Publications

Displaying 1 - 36 of 36
  • Bosker, H. R., & Kösem, A. (2017). An entrained rhythm's frequency, not phase, influences temporal sampling of speech. In Proceedings of Interspeech 2017 (pp. 2416-2420). doi:10.21437/Interspeech.2017-73.

    Abstract

    Brain oscillations have been shown to track the slow amplitude fluctuations in speech during comprehension. Moreover, there is evidence that these stimulus-induced cortical rhythms may persist even after the driving stimulus has ceased. However, how exactly this neural entrainment shapes speech perception remains debated. This behavioral study investigated whether and how the frequency and phase of an entrained rhythm would influence the temporal sampling of subsequent speech. In two behavioral experiments, participants were presented with slow and fast isochronous tone sequences, followed by Dutch target words ambiguous between as /ɑs/ “ash” (with a short vowel) and aas /a:s/ “bait” (with a long vowel). Target words were presented at various phases of the entrained rhythm. Both experiments revealed effects of the frequency of the tone sequence on target word perception: fast sequences biased listeners to more long /a:s/ responses. However, no evidence for phase effects could be discerned. These findings show that an entrained rhythm’s frequency, but not phase, influences the temporal sampling of subsequent speech. These outcomes are compatible with theories suggesting that sensory timing is evaluated relative to entrained frequency. Furthermore, they suggest that phase tracking of (syllabic) rhythms by theta oscillations plays a limited role in speech parsing.
  • Franken, M. K., Eisner, F., Schoffelen, J.-M., Acheson, D. J., Hagoort, P., & McQueen, J. M. (2017). Audiovisual recalibration of vowel categories. In Proceedings of Interspeech 2017 (pp. 655-658). doi:10.21437/Interspeech.2017-122.

    Abstract

    One of the most daunting tasks of a listener is to map a
    continuous auditory stream onto known speech sound
    categories and lexical items. A major issue with this mapping
    problem is the variability in the acoustic realizations of sound
    categories, both within and across speakers. Past research has
    suggested listeners may use visual information (e.g., lipreading)
    to calibrate these speech categories to the current
    speaker. Previous studies have focused on audiovisual
    recalibration of consonant categories. The present study
    explores whether vowel categorization, which is known to show
    less sharply defined category boundaries, also benefit from
    visual cues.
    Participants were exposed to videos of a speaker
    pronouncing one out of two vowels, paired with audio that was
    ambiguous between the two vowels. After exposure, it was
    found that participants had recalibrated their vowel categories.
    In addition, individual variability in audiovisual recalibration is
    discussed. It is suggested that listeners’ category sharpness may
    be related to the weight they assign to visual information in
    audiovisual speech perception. Specifically, listeners with less
    sharp categories assign more weight to visual information
    during audiovisual speech recognition.
  • Hagoort, P. (2017). It is the facts, stupid. In J. Brockman, F. Van der Wa, & H. Corver (Eds.), Wetenschappelijke parels: het belangrijkste wetenschappelijke nieuws volgens 193 'briljante geesten'. Amsterdam: Maven Press.
  • Hagoort, P. (2017). The neural basis for primary and acquired language skills. In E. Segers, & P. Van den Broek (Eds.), Developmental Perspectives in Written Language and Literacy: In honor of Ludo Verhoeven (pp. 17-28). Amsterdam: Benjamins. doi:10.1075/z.206.02hag.

    Abstract

    Reading is a cultural invention that needs to recruit cortical infrastructure that was not designed for it (cultural recycling of cortical maps). In the case of reading both visual cortex and networks for speech processing are recruited. Here I discuss current views on the neurobiological underpinnings of spoken language that deviate in a number of ways from the classical Wernicke-Lichtheim-Geschwind model. More areas than Broca’s and Wernicke’s region are involved in language. Moreover, a division along the axis of language production and language comprehension does not seem to be warranted. Instead, for central aspects of language processing neural infrastructure is shared between production and comprehension. Arguments are presented in favor of a dynamic network view, in which the functionality of a region is co-determined by the network of regions in which it is embedded at particular moments in time. Finally, core regions of language processing need to interact with other networks (e.g. the attentional networks and the ToM network) to establish full functionality of language and communication. The consequences of this architecture for reading are discussed.
  • Coulson, S., & Lai, V. T. (Eds.). (2016). The metaphorical brain [Research topic]. Lausanne: Frontiers Media. doi:10.3389/978-2-88919-772-9.

    Abstract

    This Frontiers Special Issue will synthesize current findings on the cognitive neuroscience of metaphor, provide a forum for voicing novel perspectives, and promote new insights into the metaphorical brain.
  • Gerwien, J., & Flecken, M. (2016). First things first? Top-down influences on event apprehension. In A. Papafragou, D. Grodner, D. Mirman, & J. Trueswell (Eds.), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016) (pp. 2633-2638). Austin, TX: Cognitive Science Society.

    Abstract

    Not much is known about event apprehension, the earliest stage of information processing in elicited language production studies, using pictorial stimuli. A reason for our lack of knowledge on this process is that apprehension happens very rapidly (<350 ms after stimulus onset, Griffin & Bock 2000), making it difficult to measure the process directly. To broaden our understanding of apprehension, we analyzed landing positions and onset latencies of first fixations on visual stimuli (pictures of real-world events) given short stimulus presentation times, presupposing that the first fixation directly results from information processing during apprehension
  • Hagoort, P. (2016). MUC (Memory, Unification, Control): A Model on the Neurobiology of Language Beyond Single Word Processing. In G. Hickok, & S. Small (Eds.), Neurobiology of language (pp. 339-347). Amsterdam: Elsever. doi:10.1016/B978-0-12-407794-2.00028-6.

    Abstract

    A neurobiological model of language is discussed that overcomes the shortcomings of the classical Wernicke-Lichtheim-Geschwind model. It is based on a subdivision of language processing into three components: Memory, Unification, and Control. The functional components as well as the neurobiological underpinnings of the model are discussed. In addition, the need for extension beyond the classical core regions for language is shown. Attentional networks as well as networks for inferential processing are crucial to realize language comprehension beyond single word processing and beyond decoding propositional content.
  • Hagoort, P. (2016). Zij zijn ons brein. In J. Brockman (Ed.), Machines die denken: Invloedrijke denkers over de komst van kunstmatige intelligentie (pp. 184-186). Amsterdam: Maven Publishing.
  • Lockwood, G., Hagoort, P., & Dingemanse, M. (2016). Synthesized Size-Sound Sound Symbolism. In A. Papafragou, D. Grodner, D. Mirman, & J. Trueswell (Eds.), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016) (pp. 1823-1828). Austin, TX: Cognitive Science Society.

    Abstract

    Studies of sound symbolism have shown that people can associate sound and meaning in consistent ways when presented with maximally contrastive stimulus pairs of nonwords such as bouba/kiki (rounded/sharp) or mil/mal (small/big). Recent work has shown the effect extends to antonymic words from natural languages and has proposed a role for shared cross-modal correspondences in biasing form-to-meaning associations. An important open question is how the associations work, and particularly what the role is of sound-symbolic matches versus mismatches. We report on a learning task designed to distinguish between three existing theories by using a spectrum of sound-symbolically matching, mismatching, and neutral (neither matching nor mismatching) stimuli. Synthesized stimuli allow us to control for prosody, and the inclusion of a neutral condition allows a direct test of competing accounts. We find evidence for a sound-symbolic match boost, but not for a mismatch difficulty compared to the neutral condition.
  • De Nooijer, J. A., & Willems, R. M. (2016). What can we learn about cognition from studying handedness? Insights from cognitive neuroscience. In F. Loffing, N. Hagemann, B. Strauss, & C. MacMahon (Eds.), Laterality in sports: Theories and applications (pp. 135-153). Amsterdam: Elsevier.

    Abstract

    Can studying left- and right-handers inform us about cognition? In this chapter, we give an overview of research showing that studying left- and right-handers is informative for understanding the way the brain is organized (i.e., lateralized), as there appear to be differences between left- and right-handers in this respect, but also on the behavioral level handedness studies can provide new insights. According to theories of embodied cognition, our body can influence cognition. Given that left- and right-handers use their bodies differently, this might reflect their performance on an array of cognitive tasks. Indeed, handedness can have an influence on, for instance, what side of space we judge as more positive, the way we gesture, how we remember things, and how we learn new words. Laterality research can, therefore, provide valuable information as to how we act and why
  • Peeters, D. (2016). Processing consequences of onomatopoeic iconicity in spoken language comprehension. In A. Papafragou, D. Grodner, D. Mirman, & J. Trueswell (Eds.), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016) (pp. 1632-1647). Austin, TX: Cognitive Science Society.

    Abstract

    Iconicity is a fundamental feature of human language. However its processing consequences at the behavioral and neural level in spoken word comprehension are not well understood. The current paper presents the behavioral and electrophysiological outcome of an auditory lexical decision task in which native speakers of Dutch listened to onomatopoeic words and matched control words while their electroencephalogram was recorded. Behaviorally, onomatopoeic words were processed as quickly and accurately as words with an arbitrary mapping between form and meaning. Event-related potentials time-locked to word onset revealed a significant decrease in negative amplitude in the N2 and N400 components and a late positivity for onomatopoeic words in comparison to the control words. These findings advance our understanding of the temporal dynamics of iconic form-meaning mapping in spoken word comprehension and suggest interplay between the neural representations of real-world sounds and spoken words.
  • Silva, S., Petersson, K. M., & Castro, S. (2016). Rhythm in the brain: Is music special? In D. Da Silva Marques, & J. Avila-Toscano (Eds.), Neuroscience to neuropsychology: The study of the human brain (pp. 29-54). Barranquilla, Colombia: Ediciones CUR.
  • Bottini, R., & Casasanto, D. (2011). Space and time in the child’s mind: Further evidence for a cross-dimensional asymmetry [Abstract]. In L. Carlson, C. Hölscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 3010). Austin, TX: Cognitive Science Society.

    Abstract

    Space and time appear to be related asymmetrically in the child’s mind: temporal representations depend on spatial representations more than vice versa, as predicted by space-time metaphors in language. In a study supporting this conclusion, spatial information interfered with children’s temporal judgments more than vice versa (Casasanto, Fotakopoulou, & Boroditsky, 2010, Cognitive Science). In this earlier study, however, spatial information was available to participants for more time than temporal information was (as is often the case when people observe natural events), suggesting a skeptical explanation for the observed effect. Here we conducted a stronger test of the hypothesized space-time asymmetry, controlling spatial and temporal aspects of the stimuli even more stringently than they are generally ’controlled’ in the natural world. Results replicated Casasanto and colleagues’, validating their finding of a robust representational asymmetry between space and time, and extending it to children (4-10 y.o.) who speak Dutch and Brazilian Portuguese.
  • Brookshire, G., & Casasanto, D. (2011). Motivation and motor action: Hemispheric specialization for motivation reverses with handedness. In L. Carlson, C. Holscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Meeting of the Cognitive Science Society (pp. 2610-2615). Austin, TX: Cognitive Science Society.
  • Casasanto, D. (2011). Bodily relativity: The body-specificity of language and thought. In L. Carlson, C. Holscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Meeting of the Cognitive Science Society (pp. 1258-1259). Austin, TX: Cognitive Science Society.
  • Casasanto, D., & Lupyan, G. (2011). Ad hoc cognition [Abstract]. In L. Carlson, C. Hölscher, & T. F. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 826). Austin, TX: Cognitive Science Society.

    Abstract

    If concepts, categories, and word meanings are stable, how can people use them so flexibly? Here we explore a possible answer: maybe this stability is an illusion. Perhaps all concepts, categories, and word meanings (CC&Ms) are constructed ad hoc, each time we use them. On this proposal, all words are infinitely polysemous, all communication is ’good enough’, and no idea is ever the same twice. The details of people’s ad hoc CC&Ms are determined by the way retrieval cues interact with the physical, social, and linguistic context. We argue that even the most stable-seeming CC&Ms are instantiated via the same processes as those that are more obviously ad hoc, and vary (a) from one microsecond to the next within a given instantiation, (b) from one instantiation to the next within an individual, and (c) from person to person and group to group as a function of people’s experiential history. 826
  • Casasanto, D., & De Bruin, A. (2011). Word Up! Directed motor action improves word learning [Abstract]. In L. Carlson, C. Hölscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 1902). Austin, TX: Cognitive Science Society.

    Abstract

    Can simple motor actions help people expand their vocabulary? Here we show that word learning depends on where students place their flash cards after studying them. In Experiment 1, participants learned the definitions of ”alien words” with positive or negative emotional valence. After studying each card, they placed it in one of two boxes (top or bottom), according to its valence. Participants who were instructed to place positive cards in the top box, consistent with Good is Up metaphors, scored about 10.
  • Chen, A., & Lai, V. T. (2011). Comb or coat: The role of intonation in online reference resolution in a second language. In W. Zonneveld, & H. Quené (Eds.), Sound and Sounds. Studies presented to M.E.H. (Bert) Schouten on the occasion of his 65th birthday (pp. 57-68). Utrecht: UiL OTS.

    Abstract

    1 Introduction In spoken sentence processing, listeners do not wait till the end of a sentence to decipher what message is conveyed. Rather, they make predictions on the most plausible interpretation at every possible point in the auditory signal on the basis of all kinds of linguistic information (e.g., Eberhard et al. 1995; Alman and Kamide 1999, 2007). Intonation is one such kind of linguistic information that is efficiently used in spoken sentence processing. The evidence comes primarily from recent work on online reference resolution conducted in the visual-world eyetracking paradigm (e.g., Tanenhaus et al. 1995). In this paradigm, listeners are shown a visual scene containing a number of objects and listen to one or two short sentences about the scene. They are asked to either inspect the visual scene while listening or to carry out the action depicted in the sentence(s) (e.g., 'Touch the blue square'). Listeners' eye movements directed to each object in the scene are monitored and time-locked to pre-defined time points in the auditory stimulus. Their predictions on the upcoming referent and sources for the predictions in the auditory signal are examined by analysing fixations to the relevant objects in the visual scene before the acoustic information on the referent is available
  • Chu, M., & Kita, S. (2011). Microgenesis of gestures during mental rotation tasks recapitulates ontogenesis. In G. Stam, & M. Ishino (Eds.), Integrating gestures: The interdisciplinary nature of gesture (pp. 267-276). Amsterdam: John Benjamins.

    Abstract

    People spontaneously produce gestures when they solve problems or explain their solutions to a problem. In this chapter, we will review and discuss evidence on the role of representational gestures in problem solving. The focus will be on our recent experiments (Chu & Kita, 2008), in which we used Shepard-Metzler type of mental rotation tasks to investigate how spontaneous gestures revealed the development of problem solving strategy over the course of the experiment and what role gesture played in the development process. We found that when solving novel problems regarding the physical world, adults go through similar symbolic distancing (Werner & Kaplan, 1963) and internalization (Piaget, 1968) processes as those that occur during young children’s cognitive development and gesture facilitates such processes.
  • Dolscheid, S., Shayan, S., Majid, A., & Casasanto, D. (2011). The thickness of musical pitch: Psychophysical evidence for the Whorfian hypothesis. In L. Carlson, C. Hölscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 537-542). Austin, TX: Cognitive Science Society.
  • Fitz, H., Chang, F., & Christansen, M. H. (2011). A connectionist account of the acquisition and processing of relative clauses. In E. Kidd (Ed.), The acquisition of relative clauses. Processing, typology and function (pp. 39-60). Amsterdam: Benjamins.

    Abstract

    Relative clause processing depends on the grammatical role of the head noun in the subordinate clause. This has traditionally been explained in terms of cognitive limitations. We suggest that structure-related processing differences arise from differences in experience with these structures. We present a connectionist model which learns to produce utterances with relative clauses from exposure to message-sentence pairs. The model shows how various factors such as frequent subsequences, structural variations, and meaning conspire to create differences in the processing of these structures. The predictions of this learning-based account have been confirmed in behavioral studies with adults. This work shows that structural regularities that govern relative clause processing can be explained within a usage-based approach to recursion.
  • De La Fuente, J., Casasanto, D., Román, A., & Santiago, J. (2011). Searching for cultural influences on the body-specific association of preferred hand and emotional valence. In L. Carlson, C. Holscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Meeting of the Cognitive Science Society (pp. 2616-2620). Austin, TX: Cognitive Science Society.
  • Hagoort, P. (2011). The binding problem for language, and its consequences for the neurocognition of comprehension. In E. A. Gibson, & N. J. Pearlmutter (Eds.), The processing and acquisition of reference (pp. 403-436). Cambridge, MA: MIT Press.
  • Hagoort, P. (2011). The neuronal infrastructure for unification at multiple levels. In G. Gaskell, & P. Zwitserlood (Eds.), Lexical representation: A multidisciplinary approach (pp. 231-242). Berlin: De Gruyter Mouton.
  • Harbusch, K., & Kempen, G. (2011). Automatic online writing support for L2 learners of German through output monitoring by a natural-language paraphrase generator. In M. Levy, F. Blin, C. Bradin Siskin, & O. Takeuchi (Eds.), WorldCALL: International perspectives on computer-assisted language learning (pp. 128-143). New York: Routledge.

    Abstract

    Students who are learning to write in a foreign language, often want feedback on the grammatical quality of the sentences they produce. The usual NLP approach to this problem is based on parsing student-generated text. Here, we propose a generation-based ap- proach aiming at preventing errors ("scaffolding"). In our ICALL system, the student constructs sentences by composing syntactic trees out of lexically anchored "treelets" via a graphical drag & drop user interface. A natural-language generator computes all possible grammatically well-formed sentences entailed by the student-composed tree. It provides positive feedback if the student-composed tree belongs to the well-formed set, and negative feedback otherwise. If so requested by the student, it can substantiate the positive or negative feedback based on a comparison between the student-composed tree and its own trees (informative feedback on demand). In case of negative feedback, the system refuses to build the structure attempted by the student. Frequently occurring errors are handled in terms of "malrules." The system we describe is a prototype (implemented in JAVA and C++) which can be parameterized with respect to L1 and L2, the size of the lexicon, and the level of detail of the visually presented grammatical structures.
  • Holler, J., Tutton, M., & Wilkin, K. (2011). Co-speech gestures in the process of meaning coordination. In Proceedings of the 2nd GESPIN - Gesture & Speech in Interaction Conference, Bielefeld, 5-7 Sep 2011.

    Abstract

    This study uses a classical referential communication task to
    investigate the role of co-speech gestures in the process of
    coordination. The study manipulates both the common ground between the interlocutors, as well as the visibility of the gestures they use. The findings show that co-speech gestures are an integral part of the referential utterances speakers
    produced with regard to both initial references as well as repeated references, and that the availability of gestures appears to impact on interlocutors’ referential oordination. The results are discussed with regard to past research on
    common ground as well as theories of gesture production.
  • Jasmin, K., & Casasanto, D. (2011). The QWERTY effect: How stereo-typing shapes the mental lexicon. In L. Carlson, C. Holscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive Science Society.
  • Lai, V. T., Hagoort, P., & Casasanto, D. (2011). Affective and non-affective meaning in words and pictures. In L. Carlson, C. Holscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Meeting of the Cognitive Science Society (pp. 390-395). Austin, TX: Cognitive Science Society.
  • Ozyurek, A. (2011). Language in our hands: The role of the body in language, cognition and communication [Inaugural lecture]. Nijmegen: Radboud University Nijmegen.

    Abstract

    Even though most studies of language have focused on speech channel and/or viewed language as an
    amodal abstract system, there is growing evidence on the role our bodily actions/ perceptions play in language and communication.
    In this context, Özyürek discusses what our meaningful visible bodily actions reveal about our language capacity. Conducting cross-linguistic, behavioral, and neurobiological research,
    she shows that co-speech gestures reflect the imagistic, iconic aspects of events talked about and at the same time interact with language production and
    comprehension processes. Sign languages can also be characterized having an abstract system of linguistic categories as well as using iconicity in several
    aspects of the language structure and in its processing.
    Studying language multimodally reveals how grounded language is in our visible bodily actions and opens
    up new lines of research to study language in its situated,
    natural face-to-face context.
  • Ozyurek, A., & Perniss, P. M. (2011). Event representations in signed languages. In J. Bohnemeyer, & E. Pederson (Eds.), Event representations in language and cognition (pp. 84-107). New York: Cambridge University Press.
  • Perniss, P. M., Zwitserlood, I., & Ozyurek, A. (2011). Does space structure spatial language? Linguistic encoding of space in sign languages. In L. Carlson, C. Holscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Meeting of the Cognitive Science Society (pp. 1595-1600). Austin, TX: Cognitive Science Society.
  • Petersson, K. M., Forkstam, C., Inácio, F., Bramão, I., Araújo, S., Souza, A. C., Silva, S., & Castro, S. L. (2011). Artificial language learning. In A. Trevisan, & V. Wannmacher Pereira (Eds.), Alfabeltização e cognição (pp. 71-90). Porto Alegre, Brasil: Edipucrs.

    Abstract

    Neste artigo fazemos uma revisão breve de investigações actuais com técnicas comportamentais e de neuroimagem funcional sobre a aprendizagem de uma linguagem artificial em crianças e adultos. Na secção final, discutimos uma possível associação entre dislexia e aprendizagem implícita. Resultados recentes sugerem que a presença de um défice ao nível da aprendizagem implícita pode contribuir para as dificuldades de leitura e escrita observadas em indivíduos disléxicos.
  • Reis, A., Faísca, L., & Petersson, K. M. (2011). Literacia: Modelo para o estudo dos efeitos de uma aprendizagem específica na cognição e nas suas bases cerebrais. In A. Trevisan, J. J. Mouriño Mosquera, & V. Wannmacher Pereira (Eds.), Alfabeltização e cognição (pp. 23-36). Porto Alegro, Brasil: Edipucrs.

    Abstract

    A aquisição de competências de leitura e de escrita pode ser vista como um processo formal de transmissão cultural, onde interagem factores neurobiológicos e culturais. O treino sistemático exigido pela aprendizagem da leitura e da escrita poderá produzir mudanças quantitativas e qualitativas tanto a nível cognitivo como ao nível da organização do cérebro. Estudar sujeitos iletrados e letrados representa, assim, uma oportunidade para investigar efeitos de uma aprendizagem específica no desenvolvimento cognitivo e suas bases cerebrais. Neste trabalho, revemos um conjunto de investigações comportamentais e com métodos de imagem cerebral que indicam que a literacia tem um impacto nas nossas funções cognitivas e na organização cerebral. Mais especificamente, discutiremos diferenças entre letrados e iletrados para domínios cognitivos verbais e não-verbais, sugestivas de que a arquitectura cognitiva é formatada, em parte, pela aprendizagem da leitura e da escrita. Os dados de neuroimagem funcionais e estruturais são também indicadores que a aquisição de uma ortografia alfabética interfere nos processos de organização e lateralização das funções cognitivas.
  • Staum Casasanto, L., Gijssels, T., & Casasanto, D. (2011). The Reverse-Chameleon Effect: Negative social consequences of anatomical mimicry.[Abstract]. In L. Carlson, C. Hölscher, & T. F. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 1103). Austin, TX: Cognitive Science Society.

    Abstract

    Mirror mimicry has well-known consequences for the person being mimicked: it increases how positively they feel about the mimicker (the Chameleon Effect). Here we show that anatomical mimicry has the opposite social consequences: a Reverse-Chameleon Effect. To equate mirror and anatomical mimicry, we asked participants to have a face-to-face conversation with a digital human (VIRTUO), in a fully-immersive virtual environment. Participants’ spontaneous head movements were tracked, and VIRTUO mimicked them at a 2-second delay, either mirror-wise, anatomically, or not at all (instead enacting another participant’s movements). Participants who were mimicked mirror-wise rated their social interaction with VIRTUO to be significantly more positive than those who were mimicked anatomically. Participants who were not mimicked gave intermediate ratings. Beyond its practical implications, the Reverse-Chameleon Effect constrains theoretical accounts of how mimicry affects social perception
  • Van Berkum, J. J. A. (2011). Zonder gevoel geen taal [Inaugural lecture].

    Abstract

    Onderzoek naar taal en communicatie heeft zich in het verleden veel te veel gericht op taal als systeem om berichten te coderen, een soort TCP/IP (netwerkprotocol voor communicatie tussen computers). Dat moet maar eens veranderen, stelt prof. dr. Jos van Berkum, hoogleraar Discourse, Cognitie en Communicatie, in zijn oratie die hij op 30 september zal houden aan de Universiteit Utrecht. Hij pleit voor meer onderzoek naar de sterke verwevenheid van taal en gevoel.
  • Wilkin, K., & Holler, J. (2011). Speakers’ use of ‘action’ and ‘entity’ gestures with definite and indefinite references. In G. Stam, & M. Ishino (Eds.), Integrating gestures: The interdisciplinary nature of gesture (pp. 293-308). Amsterdam: John Benjamins.

    Abstract

    Common ground is an essential prerequisite for coordination in social interaction, including language use. When referring back to a referent in discourse, this referent is ‘given information’ and therefore in the interactants’ common ground. When a referent is being referred to for the first time, a speaker introduces ‘new information’. The analyses reported here are on gestures that accompany such references when they include definite and indefinite grammatical determiners. The main finding from these analyses is that referents referred to by definite and indefinite articles were equally often accompanied by gesture, but speakers tended to accompany definite references with gestures focusing on action information and indefinite references with gestures focusing on entity information. The findings suggest that speakers use speech and gesture together to design utterances appropriate for speakers with whom they share common ground.

    Files private

    Request files

Share this page