R. M. (2009). The time course of verb processing in Dutch sentences. Journal of Psycholinguistic Research, 38(3), 181-199. doi:10.1007/s10936-009-9117-3.

    Abstract

    The verb has traditionally been characterized as the central element in a sentence. Nevertheless, the exact role of the verb during the actual ongoing comprehension of a sentence as it unfolds in time remains largely unknown. This paper reports the results of two Cross-Modal Lexical Priming (CMLP) experiments detailing the pattern of verb priming during on-line processing of Dutch sentences. Results are contrasted with data from a third CMLP experiment on priming of nouns in similar sentences. It is demonstrated that the meaning of a matrix verb remains active throughout the entire matrix clause, while this is not the case for the meaning of a subject head noun. Activation of the meaning of the verb only dissipates upon encountering a clear signal as to the start of a new clause.
  • Goldin-Meadow, S., Ozyurek, A., Sancar, B., & Mylander, C. (2009). Making language around the globe: A cross-linguistic study of homesign in the United States, China, and Turkey. In J. Guo, E. Lieven, N. Budwig, S. Ervin-Tripp, K. Nakamura, & S. Ozcaliskan (Eds.), Crosslinguistic approaches to the psychology of language: Research in the tradition of Dan Isaac Slobin (pp. 27-39). New York: Psychology Press.
  • Goldin-Meadow, S., Gentner, D., Ozyurek, A., & Gurcanli, O. (2009). Spatial language supports spatial cognition: Evidence from deaf homesigners [abstract]. Cognitive Processing, 10(Suppl. 2), S133-S134.
  • Hagoort, P. (2009). The fractionation of spoken language understanding by measuring electrical and magnetic brain signals. In B. C. J. Moore, L. K. Tyler, & W. Marslen-Wilson (Eds.), The perception of speech: From sound to meaning (pp. 223-248). New York: Oxford University Press.
  • Hagoort, P. (2009). Reflections on the neurobiology of syntax. In D. Bickerton, & E. Szathmáry (Eds.), Biological foundations and origin of syntax (pp. 279-296). Cambridge, MA: MIT Press.

    Abstract

    This contribution focuses on the neural infrastructure for parsing and syntactic encoding. From an anatomical point of view, it is argued that Broca's area is an ill-conceived notion. Functionally, Broca's area and adjacent cortex (together Broca's complex) are relevant for language, but not exclusively for this domain of cognition. Its role can be characterized as providing the necessary infrastructure for unification (syntactic and semantic). A general proposal, but with required level of computational detail, is discussed to account for the distribution of labor between different components of the language network in the brain.Arguments are provided for the immediacy principle, which denies a privileged status for syntax in sentence processing. The temporal profile of event-related brain potential (ERP) is suggested to require predictive processing. Finally, since, next to speed, diversity is a hallmark of human languages, the language readiness of the brain might not depend on a universal, dedicated neural machinery for syntax, but rather on a shaping of the neural infrastructure of more general cognitive systems (e.g., memory, unification) in a direction that made it optimally suited for the purpose of communication through language.
  • Hagoort, P., Baggio, G., & Willems, R. M. (2009). Semantic unification. In M. S. Gazzaniga (Ed.), The cognitive neurosciences, 4th ed. (pp. 819-836). Cambridge, MA: MIT Press.

    Abstract

    Language and communication are about the exchange of meaning. A key feature of understanding and producing language is the construction of complex meaning from more elementary semantic building blocks. The functional characteristics of this semantic unification process are revealed by studies using event related brain potentials. These studies have found that word meaning is assembled into compound meaning in not more than 500 ms. World knowledge, information about the speaker, co-occurring visual input and discourse all have an immediate impact on semantic unification, and trigger similar electrophysiological responses as sentence-internal semantic information. Neuroimaging studies show that a network of brain areas, including the left inferior frontal gyrus, the left superior/middle temporal cortex, the left inferior parietal cortex and, to a lesser extent their right hemisphere homologues are recruited to perform semantic unification.
  • Hagoort, P. (2009). Taalontwikkeling: Meer dan woorden alleen. In M. Evenblij (Ed.), Brein in beeld: Beeldvorming bij heersenonderzoek (pp. 53-57). Den Haag: Stichting Bio-Wetenschappen en Maatschappij.
  • Hagoort, P., & Levelt, W. J. M. (2009). The speaking brain. Science, 326(5951), 372-373. doi:10.1126/science.1181675.

    Abstract

    How does intention to speak become the action of speaking? It involves the generation of a preverbal message that is tailored to the requirements of a particular language, and through a series of steps, the message is transformed into a linear sequence of speech sounds (1, 2). These steps include retrieving different kinds of information from memory (semantic, syntactic, and phonological), and combining them into larger structures, a process called unification. Despite general agreement about the steps that connect intention to articulation, there is no consensus about their temporal profile or the role of feedback from later steps (3, 4). In addition, since the discovery by the French physician Pierre Paul Broca (in 1865) of the role of the left inferior frontal cortex in speaking, relatively little progress has been made in understanding the neural infrastructure that supports speech production (5). One reason is that the characteristics of natural language are uniquely human, and thus the neurobiology of language lacks an adequate animal model. But on page 445 of this issue, Sahin et al. (6) demonstrate, by recording neuronal activity in the human brain, that different kinds of linguistic information are indeed sequentially processed within Broca's area.
  • Kooijman, V., Hagoort, P., & Cutler, A. (2009). Prosodic structure in early word segmentation: ERP evidence from Dutch ten-month-olds. Infancy, 14, 591 -612. doi:10.1080/15250000903263957.

    Abstract

    Recognizing word boundaries in continuous speech requires detailed knowledge of the native language. In the first year of life, infants acquire considerable word segmentation abilities. Infants at this early stage in word segmentation rely to a large extent on the metrical pattern of their native language, at least in stress-based languages. In Dutch and English (both languages with a preferred trochaic stress pattern), segmentation of strong-weak words develops rapidly between 7 and 10 months of age. Nevertheless, trochaic languages contain not only strong-weak words but also words with a weak-strong stress pattern. In this article, we present electrophysiological evidence of the beginnings of weak-strong word segmentation in Dutch 10-month-olds. At this age, the ability to combine different cues for efficient word segmentation does not yet seem to be completely developed. We provide evidence that Dutch infants still largely rely on strong syllables, even for the segmentation of weak-strong words.
  • Koten Jr., J. W., Wood, G., Hagoort, P., Goebel, R., Propping, P., Willmes, K., & Boomsma, D. I. (2009). Genetic contribution to variation in cognitive function: An fMRI study in twins. Science, 323(5922), 1737-1740. doi:10.1126/science.1167371.

    Abstract

    Little is known about the genetic contribution to individual differences in neural networks subserving cognition function. In this functional magnetic resonance imaging (fMRI) twin study, we found a significant genetic influence on brain activation in neural networks supporting digit working memory tasks. Participants activating frontal-parietal networks responded faster than individuals relying more on language-related brain networks.There were genetic influences on brain activation in language-relevant brain circuits that were atypical for numerical working memory tasks as such. This suggests that differences in cognition might be related to brain activation patterns that differ qualitatively among individuals.
  • De Lange, F. P., Koers, A., Kalkman, J. S., Bleijenberg, G., Hagoort, P., Van der Meer, J. W. M., & Toni, I. (2009). Reply to: "Can CBT substantially change grey matter volume in chronic fatigue syndrome" [Letter to the editor]. Brain, 132(6), e111. doi:10.1093/brain/awn208.

Share this page