Publications

Displaying 1 - 100 of 186
  • Bakker-Marshall, I., Takashima, A., Schoffelen, J.-M., Van Hell, J. G., Janzen, G., & McQueen, J. M. (2018). Theta-band Oscillations in the Middle Temporal Gyrus Reflect Novel Word Consolidation. Journal of Cognitive Neuroscience, 30(5), 621-633. doi:10.1162/jocn_a_01240.

    Abstract

    Like many other types of memory formation, novel word learning benefits from an offline consolidation period after the initial encoding phase. A previous EEG study has shown that retrieval of novel words elicited more word-like-induced electrophysiological brain activity in the theta band after consolidation [Bakker, I., Takashima, A., van Hell, J. G., Janzen, G., & McQueen, J. M. Changes in theta and beta oscillations as signatures of novel word consolidation. Journal of Cognitive Neuroscience, 27, 1286–1297, 2015]. This suggests that theta-band oscillations play a role in lexicalization, but it has not been demonstrated that this effect is directly caused by the formation of lexical representations. This study used magnetoencephalography to localize the theta consolidation effect to the left posterior middle temporal gyrus (pMTG), a region known to be involved in lexical storage. Both untrained novel words and words learned immediately before test elicited lower theta power during retrieval than existing words in this region. After a 24-hr consolidation period, the difference between novel and existing words decreased significantly, most strongly in the left pMTG. The magnitude of the decrease after consolidation correlated with an increase in behavioral competition effects between novel words and existing words with similar spelling, reflecting functional integration into the mental lexicon. These results thus provide new evidence that consolidation aids the development of lexical representations mediated by the left pMTG. Theta synchronization may enable lexical access by facilitating the simultaneous activation of distributed semantic, phonological, and orthographic representations that are bound together in the pMTG.
  • Berkers, R. M. W. J., Ekman, M., van Dongen, E. V., Takashima, A., Barth, M., Paller, K. A., & Fernández, G. (2018). Cued reactivation during slow-wave sleep induces brain connectivity changes related to memory stabilization. Scientific Reports, 8: 16958. doi:10.1038/s41598-018-35287-6.

    Abstract

    Memory reprocessing following acquisition enhances memory consolidation. Specifically, neural activity during encoding is thought to be ‘replayed’ during subsequent slow-wave sleep. Such memory replay is thought to contribute to the functional reorganization of neural memory traces. In particular, memory replay may facilitate the exchange of information across brain regions by inducing a reconfiguration of connectivity across the brain. Memory reactivation can be induced by external cues through a procedure known as “targeted memory reactivation”. Here, we analysed data from a published study with auditory cues used to reactivate visual object-location memories during slow-wave sleep. We characterized effects of memory reactivation on brain network connectivity using graph-theory. We found that cue presentation during slow-wave sleep increased global network integration of occipital cortex, a visual region that was also active during retrieval of object locations. Although cueing did not have an overall beneficial effect on the retention of cued versus uncued associations, individual differences in overnight memory stabilization were related to enhanced network integration of occipital cortex. Furthermore, occipital cortex displayed enhanced connectivity with mnemonic regions, namely the hippocampus, parahippocampal gyrus, thalamus and medial prefrontal cortex during cue sound presentation. Together, these results suggest a neural mechanism where cue-induced replay during sleep increases integration of task-relevant perceptual regions with mnemonic regions. This cross-regional integration may be instrumental for the consolidation and long-term storage of enduring memories.

    Additional information

    41598_2018_35287_MOESM1_ESM.doc
  • Dai, B., Chen, C., Long, Y., Zheng, L., Zhao, H., Bai, X., Liu, W., Zhang, Y., Liu, L., Guo, T., Ding, G., & Lu, C. (2018). Neural mechanisms for selectively tuning into the target speaker in a naturalistic noisy situation. Nature Communications, 9: 2405. doi:10.1038/s41467-018-04819-z.

    Abstract

    The neural mechanism for selectively tuning in to a target speaker while tuning out the others in a multi-speaker situation (i.e., the cocktail-party effect) remains elusive. Here we addressed this issue by measuring brain activity simultaneously from a listener and from multiple speakers while they were involved in naturalistic conversations. Results consistently show selectively enhanced interpersonal neural synchronization (INS) between the listener and the attended speaker at left temporal–parietal junction, compared with that between the listener and the unattended speaker across different multi-speaker situations. Moreover, INS increases significantly prior to the occurrence of verbal responses, and even when the listener’s brain activity precedes that of the speaker. The INS increase is independent of brain-to-speech synchronization in both the anatomical location and frequency range. These findings suggest that INS underlies the selective process in a multi-speaker situation through neural predictions at the content level but not the sensory level of speech.

    Additional information

    Dai_etal_2018_sup.pdf
  • Degand, L., & Van Bergen, G. (2018). Discourse markers as turn-transition devices: Evidence from speech and instant messaging. Discourse Processes, 55, 47-71. doi:10.1080/0163853X.2016.1198136.

    Abstract

    In this article we investigate the relation between discourse markers and turn-transition strategies in face-to-face conversations and Instant Messaging (IM), that is, unplanned, real-time, text-based, computer-mediated communication. By means of a quantitative corpus study of utterances containing a discourse marker, we show that utterance-final discourse markers are used more often in IM than in face-to-face conversations. Moreover, utterance-final discourse markers are shown to occur more often at points of turn-transition compared with points of turn-maintenance in both types of conversation. From our results we conclude that the discourse markers in utterance-final position can function as a turn-transition mechanism, signaling that the turn is over and the floor is open to the hearer. We argue that this linguistic turn-taking strategy is essentially similar in face-to-face and IM communication. Our results add to the evidence that communication in IM is more like speech than like writing.
  • Duarte, R., Uhlmann, M., Van den Broek, D., Fitz, H., Petersson, K. M., & Morrison, A. (2018). Encoding symbolic sequences with spiking neural reservoirs. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN). doi:10.1109/IJCNN.2018.8489114.

    Abstract

    Biologically inspired spiking networks are an important tool to study the nature of computation and cognition in neural systems. In this work, we investigate the representational capacity of spiking networks engaged in an identity mapping task. We compare two schemes for encoding symbolic input, one in which input is injected as a direct current and one where input is delivered as a spatio-temporal spike pattern. We test the ability of networks to discriminate their input as a function of the number of distinct input symbols. We also compare performance using either membrane potentials or filtered spike trains as state variable. Furthermore, we investigate how the circuit behavior depends on the balance between excitation and inhibition, and the degree of synchrony and regularity in its internal dynamics. Finally, we compare different linear methods of decoding population activity onto desired target labels. Overall, our results suggest that even this simple mapping task is strongly influenced by design choices on input encoding, state-variables, circuit characteristics and decoding methods, and these factors can interact in complex ways. This work highlights the importance of constraining computational network models of behavior by available neurobiological evidence.
  • Eekhof, L. S., Eerland, A., & Willems, R. M. (2018). Readers’ insensitivity to tense revealed: No differences in mental simulation during reading of present and past tense stories. Collabra: Psychology, 4(1): 16. doi:10.1525/collabra.121.

    Abstract

    While the importance of mental simulation during literary reading has long been recognized, we know little about the factors that determine when, what, and how much readers mentally simulate. Here we investigate the influence of a specific text characteristic, namely verb tense (present vs. past), on mental simulation during literary reading. Verbs usually denote the actions and events that take place in narratives and hence it is hypothesized that verb tense will influence the amount of mental simulation elicited in readers. Although the present tense is traditionally considered to be more “vivid”, this study is one of the first to experimentally assess this claim. We recorded eye-movements while subjects read stories in the past or present tense and collected data regarding self-reported levels of mental simulation, transportation and appreciation. We found no influence of tense on any of the offline measures. The eye-tracking data showed a slightly more complex pattern. Although we did not find a main effect of sensorimotor simulation content on reading times, we were able to link the degree to which subjects slowed down when reading simulation eliciting content to offline measures of attention and transportation, but this effect did not interact with the tense of the story. Unexpectedly, we found a main effect of tense on reading times per word, with past tense stories eliciting longer first fixation durations and gaze durations. However, we were unable to link this effect to any of the offline measures. In sum, this study suggests that tense does not play a substantial role in the process of mental simulation elicited by literary stories.

    Additional information

    Data Accessibility
  • Eichert, N., Peeters, D., & Hagoort, P. (2018). Language-driven anticipatory eye movements in virtual reality. Behavior Research Methods, 50(3), 1102-1115. doi:10.3758/s13428-017-0929-z.

    Abstract

    Predictive language processing is often studied by measuring eye movements as participants look at objects on a computer screen while they listen to spoken sentences. The use of this variant of the visual world paradigm has shown that information encountered by a listener at a spoken verb can give rise to anticipatory eye movements to a target object, which is taken to indicate that people predict upcoming words. The ecological validity of such findings remains questionable, however, because these computer experiments used two-dimensional (2D) stimuli that are mere abstractions of real world objects. Here we present a visual world paradigm study in a three-dimensional (3D) immersive virtual reality environment. Despite significant changes in the stimulus material and the different mode of stimulus presentation, language-mediated anticipatory eye movements were observed. These findings thus indicate prediction of upcoming words in language comprehension in a more naturalistic setting where natural depth cues are preserved. Moreover, the results confirm the feasibility of using eye-tracking in rich and multimodal 3D virtual environments.

    Additional information

    13428_2017_929_MOESM1_ESM.docx
  • Ergin, R., Meir, I., Ilkbasaran, D., Padden, C., & Jackendoff, R. (2018). The Development of Argument Structure in Central Taurus Sign Language. Sign Language & Linguistics, 18(4), 612-639. doi:10.1353/sls.2018.0018.

    Abstract

    One of the fundamental issues for a language is its capacity to express
    argument structure unambiguously. This study presents evidence
    for the emergence and the incremental development of these
    basic mechanisms in a newly developing language, Central Taurus
    Sign Language. Our analyses identify universal patterns in both the
    emergence and development of these mechanisms and in languagespecific
    trajectories.
  • Ergin, R., Senghas, A., Jackendoff, R., & Gleitman, L. (2018). Structural cues for symmetry, asymmetry, and non-symmetry in Central Taurus Sign Language. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 104-106). Toruń, Poland: NCU Press. doi:10.12775/3991-1.025.
  • Flecken, M., & Von Stutterheim, C. (2018). Sprache und Kognition: Sprachvergleichende und lernersprachliche Untersuchungen zur Ereigniskonzeptualisierung. In S. Schimke, & H. Hopp (Eds.), Sprachverarbeitung im Zweitspracherwerb (pp. 325-356). Berlin: De Gruyter. doi:10.1515/9783110456356-014.
  • Francisco, A. A., Takashima, A., McQueen, J. M., Van den Bunt, M., Jesse, A., & Groen, M. A. (2018). Adult dyslexic readers benefit less from visual input during audiovisual speech processing: fMRI evidence. Neuropsychologia, 117, 454-471. doi:10.1016/j.neuropsychologia.2018.07.009.

    Abstract

    The aim of the present fMRI study was to investigate whether typical and dyslexic adult readers differed in the neural correlates of audiovisual speech processing. We tested for Blood Oxygen-Level Dependent (BOLD) activity differences between these two groups in a 1-back task, as they processed written (word, illegal consonant strings) and spoken (auditory, visual and audiovisual) stimuli. When processing written stimuli, dyslexic readers showed reduced activity in the supramarginal gyrus, a region suggested to play an important role in phonological processing, but only when they processed strings of consonants, not when they read words. During the speech perception tasks, dyslexic readers were only slower than typical readers in their behavioral responses in the visual speech condition. Additionally, dyslexic readers presented reduced neural activation in the auditory, the visual, and the audiovisual speech conditions. The groups also differed in terms of superadditivity, with dyslexic readers showing decreased neural activation in the regions of interest. An additional analysis focusing on vision-related processing during the audiovisual condition showed diminished activation for the dyslexic readers in a fusiform gyrus cluster. Our results thus suggest that there are differences in audiovisual speech processing between dyslexic and normal readers. These differences might be explained by difficulties in processing the unisensory components of audiovisual speech, more specifically, dyslexic readers may benefit less from visual information during audiovisual speech processing than typical readers. Given that visual speech processing supports the development of phonological skills fundamental in reading, differences in processing of visual speech could contribute to differences in reading ability between typical and dyslexic readers.
  • Franken, M. K. (2018). Listening for speaking: Investigations of the relationship between speech perception and production. PhD Thesis, Radboud University, Nijmegen.

    Abstract

    Speaking and listening are complex tasks that we perform on a daily basis, almost without conscious effort. Interestingly, speaking almost never occurs without listening: whenever we speak, we at least hear our own speech. The research in this thesis is concerned with how the perception of our own speech influences our speaking behavior. We show that unconsciously, we actively monitor this auditory feedback of our own speech. This way, we can efficiently take action and adapt articulation when an error occurs and auditory feedback does not correspond to our expectation. Processing the auditory feedback of our speech does not, however, automatically affect speech production. It is subject to a number of constraints. For example, we do not just track auditory feedback, but also its consistency. If auditory feedback is more consistent over time, it has a stronger influence on speech production. In addition, we investigated how auditory feedback during speech is processed in the brain, using magnetoencephalography (MEG). The results suggest the involvement of a broad cortical network including both auditory and motor-related regions. This is consistent with the view that the auditory center of the brain is involved in comparing auditory feedback to our expectation of auditory feedback. If this comparison yields a mismatch, motor-related regions of the brain can be recruited to alter the ongoing articulations.

    Additional information

    full text via Radboud Repository
  • Franken, M. K., Acheson, D. J., McQueen, J. M., Hagoort, P., & Eisner, F. (2018). Opposing and following responses in sensorimotor speech control: Why responses go both ways. Psychonomic Bulletin & Review, 25(4), 1458-1467. doi:10.3758/s13423-018-1494-x.

    Abstract

    When talking, speakers continuously monitor and use the auditory feedback of their own voice to control and inform speech production processes. When speakers are provided with auditory feedback that is perturbed in real time, most of them compensate for this by opposing the feedback perturbation. But some speakers follow the perturbation. In the current study, we investigated whether the state of the speech production system at perturbation onset may determine what type of response (opposing or following) is given. The results suggest that whether a perturbation-related response is opposing or following depends on ongoing fluctuations of the production system: It initially responds by doing the opposite of what it was doing. This effect and the non-trivial proportion of following responses suggest that current production models are inadequate: They need to account for why responses to unexpected sensory feedback depend on the production-system’s state at the time of perturbation.
  • Franken, M. K., Eisner, F., Acheson, D. J., McQueen, J. M., Hagoort, P., & Schoffelen, J.-M. (2018). Self-monitoring in the cerebral cortex: Neural responses to pitch-perturbed auditory feedback during speech production. NeuroImage, 179, 326-336. doi:10.1016/j.neuroimage.2018.06.061.

    Abstract

    Speaking is a complex motor skill which requires near instantaneous integration of sensory and motor-related information. Current theory hypothesizes a complex interplay between motor and auditory processes during speech production, involving the online comparison of the speech output with an internally generated forward model. To examine the neural correlates of this intricate interplay between sensory and motor processes, the current study uses altered auditory feedback (AAF) in combination with magnetoencephalography (MEG). Participants vocalized the vowel/e/and heard auditory feedback that was temporarily pitch-shifted by only 25 cents, while neural activity was recorded with MEG. As a control condition, participants also heard the recordings of the same auditory feedback that they heard in the first half of the experiment, now without vocalizing. The participants were not aware of any perturbation of the auditory feedback. We found auditory cortical areas responded more strongly to the pitch shifts during vocalization. In addition, auditory feedback perturbation resulted in spectral power increases in the θ and lower β bands, predominantly in sensorimotor areas. These results are in line with current models of speech production, suggesting auditory cortical areas are involved in an active comparison between a forward model's prediction and the actual sensory input. Subsequently, these areas interact with motor areas to generate a motor response. Furthermore, the results suggest that θ and β power increases support auditory-motor interaction, motor error detection and/or sensory prediction processing.
  • De Groot, A. M. B., & Hagoort, P. (Eds.). (2018). Research methods in psycholinguistics and the neurobiology of language: A practical guide. Oxford: Wiley.
  • Hagoort, P. (2018). Prerequisites for an evolutionary stance on the neurobiology of language. Current Opinion in Behavioral Sciences, 21, 191-194. doi:10.1016/j.cobeha.2018.05.012.
  • Hahn, L. E., Benders, T., Snijders, T. M., & Fikkert, P. (2018). Infants' sensitivity to rhyme in songs. Infant Behavior and Development, 52, 130-139. doi:10.1016/j.infbeh.2018.07.002.

    Abstract

    Children’s songs often contain rhyming words at phrase endings. In this study, we investigated whether infants can already recognize this phonological pattern in songs. Earlier studies using lists of spoken words were equivocal on infants’ spontaneous processing of rhymes (Hayes, Slater, & Brown, 2000; Jusczyk, Goodman, & Baumann, 1999). Songs, however, constitute an ecologically valid rhyming stimulus, which could allow for spontaneous processing of this phonological pattern in infants. Novel children’s songs with rhyming and non-rhyming lyrics using pseudo-words were presented to 35 9-month-old Dutch infants using the Headturn Preference Procedure. Infants on average listened longer to the non-rhyming songs, with around half of the infants however exhibiting a preference for the rhyming songs. These results highlight that infants have the processing abilities to benefit from their natural rhyming input for the development of their phonological abilities.
  • Hasson, U., Egidi, G., Marelli, M., & Willems, R. M. (2018). Grounding the neurobiology of language in first principles: The necessity of non-language-centric explanations for language comprehension. Cognition, 180(1), 135-157. doi:10.1016/j.cognition.2018.06.018.

    Abstract

    Recent decades have ushered in tremendous progress in understanding the neural basis of language. Most of our current knowledge on language and the brain, however, is derived from lab-based experiments that are far removed from everyday language use, and that are inspired by questions originating in linguistic and psycholinguistic contexts. In this paper we argue that in order to make progress, the field needs to shift its focus to understanding the neurobiology of naturalistic language comprehension. We present here a new conceptual framework for understanding the neurobiological organization of language comprehension. This framework is non-language-centered in the computational/neurobiological constructs it identifies, and focuses strongly on context. Our core arguments address three general issues: (i) the difficulty in extending language-centric explanations to discourse; (ii) the necessity of taking context as a serious topic of study, modeling it formally and acknowledging the limitations on external validity when studying language comprehension outside context; and (iii) the tenuous status of the language network as an explanatory construct. We argue that adopting this framework means that neurobiological studies of language will be less focused on identifying correlations between brain activity patterns and mechanisms postulated by psycholinguistic theories. Instead, they will be less self-referential and increasingly more inclined towards integration of language with other cognitive systems, ultimately doing more justice to the neurobiological organization of language and how it supports language as it is used in everyday life.
  • Hervais-Adelman, A., Egorova, N., & Golestani, N. (2018). Beyond bilingualism: Multilingual experience correlates with caudate volume. Brain Structure and Function, 223(7), 3495-3502. doi:10.1007/s00429-018-1695-0.

    Abstract

    The multilingual brain implements mechanisms that serve to select the appropriate language as a function of the communicative environment. Engaging these mechanisms on a regular basis appears to have consequences for brain structure and function. Studies have implicated the caudate nuclei as important nodes in polyglot language control processes, and have also shown structural differences in the caudate nuclei in bilingual compared to monolingual populations. However, the majority of published work has focused on the categorical differences between monolingual and bilingual individuals, and little is known about whether these findings extend to multilingual individuals, who have even greater language control demands. In the present paper, we present an analysis of the volume and morphology of the caudate nuclei, putamen, pallidum and thalami in 75 multilingual individuals who speak three or more languages. Volumetric analyses revealed a significant relationship between multilingual experience and right caudate volume, as well as a marginally significant relationship with left caudate volume. Vertex-wise analyses revealed a significant enlargement of dorsal and anterior portions of the left caudate nucleus, known to have connectivity with executive brain regions, as a function of multilingual expertise. These results suggest that multilingual expertise might exercise a continuous impact on brain structure, and that as additional languages beyond a second are acquired, the additional demands for linguistic and cognitive control result in modifications to brain structures associated with language management processes.
  • Hervais-Adelman, A., Moser-Mercer, B., & Golestani, N. (2018). Commentary: Broca pars triangularis constitutes a “hub” of the language-control network during simultaneous language translation. Frontiers in Human Neuroscience, 12: 22. doi:10.3389/fnhum.2018.00022.

    Abstract

    A commentary on
    Broca Pars Triangularis Constitutes a “Hub” of the Language-Control Network during Simultaneous Language Translation

    by Elmer, S. (2016). Front. Hum. Neurosci. 10:491. doi: 10.3389/fnhum.2016.00491

    Elmer (2016) conducted an fMRI investigation of “simultaneous language translation” in five participants. The article presents group and individual analyses of German-to-Italian and Italian-to-German translation, confined to a small set of anatomical regions previously reported to be involved in multilingual control. Here we take the opportunity to discuss concerns regarding certain aspects of the study.
  • Heyselaar, E., Mazaheri, A., Hagoort, P., & Segaert, K. (2018). Changes in alpha activity reveal that social opinion modulates attention allocation during face processing. NeuroImage, 174, 432-440. doi:10.1016/j.neuroimage.2018.03.034.

    Abstract

    Participants’ performance differs when conducting a task in the presence of a secondary individual, moreover the opinion the participant has of this individual also plays a role. Using EEG, we investigated how previous interactions with, and evaluations of, an avatar in virtual reality subsequently influenced attentional allocation to the face of that avatar. We focused on changes in the alpha activity as an index of attentional allocation. We found that the onset of an avatar’s face whom the participant had developed a rapport with induced greater alpha suppression. This suggests greater attentional resources are allocated to the interacted-with avatars. The evaluative ratings of the avatar induced a U-shaped change in alpha suppression, such that participants paid most attention when the avatar was rated as average. These results suggest that attentional allocation is an important element of how behaviour is altered in the presence of a secondary individual and is modulated by our opinion of that individual.

    Additional information

    mmc1.docx
  • Huettig, F., Lachmann, T., Reis, A., & Petersson, K. M. (2018). Distinguishing cause from effect - Many deficits associated with developmental dyslexia may be a consequence of reduced and suboptimal reading experience. Language, Cognition and Neuroscience, 33(3), 333-350. doi:10.1080/23273798.2017.1348528.

    Abstract

    The cause of developmental dyslexia is still unknown despite decades of intense research. Many causal explanations have been proposed, based on the range of impairments displayed by affected individuals. Here we draw attention to the fact that many of these impairments are also shown by illiterate individuals who have not received any or very little reading instruction. We suggest that this fact may not be coincidental and that the performance differences of both illiterates and individuals with dyslexia compared to literate controls are, to a substantial extent, secondary consequences of either reduced or suboptimal reading experience or a combination of both. The search for the primary causes of reading impairments will make progress if the consequences of quantitative and qualitative differences in reading experience are better taken into account and not mistaken for the causes of reading disorders. We close by providing four recommendations for future research.
  • Inacio, F., Faisca, L., Forkstam, C., Araujo, S., Bramao, I., Reis, A., & Petersson, K. M. (2018). Implicit sequence learning is preserved in dyslexic children. Annals of Dyslexia, 68(1), 1-14. doi:10.1007/s11881-018-0158-x.

    Abstract

    This study investigates the implicit sequence learning abilities of dyslexic children using an artificial grammar learning task with an extended exposure period. Twenty children with developmental dyslexia participated in the study and were matched with two control groups—one matched for age and other for reading skills. During 3 days, all participants performed an acquisition task, where they were exposed to colored geometrical forms sequences with an underlying grammatical structure. On the last day, after the acquisition task, participants were tested in a grammaticality classification task. Implicit sequence learning was present in dyslexic children, as well as in both control groups, and no differences between groups were observed. These results suggest that implicit learning deficits per se cannot explain the characteristic reading difficulties of the dyslexics.
  • Jacobs, A. M., & Willems, R. M. (2018). The fictive brain: Neurocognitive correlates of engagement in literature. Review of General Psychology, 22(2), 147-160. doi:10.1037/gpr0000106.

    Abstract

    Fiction is vital to our being. Many people enjoy engaging with fiction every day. Here we focus on literary reading as 1 instance of fiction consumption from a cognitive neuroscience perspective. The brain processes which play a role in the mental construction of fiction worlds and the related engagement with fictional characters, remain largely unknown. The authors discuss the neurocognitive poetics model (Jacobs, 2015a) of literary reading specifying the likely neuronal correlates of several key processes in literary reading, namely inference and situation model building, immersion, mental simulation and imagery, figurative language and style, and the issue of distinguishing fact from fiction. An overview of recent work on these key processes is followed by a discussion of methodological challenges in studying the brain bases of fiction processing
  • Kösem, A., Bosker, H. R., Takashima, A., Meyer, A. S., Jensen, O., & Hagoort, P. (2018). Neural entrainment determines the words we hear. Current Biology, 28, 2867-2875. doi:10.1016/j.cub.2018.07.023.

    Abstract

    Low-frequency neural entrainment to rhythmic input
    has been hypothesized as a canonical mechanism
    that shapes sensory perception in time. Neural
    entrainment is deemed particularly relevant for
    speech analysis, as it would contribute to the extraction
    of discrete linguistic elements from continuous
    acoustic signals. However, its causal influence in
    speech perception has been difficult to establish.
    Here, we provide evidence that oscillations build temporal
    predictions about the duration of speech tokens
    that affect perception. Using magnetoencephalography
    (MEG), we studied neural dynamics during
    listening to sentences that changed in speech rate.
    Weobserved neural entrainment to preceding speech
    rhythms persisting for several cycles after the change
    in rate. The sustained entrainment was associated
    with changes in the perceived duration of the last
    word’s vowel, resulting in the perception of words
    with different meanings. These findings support oscillatory
    models of speech processing, suggesting that
    neural oscillations actively shape speech perception.
  • Lam, N. H. L., Hulten, A., Hagoort, P., & Schoffelen, J.-M. (2018). Robust neuronal oscillatory entrainment to speech displays individual variation in lateralisation. Language, Cognition and Neuroscience, 33(8), 943-954. doi:10.1080/23273798.2018.1437456.

    Abstract

    Neural oscillations may be instrumental for the tracking and segmentation of continuous speech. Earlier work has suggested that delta, theta and gamma oscillations entrain to the speech rhythm. We used magnetoencephalography and a large sample of 102 participants to investigate oscillatory entrainment to speech, and observed robust entrainment of delta and theta activity, and weak group-level gamma entrainment. We show that the peak frequency and the hemispheric lateralisation of the entrainment are subject to considerable individual variability. The first finding may support the involvement of intrinsic oscillations in entrainment, and the second finding suggests that there is no systematic default right-hemispheric bias for processing acoustic signals on a slow time scale. Although low frequency entrainment to speech is a robust phenomenon, the characteristics of entrainment vary across individuals, and this variation is important for understanding the underlying neural mechanisms of entrainment, as well as its functional significance.
  • Lewis, A. G., Schriefers, H., Bastiaansen, M., & Schoffelen, J.-M. (2018). Assessing the utility of frequency tagging for tracking memory-based reactivation of word representations. Scientific Reports, 8: 7897. doi:10.1038/s41598-018-26091-3.

    Abstract

    Reinstatement of memory-related neural activity measured with high temporal precision potentially provides a useful index for real-time monitoring of the timing of activation of memory content during cognitive processing. The utility of such an index extends to any situation where one is interested in the (relative) timing of activation of different sources of information in memory, a paradigm case of which is tracking lexical activation during language processing. Essential for this approach is that memory reinstatement effects are robust, so that their absence (in the average) definitively indicates that no lexical activation is present. We used electroencephalography to test the robustness of a reported subsequent memory finding involving reinstatement of frequency-specific entrained oscillatory brain activity during subsequent recognition. Participants learned lists of words presented on a background flickering at either 6 or 15 Hz to entrain a steady-state brain response. Target words subsequently presented on a non-flickering background that were correctly identified as previously seen exhibited reinstatement effects at both entrainment frequencies. Reliability of these statistical inferences was however critically dependent on the approach used for multiple comparisons correction. We conclude that effects are not robust enough to be used as a reliable index of lexical activation during language processing.

    Additional information

    Lewis_etal_2018sup.docx
  • Lopopolo, A., Frank, S. L., Van den Bosch, A., Nijhof, A., & Willems, R. M. (2018). The Narrative Brain Dataset (NBD), an fMRI dataset for the study of natural language processing in the brain. In B. Devereux, E. Shutova, & C.-R. Huang (Eds.), Proceedings of LREC 2018 Workshop "Linguistic and Neuro-Cognitive Resources (LiNCR) (pp. 8-11). Paris: LREC.

    Abstract

    We present the Narrative Brain Dataset, an fMRI dataset that was collected during spoken presentation of short excerpts of three
    stories in Dutch. Together with the brain imaging data, the dataset contains the written versions of the stimulation texts. The texts are
    accompanied with stochastic (perplexity and entropy) and semantic computational linguistic measures. The richness and unconstrained
    nature of the data allows the study of language processing in the brain in a more naturalistic setting than is common for fMRI studies.
    We hope that by making NBD available we serve the double purpose of providing useful neural data to researchers interested in natural
    language processing in the brain and to further stimulate data sharing in the field of neuroscience of language.
  • Manahova, M. E., Mostert, P., Kok, P., Schoffelen, J.-M., & De Lange, F. P. (2018). Stimulus familiarity and expectation jointly modulate neural activity in the visual ventral stream. Journal of Cognitive Neuroscience, 30(9), 1366-1377. doi:10.1162/jocn_a_01281.

    Abstract

    Prior knowledge about the visual world can change how a visual stimulus is processed. Two forms of prior knowledge are often distinguished: stimulus familiarity (i.e., whether a stimulus has been seen before) and stimulus expectation (i.e., whether a stimulus is expected to occur, based on the context). Neurophysiological studies in monkeys have shown suppression of spiking activity both for expected and for familiar items in object-selective inferotemporal cortex. It is an open question, however, if and how these types of knowledge interact in their modulatory effects on the sensory response. To address this issue and to examine whether previous findings generalize to noninvasively measured neural activity in humans, we separately manipulated stimulus familiarity and expectation while noninvasively recording human brain activity using magnetoencephalography. We observed independent suppression of neural activity by familiarity and expectation, specifically in the lateral occipital complex, the putative human homologue of monkey inferotemporal cortex. Familiarity also led to sharpened response dynamics, which was predominantly observed in early visual cortex. Together, these results show that distinct types of sensory knowledge jointly determine the amount of neural resources dedicated to object processing in the visual ventral stream.
  • Meyer, A. S., Alday, P. M., Decuyper, C., & Knudsen, B. (2018). Working together: Contributions of corpus analyses and experimental psycholinguistics to understanding conversation. Frontiers in Psychology, 9: 525. doi:10.3389/fpsyg.2018.00525.

    Abstract

    As conversation is the most important way of using language, linguists and psychologists should combine forces to investigate how interlocutors deal with the cognitive demands arising during conversation. Linguistic analyses of corpora of conversation are needed to understand the structure of conversations, and experimental work is indispensable for understanding the underlying cognitive processes. We argue that joint consideration of corpus and experimental data is most informative when the utterances elicited in a lab experiment match those extracted from a corpus in relevant ways. This requirement to compare like with like seems obvious but is not trivial to achieve. To illustrate this approach, we report two experiments where responses to polar (yes/no) questions were elicited in the lab and the response latencies were compared to gaps between polar questions and answers in a corpus of conversational speech. We found, as expected, that responses were given faster when they were easy to plan and planning could be initiated earlier than when they were harder to plan and planning was initiated later. Overall, in all but one condition, the latencies were longer than one would expect based on the analyses of corpus data. We discuss the implication of this partial match between the data sets and more generally how corpus and experimental data can best be combined in studies of conversation.

    Additional information

    Data_Sheet_1.pdf
  • Nieuwland, M. S., Politzer-Ahles, S., Heyselaar, E., Segaert, K., Darley, E., Kazanina, N., Von Grebmer Zu Wolfsthurn, S., Bartolozzi, F., Kogan, V., Ito, A., Mézière, D., Barr, D. J., Rousselet, G., Ferguson, H. J., Busch-Moreno, S., Fu, X., Tuomainen, J., Kulakova, E., Husband, E. M., Donaldson, D. I. and 3 moreNieuwland, M. S., Politzer-Ahles, S., Heyselaar, E., Segaert, K., Darley, E., Kazanina, N., Von Grebmer Zu Wolfsthurn, S., Bartolozzi, F., Kogan, V., Ito, A., Mézière, D., Barr, D. J., Rousselet, G., Ferguson, H. J., Busch-Moreno, S., Fu, X., Tuomainen, J., Kulakova, E., Husband, E. M., Donaldson, D. I., Kohút, Z., Rueschemeyer, S.-A., & Huettig, F. (2018). Large-scale replication study reveals a limit on probabilistic prediction in language comprehension. eLife, 7: e33468. doi:10.7554/eLife.33468.

    Abstract

    Do people routinely pre-activate the meaning and even the phonological form of upcoming words? The most acclaimed evidence for phonological prediction comes from a 2005 Nature Neuroscience publication by DeLong, Urbach and Kutas, who observed a graded modulation of electrical brain potentials (N400) to nouns and preceding articles by the probability that people use a word to continue the sentence fragment (‘cloze’). In our direct replication study spanning 9 laboratories (N=334), pre-registered replication-analyses and exploratory Bayes factor analyses successfully replicated the noun-results but, crucially, not the article-results. Pre-registered single-trial analyses also yielded a statistically significant effect for the nouns but not the articles. Exploratory Bayesian single-trial analyses showed that the article-effect may be non-zero but is likely far smaller than originally reported and too small to observe without very large sample sizes. Our results do not support the view that readers routinely pre-activate the phonological form of predictable words.

    Additional information

    Data sets
  • Niso, G., Gorgolewski, K. J., Bock, E., Brooks, T. L., Flandin, G., Gramfort, A., Henson, R. N., Jas, M., Litvak, V., Moreau, J. T., Oostenveld, R., Schoffelen, J.-M., Tadel, F., Wexler, J., & Baillet, S. (2018). MEG-BIDS, the brain imaging data structure extended to magnetoencephalography. Scientific Data, 5: 180110. doi:10.1038/sdata.2018.110.

    Abstract

    We present a significant extension of the Brain Imaging Data Structure (BIDS) to support the specific
    aspects of magnetoencephalography (MEG) data. MEG measures brain activity with millisecond
    temporal resolution and unique source imaging capabilities. So far, BIDS was a solution to organise
    magnetic resonance imaging (MRI) data. The nature and acquisition parameters of MRI and MEG data
    are strongly dissimilar. Although there is no standard data format for MEG, we propose MEG-BIDS as a
    principled solution to store, organise, process and share the multidimensional data volumes produced
    by the modality. The standard also includes well-defined metadata, to facilitate future data
    harmonisation and sharing efforts. This responds to unmet needs from the multimodal neuroimaging
    community and paves the way to further integration of other techniques in electrophysiology. MEGBIDS
    builds on MRI-BIDS, extending BIDS to a multimodal data structure. We feature several dataanalytics
    software that have adopted MEG-BIDS, and a diverse sample of open MEG-BIDS data
    resources available to everyone.
  • Palva, J. M., Wang, S. H., Palva, S., Zhigalov, A., Monto, S., Brookes, M. J., & Schoffelen, J.-M. (2018). Ghost interactions in MEG/EEG source space: A note of caution on inter-areal coupling measures. NeuroImage, 173, 632-643. doi:10.1016/j.neuroimage.2018.02.032.

    Abstract

    When combined with source modeling, magneto- (MEG) and electroencephalography (EEG) can be used to study
    long-range interactions among cortical processes non-invasively. Estimation of such inter-areal connectivity is
    nevertheless hindered by instantaneous field spread and volume conduction, which artificially introduce linear
    correlations and impair source separability in cortical current estimates. To overcome the inflating effects of linear
    source mixing inherent to standard interaction measures, alternative phase- and amplitude-correlation based
    connectivity measures, such as imaginary coherence and orthogonalized amplitude correlation have been proposed.
    Being by definition insensitive to zero-lag correlations, these techniques have become increasingly popular
    in the identification of correlations that cannot be attributed to field spread or volume conduction. We show here,
    however, that while these measures are immune to the direct effects of linear mixing, they may still reveal large
    numbers of spurious false positive connections through field spread in the vicinity of true interactions. This
    fundamental problem affects both region-of-interest-based analyses and all-to-all connectome mappings. Most
    importantly, beyond defining and illustrating the problem of spurious, or “ghost” interactions, we provide a
    rigorous quantification of this effect through extensive simulations. Additionally, we further show that signal
    mixing also significantly limits the separability of neuronal phase and amplitude correlations. We conclude that
    spurious correlations must be carefully considered in connectivity analyses in MEG/EEG source space even when
    using measures that are immune to zero-lag correlations.
  • Pascucci, D., Hervais-Adelman, A., & Plomp, G. (2018). Gating by induced A-Gamma asynchrony in selective attention. Human Brain Mapping, 39(10), 3854-3870. doi:10.1002/hbm.24216.

    Abstract

    Visual selective attention operates through top–down mechanisms of signal enhancement and suppression, mediated by a-band oscillations. The effects of such top–down signals on local processing in primary visual cortex (V1) remain poorly understood. In this work, we characterize the interplay between large-s cale interactions and local activity changes in V1 that orchestrat es selective attention, using Granger-causality and phase-amplitude coupling (PAC) analysis of EEG source signals. The task required participants to either attend to or ignore oriented gratings. Results from time-varying, directed connectivity analysis revealed frequency-specific effects of attentional selection: bottom–up g-band influences from visual areas increased rapidly in response to attended stimuli while distributed top–down a-band influences originated from parietal cortex in response to ignored stimuli. Importantly, the results revealed a critical interplay between top–down parietal signals and a–g PAC in visual areas.
    Parietal a-band influences disrupted the a–g coupling in visual cortex, which in turn reduced the amount of g-band outflow from visual area s. Our results are a first demon stration of how directed interactions affect cross-frequency coupling in downstream areas depending on task demands. These findings suggest that parietal cortex realizes selective attention by disrupting cross-frequency coupling at target regions, which prevents them from propagating task-irrelevant information.
  • Peeters, D. (2018). A standardized set of 3D-objects for virtual reality research and applications. Behavior Research Methods, 50(3), 1047-1054. doi:10.3758/s13428-017-0925-3.

    Abstract

    The use of immersive virtual reality as a research tool is rapidly increasing in numerous scientific disciplines. By combining ecological validity with strict experimental control, immersive virtual reality provides the potential to develop and test scientific theory in rich environments that closely resemble everyday settings. This article introduces the first standardized database of colored three-dimensional (3D) objects that can be used in virtual reality and augmented reality research and applications. The 147 objects have been normed for name agreement, image agreement, familiarity, visual complexity, and corresponding lexical characteristics of the modal object names. The availability of standardized 3D-objects for virtual reality research is important, as reaching valid theoretical conclusions critically hinges on the use of well controlled experimental stimuli. Sharing standardized 3D-objects across different virtual reality labs will allow for science to move forward more quickly.
  • Peeters, D., & Dijkstra, T. (2018). Sustained inhibition of the native language in bilingual language production: A virtual reality approach. Bilingualism: Language and Cognition, 21(5), 1035-1061. doi:10.1017/S1366728917000396.

    Abstract

    Bilinguals often switch languages as a function of the language background of their addressee. The control mechanisms supporting bilinguals' ability to select the contextually appropriate language are heavily debated. Here we present four experiments in which unbalanced bilinguals named pictures in their first language Dutch and their second language English in mixed and blocked contexts. Immersive virtual reality technology was used to increase the ecological validity of the cued language-switching paradigm. Behaviorally, we consistently observed symmetrical switch costs, reversed language dominance, and asymmetrical mixing costs. These findings indicate that unbalanced bilinguals apply sustained inhibition to their dominant L1 in mixed language settings. Consequent enhanced processing costs for the L1 in a mixed versus a blocked context were reflected by a sustained positive component in event-related potentials. Methodologically, the use of virtual reality opens up a wide range of possibilities to study language and communication in bilingual and other communicative settings.
  • Piai, V., Rommers, J., & Knight, R. T. (2018). Lesion evidence for a critical role of left posterior but not frontal areas in alpha–beta power decreases during context-driven word production. European Journal of Neuroscience, 48(7), 2622-2629. doi:10.1111/ejn.13695.

    Abstract

    Different frequency bands in the electroencephalogram are postulated to support distinct language functions. Studies have suggested
    that alpha–beta power decreases may index word-retrieval processes. In context-driven word retrieval, participants hear
    lead-in sentences that either constrain the final word (‘He locked the door with the’) or not (‘She walked in here with the’). The last
    word is shown as a picture to be named. Previous studies have consistently found alpha–beta power decreases prior to picture
    onset for constrained relative to unconstrained sentences, localised to the left lateral-temporal and lateral-frontal lobes. However,
    the relative contribution of temporal versus frontal areas to alpha–beta power decreases is unknown. We recorded the electroencephalogram
    from patients with stroke lesions encompassing the left lateral-temporal and inferior-parietal regions or left-lateral
    frontal lobe and from matched controls. Individual participant analyses revealed a behavioural sentence context facilitation effect
    in all participants, except for in the two patients with extensive lesions to temporal and inferior parietal lobes. We replicated the
    alpha–beta power decreases prior to picture onset in all participants, except for in the two same patients with extensive posterior
    lesions. Thus, whereas posterior lesions eliminated the behavioural and oscillatory context effect, frontal lesions did not. Hierarchical
    clustering analyses of all patients’ lesion profiles, and behavioural and electrophysiological effects identified those two
    patients as having a unique combination of lesion distribution and context effects. These results indicate a critical role for the left
    lateral-temporal and inferior parietal lobes, but not frontal cortex, in generating the alpha–beta power decreases underlying context-
    driven word production.
  • Poletiek, F. H., Conway, C. M., Ellefson, M. R., Lai, J., Bocanegra, B. R., & Christiansen, M. H. (2018). Under what conditions can recursion be learned? Effects of starting small in artificial grammar learning of recursive structure. Cognitive Science, 42(8), 2855-2889. doi:10.1111/cogs.12685.

    Abstract

    It has been suggested that external and/or internal limitations paradoxically may lead to superior learning, that is, the concepts of starting small and less is more (Elman, 1993; Newport, 1990). In this paper, we explore the type of incremental ordering during training that might help learning, and what mechanism explains this facilitation. We report four artificial grammar learning experiments with human participants. In Experiments 1a and 1b we found a beneficial effect of starting small using two types of simple recursive grammars: right‐branching and center‐embedding, with recursive embedded clauses in fixed positions and fixed length. This effect was replicated in Experiment 2 (N = 100). In Experiment 3 and 4, we used a more complex center‐embedded grammar with recursive loops in variable positions, producing strings of variable length. When participants were presented an incremental ordering of training stimuli, as in natural language, they were better able to generalize their knowledge of simple units to more complex units when the training input “grew” according to structural complexity, compared to when it “grew” according to string length. Overall, the results suggest that starting small confers an advantage for learning complex center‐embedded structures when the input is organized according to structural complexity.
  • Popov, T., Jensen, O., & Schoffelen, J.-M. (2018). Dorsal and ventral cortices are coupled by cross-frequency interactions during working memory. NeuroImage, 178, 277-286. doi:10.1016/j.neuroimage.2018.05.054.

    Abstract

    Oscillatory activity in the alpha and gamma bands is considered key in shaping functional brain architecture. Power
    increases in the high-frequency gamma band are typically reported in parallel to decreases in the low-frequency alpha
    band. However, their functional significance and in particular their interactions are not well understood. The present
    study shows that, in the context of an N-backworking memory task, alpha power decreases in the dorsal visual stream
    are related to gamma power increases in early visual areas. Granger causality analysis revealed directed interregional
    interactions from dorsal to ventral stream areas, in accordance with task demands. Present results reveal a robust,
    behaviorally relevant, and architectonically decisive power-to-power relationship between alpha and gamma activity.
    This relationship suggests that anatomically distant power fluctuations in oscillatory activity can link cerebral network
    dynamics on trial-by-trial basis during cognitive operations such as working memory
  • Popov, T., Oostenveld, R., & Schoffelen, J.-M. (2018). FieldTrip made easy: An analysis protocol for group analysis of the auditory steady state brain response in time, frequency, and space. Frontiers in Neuroscience, 12: 711. doi:10.3389/fnins.2018.00711.

    Abstract

    The auditory steady state evoked response (ASSR) is a robust and frequently utilized
    phenomenon in psychophysiological research. It reflects the auditory cortical response
    to an amplitude-modulated constant carrier frequency signal. The present report
    provides a concrete example of a group analysis of the EEG data from 29 healthy human
    participants, recorded during an ASSR paradigm, using the FieldTrip toolbox. First, we
    demonstrate sensor-level analysis in the time domain, allowing for a description of the
    event-related potentials (ERPs), as well as their statistical evaluation. Second, frequency
    analysis is applied to describe the spectral characteristics of the ASSR, followed by
    group level statistical analysis in the frequency domain. Third, we show how timeand
    frequency-domain analysis approaches can be combined in order to describe
    the temporal and spectral development of the ASSR. Finally, we demonstrate source
    reconstruction techniques to characterize the primary neural generators of the ASSR.
    Throughout, we pay special attention to explaining the design of the analysis pipeline
    for single subjects and for the group level analysis. The pipeline presented here can be
    adjusted to accommodate other experimental paradigms and may serve as a template
    for similar analyses.
  • Rommers, J., & Federmeier, K. D. (2018). Electrophysiological methods. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 247-265). Hoboken: Wiley.
  • Rommers, J., & Federmeier, K. D. (2018). Lingering expectations: A pseudo-repetition effect for words previously expected but not presented. NeuroImage, 183, 263-272. doi:10.1016/j.neuroimage.2018.08.023.

    Abstract

    Prediction can help support rapid language processing. However, it is unclear whether prediction has downstream
    consequences, beyond processing in the moment. In particular, when a prediction is disconfirmed, does it linger,
    or is it suppressed? This study manipulated whether words were actually seen or were only expected, and probed
    their fate in memory by presenting the words (again) a few sentences later. If disconfirmed predictions linger,
    subsequent processing of the previously expected (but never presented) word should be similar to actual word
    repetition. At initial presentation, electrophysiological signatures of prediction disconfirmation demonstrated that
    participants had formed expectations. Further downstream, relative to unseen words, repeated words elicited a
    strong N400 decrease, an enhanced late positive complex (LPC), and late alpha band power decreases. Critically,
    like repeated words, words previously expected but not presented also attenuated the N400. This “pseudorepetition
    effect” suggests that disconfirmed predictions can linger at some stages of processing, and demonstrates
    that prediction has downstream consequences beyond rapid on-line processing
  • Seeliger, K., Fritsche, M., Güçlü, U., Schoenmakers, S., Schoffelen, J.-M., Bosch, S. E., & Van Gerven, M. A. J. (2018). Convolutional neural network-based encoding and decoding of visual object recognition in space and time. NeuroImage, 180, 253-266. doi:10.1016/j.neuroimage.2017.07.018.

    Abstract

    Representations learned by deep convolutional neural networks (CNNs) for object recognition are a widely
    investigated model of the processing hierarchy in the human visual system. Using functional magnetic resonance
    imaging, CNN representations of visual stimuli have previously been shown to correspond to processing stages in
    the ventral and dorsal streams of the visual system. Whether this correspondence between models and brain
    signals also holds for activity acquired at high temporal resolution has been explored less exhaustively. Here, we
    addressed this question by combining CNN-based encoding models with magnetoencephalography (MEG).
    Human participants passively viewed 1,000 images of objects while MEG signals were acquired. We modelled
    their high temporal resolution source-reconstructed cortical activity with CNNs, and observed a feed-forward
    sweep across the visual hierarchy between 75 and 200 ms after stimulus onset. This spatiotemporal cascade
    was captured by the network layer representations, where the increasingly abstract stimulus representation in the
    hierarchical network model was reflected in different parts of the visual cortex, following the visual ventral
    stream. We further validated the accuracy of our encoding model by decoding stimulus identity in a left-out
    validation set of viewed objects, achieving state-of-the-art decoding accuracy.
  • Segaert, K., Mazaheri, A., & Hagoort, P. (2018). Binding language: Structuring sentences through precisely timed oscillatory mechanisms. European Journal of Neuroscience, 48(7), 2651-2662. doi:10.1111/ejn.13816.

    Abstract

    Syntactic binding refers to combining words into larger structures. Using EEG, we investigated the neural processes involved in syntactic binding. Participants were auditorily presented two-word sentences (i.e. pronoun and pseudoverb such as ‘I grush’, ‘she grushes’, for which syntactic binding can take place) and wordlists (i.e. two pseudoverbs such as ‘pob grush’, ‘pob grushes’, for which no binding occurs). Comparing these two conditions, we targeted syntactic binding while minimizing contributions of semantic binding and of other cognitive processes such as working memory. We found a converging pattern of results using two distinct analysis approaches: one approach using frequency bands as defined in previous literature, and one data-driven approach in which we looked at the entire range of frequencies between 3-30 Hz without the constraints of pre-defined frequency bands. In the syntactic binding (relative to the wordlist) condition, a power increase was observed in the alpha and beta frequency range shortly preceding the presentation of the target word that requires binding, which was maximal over frontal-central electrodes. Our interpretation is that these signatures reflect that language comprehenders expect the need for binding to occur. Following the presentation of the target word in a syntactic binding context (relative to the wordlist condition), an increase in alpha power maximal over a left lateralized cluster of frontal-temporal electrodes was observed. We suggest that this alpha increase relates to syntactic binding taking place. Taken together, our findings suggest that increases in alpha and beta power are reflections of distinct the neural processes underlying syntactic binding.
  • Silva, S., Folia, V., Inácio, F., Castro, S. L., & Petersson, K. M. (2018). Modality effects in implicit artificial grammar learning: An EEG study. Brain Research, 1687, 50-59. doi:10.1016/j.brainres.2018.02.020.

    Abstract

    Recently, it has been proposed that sequence learning engages a combination of modality-specific operating networks and modality-independent computational principles. In the present study, we compared the behavioural and EEG outcomes of implicit artificial grammar learning in the visual vs. auditory modality. We controlled for the influence of surface characteristics of sequences (Associative Chunk Strength), thus focusing on the strictly structural aspects of sequence learning, and we adapted the paradigms to compensate for known frailties of the visual modality compared to audition (temporal presentation, fast presentation rate). The behavioural outcomes were similar across modalities. Favouring the idea of modality-specificity, ERPs in response to grammar violations differed in topography and latency (earlier and more anterior component in the visual modality), and ERPs in response to surface features emerged only in the auditory modality. In favour of modality-independence, we observed three common functional properties in the late ERPs of the two grammars: both were free of interactions between structural and surface influences, both were more extended in a grammaticality classification test than in a preference classification test, and both correlated positively and strongly with theta event-related-synchronization during baseline testing. Our findings support the idea of modality-specificity combined with modality-independence, and suggest that memory for visual vs. auditory sequences may largely contribute to cross-modal differences.
  • Sjerps, M. J., Zhang, C., & Peng, G. (2018). Lexical Tone is Perceived Relative to Locally Surrounding Context, Vowel Quality to Preceding Context. Journal of Experimental Psychology: Human Perception and Performance, 44(6), 914-924. doi:10.1037/xhp0000504.

    Abstract

    Important speech cues such as lexical tone and vowel quality are perceptually contrasted to the distribution of those same cues in surrounding contexts. However, it is unclear whether preceding and following contexts have similar influences, and to what extent those influences are modulated by the auditory history of previous trials. To investigate this, Cantonese participants labeled sounds from (a) a tone continuum (mid- to high-level), presented with a context that had raised or lowered F0 values and (b) a vowel quality continuum (/u/ to /o/), where the context had raised or lowered F1 values. Contexts with high or low F0/F1 were presented in separate blocks or intermixed in 1 block. Contexts were presented following (Experiment 1) or preceding the target continuum (Experiment 2). Contrastive effects were found for both tone and vowel quality (e.g., decreased F0 values in contexts lead to more high tone target judgments and vice versa). Importantly, however, lexical tone was only influenced by F0 in immediately preceding and following contexts. Vowel quality was only influenced by the F1 in preceding contexts, but this extended to contexts from preceding trials. Contextual influences on tone and vowel quality are qualitatively different, which has important implications for understanding the mechanism of context effects in speech perception.
  • Stolk, A., Griffin, S., Van der Meij, R., Dewar, C., Saez, I., Lin, J. J., Piantoni, G., Schoffelen, J.-M., Knight, R. T., & Oostenveld, R. (2018). Integrated analysis of anatomical and electrophysiological human intracranial data. Nature Protocols, 13, 1699-1723. doi:10.1038/s41596-018-0009-6.

    Abstract

    Human intracranial electroencephalography (iEEG) recordings provide data with much greater spatiotemporal precision
    than is possible from data obtained using scalp EEG, magnetoencephalography (MEG), or functional MRI. Until recently,
    the fusion of anatomical data (MRI and computed tomography (CT) images) with electrophysiological data and their
    subsequent analysis have required the use of technologically and conceptually challenging combinations of software.
    Here, we describe a comprehensive protocol that enables complex raw human iEEG data to be converted into more readily
    comprehensible illustrative representations. The protocol uses an open-source toolbox for electrophysiological data
    analysis (FieldTrip). This allows iEEG researchers to build on a continuously growing body of scriptable and reproducible
    analysis methods that, over the past decade, have been developed and used by a large research community. In this
    protocol, we describe how to analyze complex iEEG datasets by providing an intuitive and rapid approach that can handle
    both neuroanatomical information and large electrophysiological datasets. We provide a worked example using
    an example dataset. We also explain how to automate the protocol and adjust the settings to enable analysis of
    iEEG datasets with other characteristics. The protocol can be implemented by a graduate student or postdoctoral
    fellow with minimal MATLAB experience and takes approximately an hour to execute, excluding the automated cortical
    surface extraction.
  • Tan, Y., & Martin, R. C. (2018). Verbal short-term memory capacities and executive function in semantic and syntactic interference resolution during sentence comprehension: Evidence from aphasia. Neuropsychologia, 113, 111-125. doi:10.1016/j.neuropsychologia.2018.03.001.

    Abstract

    This study examined the role of verbal short-term memory (STM) and executive function (EF) underlying semantic and syntactic interference resolution during sentence comprehension for persons with aphasia (PWA) with varying degrees of STM and EF deficits. Semantic interference was manipulated by varying the semantic plausibility of the intervening NP as subject of the verb and syntactic interference was manipulated by varying whether the NP was another subject or an object. Nine PWA were assessed on sentence reading times and on comprehension question performance. PWA showed exaggerated semantic and syntactic interference effects relative to healthy age-matched control subjects. Importantly, correlational analyses showed that while answering comprehension questions, PWA’ semantic STM capacity related to their ability to resolve semantic but not syntactic interference. In contrast, PWA’ EF abilities related to their ability to resolve syntactic but not semantic interference. Phonological STM deficits were not related to the ability to resolve either type of interference. The results for semantic STM are consistent with prior findings indicating a role for semantic but not phonological STM in sentence comprehension, specifically with regard to maintaining semantic information prior to integration. The results for syntactic interference are consistent with the recent findings suggesting that EF is critical for syntactic processing.
  • Tromp, J., Peeters, D., Meyer, A. S., & Hagoort, P. (2018). The combined use of Virtual Reality and EEG to study language processing in naturalistic environments. Behavior Research Methods, 50(2), 862-869. doi:10.3758/s13428-017-0911-9.

    Abstract

    When we comprehend language, we often do this in rich settings in which we can use many cues to understand what someone is saying. However, it has traditionally been difficult to design experiments with rich three-dimensional contexts that resemble our everyday environments, while maintaining control over the linguistic and non-linguistic information that is available. Here we test the validity of combining electroencephalography (EEG) and Virtual Reality (VR) to overcome this problem. We recorded electrophysiological brain activity during language processing in a well-controlled three-dimensional virtual audiovisual environment. Participants were immersed in a virtual restaurant, while wearing EEG equipment. In the restaurant participants encountered virtual restaurant guests. Each guest was seated at a separate table with an object on it (e.g. a plate with salmon). The restaurant guest would then produce a sentence (e.g. “I just ordered this salmon.”). The noun in the spoken sentence could either match (“salmon”) or mismatch (“pasta”) with the object on the table, creating a situation in which the auditory information was either appropriate or inappropriate in the visual context. We observed a reliable N400 effect as a consequence of the mismatch. This finding validates the combined use of VR and EEG as a tool to study the neurophysiological mechanisms of everyday language comprehension in rich, ecologically valid settings.
  • Udden, J., & Männel, C. (2018). Artificial grammar learning and its neurobiology in relation to language processing and development. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 755-783). Oxford: Oxford University Press.

    Abstract

    The artificial grammar learning (AGL) paradigm enables systematic investigation of the acquisition of linguistically relevant structures. It is a paradigm of interest for language processing research, interfacing with theoretical linguistics, and for comparative research on language acquisition and evolution. This chapter presents a key for understanding major variants of the paradigm. An unbiased summary of neuroimaging findings of AGL is presented, using meta-analytic methods, pointing to the crucial involvement of the bilateral frontal operculum and regions in the right lateral hemisphere. Against a background of robust posterior temporal cortex involvement in processing complex syntax, the evidence for involvement of the posterior temporal cortex in AGL is reviewed. Infant AGL studies testing for neural substrates are reviewed, covering the acquisition of adjacent and non-adjacent dependencies as well as algebraic rules. The language acquisition data suggest that comparisons of learnability of complex grammars performed with adults may now also be possible with children.
  • Van den Broek, G., Takashima, A., Segers, E., & Verhoeven, L. (2018). Contextual Richness and Word Learning: Context Enhances Comprehension but Retrieval Enhances Retention. Language Learning, 68(2), 546-585. doi:10.1111/lang.12285.

    Abstract

    Learning new vocabulary from context typically requires multiple encounters during which word meaning can be retrieved from memory or inferred from context. We compared the effect of memory retrieval and context inferences on short‐ and long‐term retention in three experiments. Participants studied novel words and then practiced the words either in an uninformative context that required the retrieval of word meaning from memory (“I need the funguo”) or in an informative context from which word meaning could be inferred (“I want to unlock the door: I need the funguo”). The informative context facilitated word comprehension during practice. However, later recall of word form and meaning and word recognition in a new context were better after successful retrieval practice and retrieval practice with feedback than after context‐inference practice. These findings suggest benefits of retrieval during contextualized vocabulary learning whereby the uninformative context enhanced word retention by triggering memory retrieval.
  • Van Bergen, G., & Bosker, H. R. (2018). Linguistic expectation management in online discourse processing: An investigation of Dutch inderdaad 'indeed' and eigenlijk 'actually'. Journal of Memory and Language, 103, 191-209. doi:10.1016/j.jml.2018.08.004.

    Abstract

    Interpersonal discourse particles (DPs), such as Dutch inderdaad (≈‘indeed’) and eigenlijk (≈‘actually’) are highly frequent in everyday conversational interaction. Despite extensive theoretical descriptions of their polyfunctionality, little is known about how they are used by language comprehenders. In two visual world eye-tracking experiments involving an online dialogue completion task, we asked to what extent inderdaad, confirming an inferred expectation, and eigenlijk, contrasting with an inferred expectation, influence real-time understanding of dialogues. Answers in the dialogues contained a DP or a control adverb, and a critical discourse referent was replaced by a beep; participants chose the most likely dialogue completion by clicking on one of four referents in a display. Results show that listeners make rapid and fine-grained situation-specific inferences about the use of DPs, modulating their expectations about how the dialogue will unfold. Findings further specify and constrain theories about the conversation-managing function and polyfunctionality of DPs.
  • Van Campen, A. D., Kunert, R., Van den Wildenberg, W. P. M., & Ridderinkhof, K. R. (2018). Repetitive transcranial magnetic stimulation over inferior frontal cortex impairs the suppression (but not expression) of action impulses during action conflict. Psychophysiology, 55(3): e13003. doi:10.1111/psyp.13003.

    Abstract

    In the recent literature, the effects of noninvasive neurostimulation on cognitive functioning appear to lack consistency and replicability. We propose that such effects may be concealed unless dedicated, sensitive, and process-specific dependent measures are used. The expression and subsequent suppression of response capture are often studied using conflict tasks. Response-time distribution analyses have been argued to provide specific measures of the susceptibility to make fast impulsive response errors, as well as the proficiency of the selective suppression of these impulses. These measures of response capture and response inhibition are particularly sensitive to experimental manipulations and clinical deficiencies that are typically obfuscated in commonly used overall performance analyses. Recent work using structural and functional imaging techniques links these behavioral outcome measures to the integrity of frontostriatal networks. These studies suggest that the presupplementary motor area (pre-SMA) is linked to the susceptibility to response capture whereas the right inferior frontal cortex (rIFC) is associated with the selective suppression of action impulses. Here, we used repetitive transcranial magnetic stimulation (rTMS) to test the causal involvement of these two cortical areas in response capture and inhibition in the Simon task. Disruption of rIFC function specifically impaired selective suppression of conflicting action tendencies, whereas the anticipated increase of fast impulsive errors after perturbing pre-SMA function was not confirmed. These results provide a proof of principle of the notion that the selection of appropriate dependent measures is perhaps crucial to establish the effects of neurostimulation on specific cognitive functions.
  • Vanlangendonck, F., Takashima, A., Willems, R. M., & Hagoort, P. (2018). Distinguishable memory retrieval networks for collaboratively and non-collaboratively learned information. Neuropsychologia, 111, 123-132. doi:10.1016/j.neuropsychologia.2017.12.008.

    Abstract

    Learning often occurs in communicative and collaborative settings, yet almost all research into the neural basis of memory relies on participants encoding and retrieving information on their own. We investigated whether learning linguistic labels in a collaborative context at least partly relies on cognitively and neurally distinct representations, as compared to learning in an individual context. Healthy human participants learned labels for sets of abstract shapes in three different tasks. They came up with labels with another person in a collaborative communication task (collaborative condition), by themselves (individual condition), or were given pre-determined unrelated labels to learn by themselves (arbitrary condition). Immediately after learning, participants retrieved and produced the labels aloud during a communicative task in the MRI scanner. The fMRI results show that the retrieval of collaboratively generated labels as compared to individually learned labels engages brain regions involved in understanding others (mentalizing or theory of mind) and autobiographical memory, including the medial prefrontal cortex, the right temporoparietal junction and the precuneus. This study is the first to show that collaboration during encoding affects the neural networks involved in retrieval.
  • Vanlangendonck, F., Willems, R. M., & Hagoort, P. (2018). Taking common ground into account: Specifying the role of the mentalizing network in communicative language production. PLoS One, 13(10): e0202943. doi:10.1371/journal.pone.0202943.
  • Varma, S., Daselaar, S. M., Kessels, R. P. C., & Takashima, A. (2018). Promotion and suppression of autobiographical thinking differentially affect episodic memory consolidation. PLoS One, 13(8): e0201780. doi:10.1371/journal.pone.0201780.

    Abstract

    During a post-encoding delay period, the ongoing consolidation of recently acquired memories can suffer interference if the delay period involves encoding of new memories, or sensory stimulation tasks. Interestingly, two recent independent studies suggest that (i) autobiographical thinking also interferes markedly with ongoing consolidation of recently learned wordlist material, while (ii) a 2-Back task might not interfere with ongoing consolidation, possibly due to the suppression of autobiographical thinking. In this study, we directly compare these conditions against a quiet wakeful rest baseline to test whether the promotion (via familiar sound-cues) or suppression (via a 2-Back task) of autobiographical thinking during the post-encoding delay period can affect consolidation of studied wordlists in a negative or a positive way, respectively. Our results successfully replicate previous studies and show a significant interference effect (as compared to the rest condition) when learning is followed by familiar sound-cues that promote autobiographical thinking, whereas no interference effect is observed when learning is followed by the 2-Back task. Results from a post-experimental experience-sampling questionnaire further show significant differences in the degree of autobiographical thinking reported during the three post-encoding periods: highest in the presence of sound-cues and lowest during the 2-Back task. In conclusion, our results suggest that varying levels of autobiographical thought during the post-encoding period may modulate episodic memory consolidation.
  • Wang, L., Hagoort, P., & Jensen, O. (2018). Language prediction is reflected by coupling between frontal gamma and posterior alpha oscillations. Journal of Cognitive Neuroscience, 30(3), 432-447. doi:10.1162/jocn_a_01190.

    Abstract

    Readers and listeners actively predict upcoming words during language processing. These predictions might serve to support the unification of incoming words into sentence context and thus rely on interactions between areas in the language network. In the current magnetoencephalography study, participants read sentences that varied in contextual constraints so that the predictability of the sentence-final words was either high or low. Before the sentence-final words, we observed stronger alpha power suppression for the highly compared with low constraining sentences in the left inferior frontal cortex, left posterior temporal region, and visual word form area. Importantly, the temporal and visual word form area alpha power correlated negatively with left frontal gamma power for the highly constraining sentences. We suggest that the correlation between alpha power decrease in temporal language areas and left prefrontal gamma power reflects the initiation of an anticipatory unification process in the language network.
  • Wang, L., Hagoort, P., & Jensen, O. (2018). Gamma oscillatory activity related to language prediction. Journal of Cognitive Neuroscience, 30(8), 1075-1085. doi:10.1162/jocn_a_01275.

    Abstract

    Using magnetoencephalography, the current study examined gamma activity associated with language prediction. Participants read high- and low-constraining sentences in which the final word of the sentence was either expected or unexpected. Although no consistent gamma power difference induced by the sentence-final words was found between the expected and unexpected conditions, the correlation of gamma power during the prediction and activation intervals of the sentence-final words was larger when the presented words matched with the prediction compared with when the prediction was violated or when no prediction was available. This suggests that gamma magnitude relates to the match between predicted and perceived words. Moreover, the expected words induced activity with a slower gamma frequency compared with that induced by unexpected words. Overall, the current study establishes that prediction is related to gamma power correlations and a slowing of the gamma frequency.
  • Willems, R. M., & Cristia, A. (2018). Hemodynamic methods: fMRI and fNIRS. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 266-287). Hoboken: Wiley.
  • Willems, R. M., & Van Gerven, M. (2018). New fMRI methods for the study of language. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 975-991). Oxford: Oxford University Press.
  • Aparicio, X., Heidlmayr, K., & Isel, F. (2017). Inhibition efficiency in highly proficient bilinguals and simultaneous interpreters: Evidence from language switching and stroop tasks. Journal of Psycholinguistic Research, 46, 1427-1451. doi:10.1007/s10936-017-9501-3.

    Abstract

    The present behavioral study aimed to examine the impact of language control expertise on two domain-general control processes, i.e. active inhibition of competing representations and overcoming of inhibition. We compared how Simultaneous Interpreters (SI) and Highly Proficient Bilinguals—two groups assumed to differ in language control capacity—performed executive tasks involving specific inhibition processes. In Experiment 1 (language decision task), both active and overcoming of inhibition processes are involved, while in Experiment 2 (bilingual Stroop task) only interference suppression is supposed to be required. The results of Experiment 1 showed a language switching effect only for the highly proficient bilinguals, potentially because overcoming of inhibition requires more cognitive resources than in SI. Nevertheless, both groups performed similarly on the Stroop task in Experiment 2, which suggests that active inhibition may work similarly in both groups. These contrasting results suggest that overcoming of inhibition may be harder to master than active inhibition. Taken together, these data indicate that some executive control processes may be less sensitive to the degree of expertise in bilingual language control than others. Our findings lend support to psycholinguistic models of bilingualism postulating a higher-order mechanism regulating language activation.
  • Armeni, K., Willems, R. M., & Frank, S. (2017). Probabilistic language models in cognitive neuroscience: Promises and pitfalls. Neuroscience and Biobehavioral Reviews, 83, 579-588. doi:10.1016/j.neubiorev.2017.09.001.

    Abstract

    Cognitive neuroscientists of language comprehension study how neural computations relate to cognitive computations during comprehension. On the cognitive part of the equation, it is important that the computations and processing complexity are explicitly defined. Probabilistic language models can be used to give a computationally explicit account of language complexity during comprehension. Whereas such models have so far predominantly been evaluated against behavioral data, only recently have the models been used to explain neurobiological signals. Measures obtained from these models emphasize the probabilistic, information-processing view of language understanding and provide a set of tools that can be used for testing neural hypotheses about language comprehension. Here, we provide a cursory review of the theoretical foundations and example neuroimaging studies employing probabilistic language models. We highlight the advantages and potential pitfalls of this approach and indicate avenues for future research
  • De Boer, M., Kokal, I., Blokpoel, M., Liu, R., Stolk, A., Roelofs, K., Van Rooij, I., & Toni, I. (2017). Oxytocin modulates human communication by enhancing cognitive exploration. Psychoneuroendocrinology, 86, 64-72. doi:10.1016/j.psyneuen.2017.09.010.

    Abstract

    Oxytocin is a neuropeptide known to influence how humans share material resources. Here we explore whether oxytocin influences how we share knowledge. We focus on two distinguishing features of human communication, namely the ability to select communicative signals that disambiguate the many-to-many mappings that exist between a signal’s form and meaning, and adjustments of those signals to the presumed cognitive characteristics of the addressee (“audience design”). Fifty-five males participated in a randomized, double-blind, placebo controlled experiment involving the intranasal administration of oxytocin. The participants produced novel non-verbal communicative signals towards two different addressees, an adult or a child, in an experimentally-controlled live interactive setting. We found that oxytocin administration drives participants to generate signals of higher referential quality, i.e. signals that disambiguate more communicative problems; and to rapidly adjust those communicative signals to what the addressee understands. The combined effects of oxytocin on referential quality and audience design fit with the notion that oxytocin administration leads participants to explore more pervasively behaviors that can convey their intention, and diverse models of the addressees. These findings suggest that, besides affecting prosocial drive and salience of social cues, oxytocin influences how we share knowledge by promoting cognitive exploration
  • Bosker, H. R., & Kösem, A. (2017). An entrained rhythm's frequency, not phase, influences temporal sampling of speech. In Proceedings of Interspeech 2017 (pp. 2416-2420). doi:10.21437/Interspeech.2017-73.

    Abstract

    Brain oscillations have been shown to track the slow amplitude fluctuations in speech during comprehension. Moreover, there is evidence that these stimulus-induced cortical rhythms may persist even after the driving stimulus has ceased. However, how exactly this neural entrainment shapes speech perception remains debated. This behavioral study investigated whether and how the frequency and phase of an entrained rhythm would influence the temporal sampling of subsequent speech. In two behavioral experiments, participants were presented with slow and fast isochronous tone sequences, followed by Dutch target words ambiguous between as /ɑs/ “ash” (with a short vowel) and aas /a:s/ “bait” (with a long vowel). Target words were presented at various phases of the entrained rhythm. Both experiments revealed effects of the frequency of the tone sequence on target word perception: fast sequences biased listeners to more long /a:s/ responses. However, no evidence for phase effects could be discerned. These findings show that an entrained rhythm’s frequency, but not phase, influences the temporal sampling of subsequent speech. These outcomes are compatible with theories suggesting that sensory timing is evaluated relative to entrained frequency. Furthermore, they suggest that phase tracking of (syllabic) rhythms by theta oscillations plays a limited role in speech parsing.
  • Bouhali, F., Mongelli, V., & Cohen, L. (2017). Musical literacy shifts asymmetries in the ventral visual cortex. NeuroImage, 156, 445-455. doi:10.1016/j.neuroimage.2017.04.027.

    Abstract

    The acquisition of literacy has a profound impact on the functional specialization and lateralization of the visual cortex. Due to the overall lateralization of the language network, specialization for printed words develops in the left occipitotemporal cortex, allegedly inducing a secondary shift of visual face processing to the right, in literate as compared to illiterate subjects. Applying the same logic to the acquisition of high-level musical literacy, we predicted that, in musicians as compared to non-musicians, occipitotemporal activations should show a leftward shift for music reading, and an additional rightward push for face perception. To test these predictions, professional musicians and non-musicians viewed pictures of musical notation, faces, words, tools and houses in the MRI, and laterality was assessed in the ventral stream combining ROI and voxel-based approaches. The results supported both predictions, and allowed to locate the leftward shift to the inferior temporal gyrus and the rightward shift to the fusiform cortex. Moreover, these laterality shifts generalized to categories other than music and faces. Finally, correlation measures across subjects did not support a causal link between the leftward and rightward shifts. Thus the acquisition of an additional perceptual expertise extensively modifies the laterality pattern in the visual system

    Additional information

    1-s2.0-S1053811917303208-mmc1.docx

    Files private

    Request files
  • Bulut, T., Hung, Y., Tzeng, O., & Wu, D. (2017). Neural correlates of processing sentences and compound words in Chinese. PLOS ONE, 12(12): e0188526. doi:10.1371/journal.pone.0188526.
  • Coco, M. I., Araujo, S., & Petersson, K. M. (2017). Disentangling stimulus plausibility and contextual congruency: Electro-physiological evidence for differential cognitive dynamics. Neuropsychologia, 96, 150-163. doi:10.1016/j.neuropsychologia.2016.12.008.

    Abstract

    Expectancy mechanisms are routinely used by the cognitive system in stimulus processing and in anticipation of appropriate responses. Electrophysiology research has documented negative shifts of brain activity when expectancies are violated within a local stimulus context (e.g., reading an implausible word in a sentence) or more globally between consecutive stimuli (e.g., a narrative of images with an incongruent end). In this EEG study, we examine the interaction between expectancies operating at the level of stimulus plausibility and at more global level of contextual congruency to provide evidence for, or against, a disassociation of the underlying processing mechanisms. We asked participants to verify the congruency of pairs of cross-modal stimuli (a sentence and a scene), which varied in plausibility. ANOVAs on ERP amplitudes in selected windows of interest show that congruency violation has longer-lasting (from 100 to 500 ms) and more widespread effects than plausibility violation (from 200 to 400 ms). We also observed critical interactions between these factors, whereby incongruent and implausible pairs elicited stronger negative shifts than their congruent counterpart, both early on (100–200 ms) and between 400–500 ms. Our results suggest that the integration mechanisms are sensitive to both global and local effects of expectancy in a modality independent manner. Overall, we provide novel insights into the interdependence of expectancy during meaning integration of cross-modal stimuli in a verification task
  • Dai, B., McQueen, J. M., Hagoort, P., & Kösem, A. (2017). Pure linguistic interference during comprehension of competing speech signals. The Journal of the Acoustical Society of America, 141, EL249-EL254. doi:10.1121/1.4977590.

    Abstract

    Speech-in-speech perception can be challenging because the processing of competing acoustic and linguistic information leads to informational masking. Here, a method is proposed to isolate the linguistic component of informational masking while keeping the distractor's acoustic information unchanged. Participants performed a dichotic listening cocktail-party task before and after training on 4-band noise-vocoded sentences that became intelligible through the training. Distracting noise-vocoded speech interfered more with target speech comprehension after training (i.e., when intelligible) than before training (i.e., when unintelligible) at −3 dB SNR. These findings confirm that linguistic and acoustic information have distinct masking effects during speech-in‐speech comprehension
  • Fitz, H., & Chang, F. (2017). Meaningful questions: The acquisition of auxiliary inversion in a connectionist model of sentence production. Cognition, 166, 225-250. doi:10.1016/j.cognition.2017.05.008.

    Abstract

    Nativist theories have argued that language involves syntactic principles which are unlearnable from the input children receive. A paradigm case of these innate principles is the structure dependence of auxiliary inversion in complex polar questions (Chomsky, 1968, 1975, 1980). Computational approaches have focused on the properties of the input in explaining how children acquire these questions. In contrast, we argue that messages are structured in a way that supports structure dependence in syntax. We demonstrate this approach within a connectionist model of sentence production (Chang, 2009) which learned to generate a range of complex polar questions from a structured message without positive exemplars in the input. The model also generated different types of error in development that were similar in magnitude to those in children (e.g., auxiliary doubling, Ambridge, Rowland, & Pine, 2008; Crain & Nakayama, 1987). Through model comparisons we trace how meaning constraints and linguistic experience interact during the acquisition of auxiliary inversion. Our results suggest that auxiliary inversion rules in English can be acquired without innate syntactic principles, as long as it is assumed that speakers who ask complex questions express messages that are structured into multiple propositions
  • Frank, S. L., & Willems, R. M. (2017). Word predictability and semantic similarity show distinct patterns of brain activity during language comprehension. Language, Cognition and Neuroscience, 32(9), 1192-1203. doi:10.1080/23273798.2017.1323109.

    Abstract

    We investigate the effects of two types of relationship between the words of a sentence or text – predictability and semantic similarity – by reanalysing electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data from studies in which participants comprehend naturalistic stimuli. Each content word's predictability given previous words is quantified by a probabilistic language model, and semantic similarity to previous words is quantified by a distributional semantics model. Brain activity time-locked to each word is regressed on the two model-derived measures. Results show that predictability and semantic similarity have near identical N400 effects but are dissociated in the fMRI data, with word predictability related to activity in, among others, the visual word-form area, and semantic similarity related to activity in areas associated with the semantic network. This indicates that both predictability and similarity play a role during natural language comprehension and modulate distinct cortical regions.
  • Franken, M. K., Eisner, F., Schoffelen, J.-M., Acheson, D. J., Hagoort, P., & McQueen, J. M. (2017). Audiovisual recalibration of vowel categories. In Proceedings of Interspeech 2017 (pp. 655-658). doi:10.21437/Interspeech.2017-122.

    Abstract

    One of the most daunting tasks of a listener is to map a
    continuous auditory stream onto known speech sound
    categories and lexical items. A major issue with this mapping
    problem is the variability in the acoustic realizations of sound
    categories, both within and across speakers. Past research has
    suggested listeners may use visual information (e.g., lipreading)
    to calibrate these speech categories to the current
    speaker. Previous studies have focused on audiovisual
    recalibration of consonant categories. The present study
    explores whether vowel categorization, which is known to show
    less sharply defined category boundaries, also benefit from
    visual cues.
    Participants were exposed to videos of a speaker
    pronouncing one out of two vowels, paired with audio that was
    ambiguous between the two vowels. After exposure, it was
    found that participants had recalibrated their vowel categories.
    In addition, individual variability in audiovisual recalibration is
    discussed. It is suggested that listeners’ category sharpness may
    be related to the weight they assign to visual information in
    audiovisual speech perception. Specifically, listeners with less
    sharp categories assign more weight to visual information
    during audiovisual speech recognition.
  • Franken, M. K., Acheson, D. J., McQueen, J. M., Eisner, F., & Hagoort, P. (2017). Individual variability as a window on production-perception interactions in speech motor control. The Journal of the Acoustical Society of America, 142(4), 2007-2018. doi:10.1121/1.5006899.

    Abstract

    An important part of understanding speech motor control consists of capturing the
    interaction between speech production and speech perception. This study tests a
    prediction of theoretical frameworks that have tried to account for these interactions: if
    speech production targets are specified in auditory terms, individuals with better
    auditory acuity should have more precise speech targets, evidenced by decreased
    within-phoneme variability and increased between-phoneme distance. A study was
    carried out consisting of perception and production tasks in counterbalanced order.
    Auditory acuity was assessed using an adaptive speech discrimination task, while
    production variability was determined using a pseudo-word reading task. Analyses of
    the production data were carried out to quantify average within-phoneme variability as
    well as average between-phoneme contrasts. Results show that individuals not only
    vary in their production and perceptual abilities, but that better discriminators have
    more distinctive vowel production targets (that is, targets with less within-phoneme
    variability and greater between-phoneme distances), confirming the initial hypothesis.
    This association between speech production and perception did not depend on local
    phoneme density in vowel space. This study suggests that better auditory acuity leads
    to more precise speech production targets, which may be a consequence of auditory
    feedback affecting speech production over time.
  • Grabot, L., Kösem, A., Azizi, L., & Van Wassenhove, V. (2017). Prestimulus Alpha Oscillations and the Temporal Sequencing of Audio-visual Events. Journal of Cognitive Neuroscience, 29(9), 1566-1582. doi:10.1162/jocn_a_01145.

    Abstract

    Perceiving the temporal order of sensory events typically depends on participants' attentional state, thus likely on the endogenous fluctuations of brain activity. Using magnetoencephalography, we sought to determine whether spontaneous brain oscillations could disambiguate the perceived order of auditory and visual events presented in close temporal proximity, that is, at the individual's perceptual order threshold (Point of Subjective Simultaneity [PSS]). Two neural responses were found to index an individual's temporal order perception when contrasting brain activity as a function of perceived order (i.e., perceiving the sound first vs. perceiving the visual event first) given the same physical audiovisual sequence. First, average differences in prestimulus auditory alpha power indicated perceiving the correct ordering of audiovisual events irrespective of which sensory modality came first: a relatively low alpha power indicated perceiving auditory or visual first as a function of the actual sequence order. Additionally, the relative changes in the amplitude of the auditory (but not visual) evoked responses were correlated with participant's correct performance. Crucially, the sign of the magnitude difference in prestimulus alpha power and evoked responses between perceived audiovisual orders correlated with an individual's PSS. Taken together, our results suggest that spontaneous oscillatory activity cannot disambiguate subjective temporal order without prior knowledge of the individual's bias toward perceiving one or the other sensory modality first. Altogether, our results suggest that, under high perceptual uncertainty, the magnitude of prestimulus alpha (de)synchronization indicates the amount of compensation needed to overcome an individual's prior in the serial ordering and temporal sequencing of information
  • Hagoort, P. (2017). It is the facts, stupid. In J. Brockman, F. Van der Wa, & H. Corver (Eds.), Wetenschappelijke parels: het belangrijkste wetenschappelijke nieuws volgens 193 'briljante geesten'. Amsterdam: Maven Press.
  • Hagoort, P. (2017). Don't forget neurobiology: An experimental approach to linguistic representation. Commentary on Branigan and Pickering "An experimental approach to linguistic representation". Behavioral and Brain Sciences, 40: e292. doi:10.1017/S0140525X17000401.

    Abstract

    Acceptability judgments are no longer acceptable as the holy grail for testing the nature of linguistic representations. Experimental and quantitative methods should be used to test theoretical claims in psycholinguistics. These methods should include not only behavior, but also the more recent possibilities to probe the neural codes for language-relevant representation
  • Hagoort, P. (2017). The core and beyond in the language-ready brain. Neuroscience and Biobehavioral Reviews, 81, 194-204. doi:10.1016/j.neubiorev.2017.01.048.

    Abstract

    In this paper a general cognitive architecture of spoken language processing is specified. This is followed by an account of how this cognitive architecture is instantiated in the human brain. Both the spatial aspects of the networks for language are discussed, as well as the temporal dynamics and the underlying neurophysiology. A distinction is proposed between networks for coding/decoding linguistic information and additional networks for getting from coded meaning to speaker meaning, i.e. for making the inferences that enable the listener to understand the intentions of the speaker
  • Hagoort, P. (2017). The neural basis for primary and acquired language skills. In E. Segers, & P. Van den Broek (Eds.), Developmental Perspectives in Written Language and Literacy: In honor of Ludo Verhoeven (pp. 17-28). Amsterdam: Benjamins. doi:10.1075/z.206.02hag.

    Abstract

    Reading is a cultural invention that needs to recruit cortical infrastructure that was not designed for it (cultural recycling of cortical maps). In the case of reading both visual cortex and networks for speech processing are recruited. Here I discuss current views on the neurobiological underpinnings of spoken language that deviate in a number of ways from the classical Wernicke-Lichtheim-Geschwind model. More areas than Broca’s and Wernicke’s region are involved in language. Moreover, a division along the axis of language production and language comprehension does not seem to be warranted. Instead, for central aspects of language processing neural infrastructure is shared between production and comprehension. Arguments are presented in favor of a dynamic network view, in which the functionality of a region is co-determined by the network of regions in which it is embedded at particular moments in time. Finally, core regions of language processing need to interact with other networks (e.g. the attentional networks and the ToM network) to establish full functionality of language and communication. The consequences of this architecture for reading are discussed.
  • Hartung, F. (2017). Getting under your skin: The role of perspective and simulation of experience in narrative comprehension. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Hartung, F., Hagoort, P., & Willems, R. M. (2017). Readers select a comprehension mode independent of pronoun: Evidence from fMRI during narrative comprehension. Brain and Language, 170, 29-38. doi:10.1016/j.bandl.2017.03.007.

    Abstract

    Perspective is a crucial feature for communicating about events. Yet it is unclear how linguistically encoded perspective relates to cognitive perspective taking. Here, we tested the effect of perspective taking with short literary stories. Participants listened to stories with 1st or 3rd person pronouns referring to the protagonist, while undergoing fMRI. When comparing action events with 1st and 3rd person pronouns, we found no evidence for a neural dissociation depending on the pronoun. A split sample approach based on the self-reported experience of perspective taking revealed 3 comprehension preferences. One group showed a strong 1st person preference, another a strong 3rd person preference, while a third group engaged in 1st and 3rd person perspective taking simultaneously. Comparing brain activations of the groups revealed different neural networks. Our results suggest that comprehension is perspective dependent, but not on the perspective suggested by the text, but on the reader’s (situational) preference
  • Hartung, F., Withers, P., Hagoort, P., & Willems, R. M. (2017). When fiction is just as real as fact: No differences in reading behavior between stories believed to be based on true or fictional events. Frontiers in Psychology, 8: 1618. doi:10.3389/fpsyg.2017.01618.

    Abstract

    Experiments have shown that compared to fictional texts, readers read factual texts faster and have better memory for described situations. Reading fictional texts on the other hand seems to improve memory for exact wordings and expressions. Most of these studies used a ‘newspaper’ versus ‘literature’ comparison. In the present study, we investigated the effect of reader’s expectation to whether information is true or fictional with a subtler manipulation by labelling short stories as either based on true or fictional events. In addition, we tested whether narrative perspective or individual preference in perspective taking affects reading true or fictional stories differently. In an online experiment, participants (final N=1742) read one story which was introduced as based on true events or as fictional (factor fictionality). The story could be narrated in either 1st or 3rd person perspective (factor perspective). We measured immersion in and appreciation of the story, perspective taking, as well as memory for events. We found no evidence that knowing a story is fictional or based on true events influences reading behavior or experiential aspects of reading. We suggest that it is not whether a story is true or fictional, but rather expectations towards certain reading situations (e.g. reading newspaper or literature) which affect behavior by activating appropriate reading goals. Results further confirm that narrative perspective partially influences perspective taking and experiential aspects of reading
  • Heyselaar, E., Hagoort, P., & Segaert, K. (2017). How social opinion influences syntactic processing – An investigation using virtual reality. PLoS One, 12(4): e0174405. doi:10.1371/journal.pone.0174405.
  • Heyselaar, E., Hagoort, P., & Segaert, K. (2017). In dialogue with an avatar, language behavior is identical to dialogue with a human partner. Behavior Research Methods, 49(1), 46-60. doi:10.3758/s13428-015-0688-7.

    Abstract

    The use of virtual reality (VR) as a methodological tool is becoming increasingly popular in behavioral research as its flexibility allows for a wide range of applications. This new method has not been as widely accepted in the field of psycholinguistics, however, possibly due to the assumption that language processing during human-computer interactions does not accurately reflect human-human interactions. Yet at the same time there is a growing need to study human-human language interactions in a tightly controlled context, which has not been possible using existing methods. VR, however, offers experimental control over parameters that cannot be (as finely) controlled in the real world. As such, in this study we aim to show that human-computer language interaction is comparable to human-human language interaction in virtual reality. In the current study we compare participants’ language behavior in a syntactic priming task with human versus computer partners: we used a human partner, a human-like avatar with human-like facial expressions and verbal behavior, and a computer-like avatar which had this humanness removed. As predicted, our study shows comparable priming effects between the human and human-like avatar suggesting that participants attributed human-like agency to the human-like avatar. Indeed, when interacting with the computer-like avatar, the priming effect was significantly decreased. This suggests that when interacting with a human-like avatar, sentence processing is comparable to interacting with a human partner. Our study therefore shows that VR is a valid platform for conducting language research and studying dialogue interactions in an ecologically valid manner.
  • Heyselaar, E. (2017). Influences on the magnitude of syntactic priming. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Heyselaar, E., Segaert, K., Walvoort, S. J., Kessels, R. P., & Hagoort, P. (2017). The role of nondeclarative memory in the skill for language: Evidence from syntactic priming in patients with amnesia. Neuropsychologia, 101, 97-105. doi:10.1016/j.neuropsychologia.2017.04.033.

    Abstract

    Syntactic priming, the phenomenon in which participants adopt the linguistic behaviour of their partner, is widely used in psycholinguistics to investigate syntactic operations. Although the phenomenon of syntactic priming is well documented, the memory system that supports the retention of this syntactic information long enough to influence future utterances, is not as widely investigated. We aim to shed light on this issue by assessing patients with Korsakoff's amnesia on an active-passive syntactic priming task and compare their performance to controls matched in age, education, and premorbid intelligence. Patients with Korsakoff's syndrome display deficits in all subdomains of declarative memory, yet their nondeclarative memory remains intact, making them an ideal patient group to determine which memory system supports syntactic priming. In line with the hypothesis that syntactic priming relies on nondeclarative memory, the patient group shows strong priming tendencies (12.6% passive structure repetition). Our healthy control group did not show a priming tendency, presumably due to cognitive interference between declarative and nondeclarative memory. We discuss the results in relation to amnesia, aging, and compensatory mechanisms.
  • Hirschmann, J., Schoffelen, J.-M., Schnitzler, A., & Van Gerven, M. A. J. (2017). Parkinsonian rest tremor can be detected accurately based on neuronal oscillations recorded from the subthalamic nucleus. Clinical Neurophysiology, 128, 2029-2036. doi:10.1016/j.clinph.2017.07.419.

    Abstract

    Objective: To investigate the possibility of tremor detection based on deep brain activity.
    Methods: We re-analyzed recordings of local field potentials (LFPs) from the subthalamic nucleus in 10
    PD patients (12 body sides) with spontaneously fluctuating rest tremor. Power in several frequency bands
    was estimated and used as input to Hidden Markov Models (HMMs) which classified short data segments
    as either tremor-free rest or rest tremor. HMMs were compared to direct threshold application to individual
    power features.
    Results: Applying a threshold directly to band-limited power was insufficient for tremor detection (mean
    area under the curve [AUC] of receiver operating characteristic: 0.64, STD: 0.19). Multi-feature HMMs, in
    contrast, allowed for accurate detection (mean AUC: 0.82, STD: 0.15), using four power features obtained
    from a single contact pair. Within-patient training yielded better accuracy than across-patient training
    (0.84 vs. 0.78, p = 0.03), yet tremor could often be detected accurately with either approach. High frequency
    oscillations (>200 Hz) were the best performing individual feature.
    Conclusions: LFP-based markers of tremor are robust enough to allow for accurate tremor detection in
    short data segments, provided that appropriate statistical models are used.
    Significance: LFP-based markers of tremor could be useful control signals for closed-loop deep brain
    stimulation.
  • Ito, A., Martin, A. E., & Nieuwland, M. S. (2017). How robust are prediction effects in language comprehension? Failure to replicate article-elicited N400 effects. Language, Cognition and Neuroscience, 32, 954-965. doi:10.1080/23273798.2016.1242761.

    Abstract

    Current psycholinguistic theory proffers prediction as a central, explanatory mechanism in language
    processing. However, widely-replicated prediction effects may not mean that prediction is
    necessary in language processing. As a case in point, C. D. Martin et al. [2013. Bilinguals reading
    in their second language do not predict upcoming words as native readers do.
    Journal of
    Memory and Language, 69
    (4), 574

    588. doi:10.1016/j.jml.2013.08.001] reported ERP evidence for
    prediction in native- but not in non-native speakers. Articles mismatching an expected noun
    elicited larger negativity in the N400 time window compared to articles matching the expected
    noun in native speakers only. We attempted to replicate these findings, but found no evidence
    for prediction irrespective of language nativeness. We argue that pre-activation of phonological
    form of upcoming nouns, as evidenced in article-elicited effects, may not be a robust
    phenomenon. A view of prediction as a necessary computation in language comprehension
    must be re-evaluated.
  • Ito, A., Martin, A. E., & Nieuwland, M. S. (2017). Why the A/AN prediction effect may be hard to replicate: A rebuttal to DeLong, Urbach & Kutas (2017). Language, Cognition and Neuroscience, 32(8), 974-983. doi:10.1080/23273798.2017.1323112.
  • Kita, S., Alibali, M. W., & Chu, M. (2017). How Do Gestures Influence Thinking and Speaking? The Gesture-for-Conceptualization Hypothesis. Psychological Review, 124(3), 245-266. doi:10.1037/rev0000059.

    Abstract

    People spontaneously produce gestures during speaking and thinking. The authors focus here on gestures that depict or indicate information related to the contents of concurrent speech or thought (i.e., representational gestures). Previous research indicates that such gestures have not only communicative functions, but also self-oriented cognitive functions. In this article, the authors propose a new theoretical framework, the gesture-for-conceptualization hypothesis, which explains the self-oriented functions of representational gestures. According to this framework, representational gestures affect cognitive processes in 4 main ways: gestures activate, manipulate, package, and explore spatio-motoric information for speaking and thinking. These four functions are shaped by gesture's ability to schematize information, that is, to focus on a small subset of available information that is potentially relevant to the task at hand. The framework is based on the assumption that gestures are generated from the same system that generates practical actions, such as object manipulation; however, gestures are distinct from practical actions in that they represent information. The framework provides a novel, parsimonious, and comprehensive account of the self-oriented functions of gestures. The authors discuss how the framework accounts for gestures that depict abstract or metaphoric content, and they consider implications for the relations between self-oriented and communicative functions of gestures
  • Kösem, A., & Van Wassenhove, V. (2017). Distinct contributions of low and high frequency neural oscillations to speech comprehension. Language, Cognition and Neuroscience, 32(5), 536-544. doi:10.1080/23273798.2016.1238495.

    Abstract

    In the last decade, the involvement of neural oscillatory mechanisms in speech comprehension has been increasingly investigated. Current evidence suggests that low-frequency and high-frequency neural entrainment to the acoustic dynamics of speech are linked to its analysis. One crucial question is whether acoustical processing primarily modulates neural entrainment, or whether entrainment instead reflects linguistic processing. Here, we review studies investigating the effect of linguistic manipulations on neural oscillatory activity. In light of the current findings, we argue that theta (3–8 Hz) entrainment may primarily reflect the analysis of the acoustic features of speech. In contrast, recent evidence suggests that delta (1–3 Hz) and high-frequency activity (>40 Hz) are reliable indicators of perceived linguistic representations. The interdependence between low-frequency and high-frequency neural oscillations, as well as their causal role on speech comprehension, is further discussed with regard to neurophysiological models of speech processing
  • Kunert, R., & Jongman, S. R. (2017). Entrainment to an auditory signal: Is attention involved? Journal of Experimental Psychology: General, 146(1), 77-88. doi:10.1037/xge0000246.

    Abstract

    Many natural auditory signals, including music and language, change periodically. The effect of such auditory rhythms on the brain is unclear however. One widely held view, dynamic attending theory, proposes that the attentional system entrains to the rhythm and increases attention at moments of rhythmic salience. In support, 2 experiments reported here show reduced response times to visual letter strings shown at auditory rhythm peaks, compared with rhythm troughs. However, we argue that an account invoking the entrainment of general attention should further predict rhythm entrainment to also influence memory for visual stimuli. In 2 pseudoword memory experiments we find evidence against this prediction. Whether a pseudoword is shown during an auditory rhythm peak or not is irrelevant for its later recognition memory in silence. Other attention manipulations, dividing attention and focusing attention, did result in a memory effect. This raises doubts about the suggested attentional nature of rhythm entrainment. We interpret our findings as support for auditory rhythm perception being based on auditory-motor entrainment, not general attention entrainment.
  • Kunert, R. (2017). Music and language comprehension in the brain. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Lam, N. H. L. (2017). Comprehending comprehension: Insights from neuronal oscillations on the neuronal basis of language. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Lam, K. J. Y., Bastiaansen, M. C. M., Dijkstra, T., & Rueschemeyer, S. A. (2017). Making sense: motor activation and action plausibility during sentence processing. Language, Cognition and Neuroscience, 32(5), 590-600. doi:10.1080/23273798.2016.1164323.

    Abstract

    The current electroencephalography study investigated the relationship between the motor and (language) comprehension systems by simultaneously measuring mu and N400 effects. Specifically, we examined whether the pattern of motor activation elicited by verbs depends on the larger sentential context. A robust N400 congruence effect confirmed the contextual manipulation of action plausibility, a form of semantic congruency. Importantly, this study showed that: (1) Action verbs elicited more mu power decrease than non-action verbs when sentences described plausible actions. Action verbs thus elicited more motor activation than non-action verbs. (2) In contrast, when sentences described implausible actions, mu activity was present but the difference between the verb types was not observed. The increased processing associated with a larger N400 thus coincided with mu activity in sentences describing implausible actions. Altogether, context-dependent motor activation appears to play a functional role in deriving context-sensitive meaning
  • Lewis, A. G., Schoffelen, J.-M., Hoffmann, C., Bastiaansen, M. C. M., & Schriefers, H. (2017). Discourse-level semantic coherence influences beta oscillatory dynamics and the N400 during sentence comprehension. Language, Cognition and Neuroscience, 32(5), 601-617. doi:10.1080/23273798.2016.1211300.

    Abstract

    In this study, we used electroencephalography to investigate the influence of discourse-level semantic coherence on electrophysiological signatures of local sentence-level processing. Participants read groups of four sentences that could either form coherent stories or were semantically unrelated. For semantically coherent discourses compared to incoherent ones, the N400 was smaller at sentences 2–4, while the visual N1 was larger at the third and fourth sentences. Oscillatory activity in the beta frequency range (13–21 Hz) was higher for coherent discourses. We relate the N400 effect to a disruption of local sentence-level semantic processing when sentences are unrelated. Our beta findings can be tentatively related to disruption of local sentence-level syntactic processing, but it cannot be fully ruled out that they are instead (or also) related to disrupted local sentence-level semantic processing. We conclude that manipulating discourse-level semantic coherence does have an effect on oscillatory power related to local sentence-level processing.
  • Lewis, A. G. (2017). Explorations of beta-band neural oscillations during language comprehension: Sentence processing and beyond. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Lockwood, G. (2017). Talking sense: The behavioural and neural correlates of sound symbolism. PhD Thesis, Radboud University, Nijmegen.
  • Lopopolo, A., Frank, S. L., Van den Bosch, A., & Willems, R. M. (2017). Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain. PLoS One, 12(5): e0177794. doi:10.1371/journal.pone.0177794.

    Abstract

    Language comprehension involves the simultaneous processing of information at the phonological, syntactic, and lexical level. We track these three distinct streams of information in the brain by using stochastic measures derived from computational language models to detect neural correlates of phoneme, part-of-speech, and word processing in an fMRI experiment. Probabilistic language models have proven to be useful tools for studying how language is processed as a sequence of symbols unfolding in time. Conditional probabilities between sequences of words are at the basis of probabilistic measures such as surprisal and perplexity which have been successfully used as predictors of several behavioural and neural correlates of sentence processing. Here we computed perplexity from sequences of words and their parts of speech, and their phonemic transcriptions. Brain activity time-locked to each word is regressed on the three model-derived measures. We observe that the brain keeps track of the statistical structure of lexical, syntactic and phonological information in distinct areas.

    Additional information

    Data availability
  • Martin, A. E., Huettig, F., & Nieuwland, M. S. (2017). Can structural priming answer the important questions about language? A commentary on Branigan and Pickering "An experimental approach to linguistic representation". Behavioral and Brain Sciences, 40: e304. doi:10.1017/S0140525X17000528.

    Abstract

    While structural priming makes a valuable contribution to psycholinguistics, it does not allow direct observation of representation, nor escape “source ambiguity.” Structural priming taps into implicit memory representations and processes that may differ from what is used online. We question whether implicit memory for language can and should be equated with linguistic representation or with language processing.
  • Nieuwland, M. S., & Martin, A. E. (2017). Neural oscillations and a nascent corticohippocampal theory of reference. Journal of Cognitive Neuroscience, 29(5), 896-910. doi:10.1162/jocn_a_01091.

    Abstract

    The ability to use words to refer to the world is vital to the communicative power of human language. In particular, the anaphoric use of words to refer to previously mentioned concepts (antecedents) allows dialogue to be coherent and meaningful. Psycholinguistic theory posits that anaphor comprehension involves reactivating a memory representation of the antecedent. Whereas this implies the involvement of recognition memory, or the mnemonic sub-routines by which people distinguish old from new, the neural processes for reference resolution are largely unknown. Here, we report time-frequency analysis of four EEG experiments to reveal the increased coupling of functional neural systems associated with referentially coherent expressions compared to referentially problematic expressions. Despite varying in modality, language, and type of referential expression, all experiments showed larger gamma-band power for referentially coherent expressions compared to referentially problematic expressions. Beamformer analysis in high-density Experiment 4 localised the gamma-band increase to posterior parietal cortex around 400-600 ms after anaphor-onset and to frontaltemporal cortex around 500-1000 ms. We argue that the observed gamma-band power increases reflect successful referential binding and resolution, which links incoming information to antecedents through an interaction between the brain’s recognition memory networks and frontal-temporal language network. We integrate these findings with previous results from patient and neuroimaging studies, and we outline a nascent cortico-hippocampal theory of reference.
  • Peeters, D., Snijders, T. M., Hagoort, P., & Ozyurek, A. (2017). Linking language to the visual world: Neural correlates of comprehending verbal reference to objects through pointing and visual cues. Neuropsychologia, 95, 21-29. doi:10.1016/j.neuropsychologia.2016.12.004.

    Abstract

    In everyday communication speakers often refer in speech and/or gesture to objects in their immediate environment, thereby shifting their addressee's attention to an intended referent. The neurobiological infrastructure involved in the comprehension of such basic multimodal communicative acts remains unclear. In an event-related fMRI study, we presented participants with pictures of a speaker and two objects while they concurrently listened to her speech. In each picture, one of the objects was singled out, either through the speaker's index-finger pointing gesture or through a visual cue that made the object perceptually more salient in the absence of gesture. A mismatch (compared to a match) between speech and the object singled out by the speaker's pointing gesture led to enhanced activation in left IFG and bilateral pMTG, showing the importance of these areas in conceptual matching between speech and referent. Moreover, a match (compared to a mismatch) between speech and the object made salient through a visual cue led to enhanced activation in the mentalizing system, arguably reflecting an attempt to converge on a jointly attended referent in the absence of pointing. These findings shed new light on the neurobiological underpinnings of the core communicative process of comprehending a speaker's multimodal referential act and stress the power of pointing as an important natural device to link speech to objects.

Share this page