Publications

Displaying 1 - 100 of 107
  • Arana, S., Marquand, A., Hulten, A., Hagoort, P., & Schoffelen, J.-M. (2020). Sensory modality-independent activation of the brain network for language. The Journal of Neuroscience, 40(14), 2914-2924. doi:10.1523/JNEUROSCI.2271-19.2020.

    Abstract

    The meaning of a sentence can be understood, whether presented in written or spoken form. Therefore it is highly probable that brain processes supporting language comprehension are at least partly independent of sensory modality. To identify where and when in the brain language processing is independent of sensory modality, we directly compared neuromagnetic brain signals of 200 human subjects (102 males) either reading or listening to sentences. We used multiset canonical correlation analysis to align individual subject data in a way that boosts those aspects of the signal that are common to all, allowing us to capture word-by-word signal variations, consistent across subjects and at a fine temporal scale. Quantifying this consistency in activation across both reading and listening tasks revealed a mostly left hemispheric cortical network. Areas showing consistent activity patterns include not only areas previously implicated in higher-level language processing, such as left prefrontal, superior & middle temporal areas and anterior temporal lobe, but also parts of the control-network as well as subcentral and more posterior temporal-parietal areas. Activity in this supramodal sentence processing network starts in temporal areas and rapidly spreads to the other regions involved. The findings do not only indicate the involvement of a large network of brain areas in supramodal language processing, but also indicate that the linguistic information contained in the unfolding sentences modulates brain activity in a word-specific manner across subjects.
  • Bosker, H. R., Peeters, D., & Holler, J. (2020). How visual cues to speech rate influence speech perception. Quarterly Journal of Experimental Psychology, 73(10), 1523-1536. doi:10.1177/1747021820914564.

    Abstract

    Spoken words are highly variable and therefore listeners interpret speech sounds relative to the surrounding acoustic context, such as the speech rate of a preceding sentence. For instance, a vowel midway between short /ɑ/ and long /a:/ in Dutch is perceived as short /ɑ/ in the context of preceding slow speech, but as long /a:/ if preceded by a fast context. Despite the well-established influence of visual articulatory cues on speech comprehension, it remains unclear whether visual cues to speech rate also influence subsequent spoken word recognition. In two ‘Go Fish’-like experiments, participants were presented with audio-only (auditory speech + fixation cross), visual-only (mute videos of talking head), and audiovisual (speech + videos) context sentences, followed by ambiguous target words containing vowels midway between short /ɑ/ and long /a:/. In Experiment 1, target words were always presented auditorily, without visual articulatory cues. Although the audio-only and audiovisual contexts induced a rate effect (i.e., more long /a:/ responses after fast contexts), the visual-only condition did not. When, in Experiment 2, target words were presented audiovisually, rate effects were observed in all three conditions, including visual-only. This suggests that visual cues to speech rate in a context sentence influence the perception of following visual target cues (e.g., duration of lip aperture), which at an audiovisual integration stage bias participants’ target categorization responses. These findings contribute to a better understanding of how what we see influences what we hear.
  • Bosker, H. R., Sjerps, M. J., & Reinisch, E. (2020). Temporal contrast effects in human speech perception are immune to selective attention. Scientific Reports, 10: 5607. doi:10.1038/s41598-020-62613-8.

    Abstract

    Two fundamental properties of perception are selective attention and perceptual contrast, but how these two processes interact remains unknown. Does an attended stimulus history exert a larger contrastive influence on the perception of a following target than unattended stimuli? Dutch listeners categorized target sounds with a reduced prefix “ge-” marking tense (e.g., ambiguous between gegaan-gaan “gone-go”). In ‘single talker’ Experiments 1–2, participants perceived the reduced syllable (reporting gegaan) when the target was heard after a fast sentence, but not after a slow sentence (reporting gaan). In ‘selective attention’ Experiments 3–5, participants listened to two simultaneous sentences from two different talkers, followed by the same target sounds, with instructions to attend only one of the two talkers. Critically, the speech rates of attended and unattended talkers were found to equally influence target perception – even when participants could watch the attended talker speak. In fact, participants’ target perception in ‘selective attention’ Experiments 3–5 did not differ from participants who were explicitly instructed to divide their attention equally across the two talkers (Experiment 6). This suggests that contrast effects of speech rate are immune to selective attention, largely operating prior to attentional stream segregation in the auditory processing hierarchy.

    Additional information

    Supplementary information
  • Bouhali, F., Mongelli, V., Thiebaut de Schotten, M., & Cohen, L. (2020). Reading music and words: The anatomical connectivity of musicians’ visual cortex. NeuroImage, 212: 116666. doi:10.1016/j.neuroimage.2020.116666.

    Abstract

    Musical score reading and word reading have much in common, from their historical origins to their cognitive foundations and neural correlates. In the ventral occipitotemporal cortex (VOT), the specialization of the so-called Visual Word Form Area for word reading has been linked to its privileged structural connectivity to distant language regions. Here we investigated how anatomical connectivity relates to the segregation of regions specialized for musical notation or words in the VOT. In a cohort of professional musicians and non-musicians, we used probabilistic tractography combined with task-related functional MRI to identify the connections of individually defined word- and music-selective left VOT regions. Despite their close proximity, these regions differed significantly in their structural connectivity, irrespective of musical expertise. The music-selective region was significantly more connected to posterior lateral temporal regions than the word-selective region, which, conversely, was significantly more connected to anterior ventral temporal cortex. Furthermore, musical expertise had a double impact on the connectivity of the music region. First, music tracts were significantly larger in musicians than in non-musicians, associated with marginally higher connectivity to perisylvian music-related areas. Second, the spatial similarity between music and word tracts was significantly increased in musicians, consistently with the increased overlap of language and music functional activations in musicians, as compared to non-musicians. These results support the view that, for music as for words, very specific anatomical connections influence the specialization of distinct VOT areas, and that reciprocally those connections are selectively enhanced by the expertise for word or music reading.

    Additional information

    Supplementary data
  • Casasanto, D., Casasanto, L. S., Gijssels, T., & Hagoort, P. (2020). The Reverse Chameleon Effect: Negative social consequences of anatomical mimicry. Frontiers in Psychology, 11: 1876. doi:10.3389/fpsyg.2020.01876.

    Abstract

    Bodily mimicry often makes the mimickee have more positive feelings about the mimicker. Yet, little is known about the causes of mimicry’s social effects. When people mimic each other’s bodily movements face to face, they can either adopt a mirrorwise perspective (moving in the same absolute direction) or an anatomical perspective (moving in the same direction relative to their own bodies). Mirrorwise mimicry maximizes visuo-spatial similarity between the mimicker and mimickee, whereas anatomical mimicry maximizes the similarity in the states of their motor systems. To compare the social consequences of visuo-spatial and motoric similarity, we asked participants to converse with an embodied virtual agent (VIRTUO), who mimicked their head movements either mirrorwise, anatomically, or not at all. Compared to participants who were not mimicked, those who were mimicked mirrorwise tended to rate VIRTUO more positively, but those who were mimicked anatomically rated him more negatively. During face-to-face conversation, mirrorwise and anatomical mimicry have opposite social consequences. Results suggest that visuo-spatial similarity between mimicker and mimickee, not similarity in motor system activity, gives rise to the positive social effects of bodily mimicry.
  • Coopmans, C. W., & Nieuwland, M. S. (2020). Dissociating activation and integration of discourse referents: Evidence from ERPs and oscillations. Cortex, 126, 83-106. doi:10.1016/j.cortex.2019.12.028.

    Abstract

    A key challenge in understanding stories and conversations is the comprehension of ‘anaphora’, words that refer back to previously mentioned words or concepts (‘antecedents’). In psycholinguistic theories, anaphor comprehension involves the initial activation of the antecedent and its subsequent integration into the unfolding representation of the narrated event. A recent proposal suggests that these processes draw upon the brain’s recognition memory and language networks, respectively, and may be dissociable in patterns of neural oscillatory synchronization (Nieuwland & Martin, 2017). We addressed this proposal in an electroencephalogram (EEG) study with pre-registered data acquisition and analyses, using event-related potentials (ERPs) and neural oscillations. Dutch participants read two-sentence mini stories containing proper names, which were repeated or new (ease of activation) and semantically coherent or incoherent with the preceding discourse (ease of integration). Repeated names elicited lower N400 and Late Positive Component amplitude than new names, and also an increase in theta-band (4-7 Hz) synchronization, which was largest around 240-450 ms after name onset. Discourse-coherent names elicited an increase in gamma-band (60-80 Hz) synchronization compared to discourse-incoherent names. This effect was largest around 690-1000 ms after name onset and exploratory beamformer analysis suggested a left frontal source. We argue that the initial activation and subsequent discourse-level integration of referents can be dissociated with event-related EEG activity, and are associated with respectively theta- and gamma-band activity. These findings further establish the link between memory and language through neural oscillations.

    Additional information

    materials, data, and analysis scripts
  • Coopmans, C. W., & Schoenmakers, G.-J. (2020). Incremental structure building of preverbal PPs in Dutch. Linguistics in the Netherlands, 37(1), 38-52. doi:10.1075/avt.00036.coo.

    Abstract

    Incremental comprehension of head-final constructions can reveal structural attachment preferences for ambiguous phrases. This study investigates how temporarily ambiguous PPs are processed in Dutch verb-final constructions. In De aannemer heeft op het dakterras bespaard/gewerkt ‘The contractor has on the roof terrace saved/worked’, the PP is locally ambiguous between attachment as argument and as adjunct. This ambiguity is resolved by the sentence-final verb. In a self-paced reading task, we manipulated the argument/adjunct status of the PP, and its position relative to the verb. While we found no reading-time differences between argument and adjunct PPs, we did find that transitive verbs, for which the PP is an argument, were read more slowly than intransitive verbs, for which the PP is an adjunct. We suggest that Dutch parsers have a preference for adjunct attachment of preverbal PPs, and discuss our findings in terms of incremental parsing models that aim to minimize costly reanalysis.
  • Fitz, H., Uhlmann, M., Van den Broek, D., Duarte, R., Hagoort, P., & Petersson, K. M. (2020). Neuronal spike-rate adaptation supports working memory in language processing. Proceedings of the National Academy of Sciences of the United States of America, 117(34), 20881-20889. doi:10.1073/pnas.2000222117.

    Abstract

    Language processing involves the ability to store and integrate pieces of information in working memory over short periods of time. According to the dominant view, information is maintained through sustained, elevated neural activity. Other work has argued that short-term synaptic facilitation can serve as a substrate of memory. Here, we propose an account where memory is supported by intrinsic plasticity that downregulates neuronal firing rates. Single neuron responses are dependent on experience and we show through simulations that these adaptive changes in excitability pro- vide memory on timescales ranging from milliseconds to seconds. On this account, spiking activity writes information into coupled dynamic variables that control adaptation and move at slower timescales than the membrane potential. From these variables, information is continuously read back into the active membrane state for processing. This neuronal memory mech- anism does not rely on persistent activity, excitatory feedback, or synap- tic plasticity for storage. Instead, information is maintained in adaptive conductances that reduce firing rates and can be accessed directly with- out cued retrieval. Memory span is systematically related to both the time constant of adaptation and baseline levels of neuronal excitability. Inter- ference effects within memory arise when adaptation is long-lasting. We demonstrate that this mechanism is sensitive to context and serial order which makes it suitable for temporal integration in sequence processing within the language domain. We also show that it enables the binding of linguistic features over time within dynamic memory registers. This work provides a step towards a computational neurobiology of language.
  • Flecken, M., & Van Bergen, G. (2020). Can the English stand the bottle like the Dutch? Effects of relational categories on object perception. Cognitive Neuropsychology, 37(5-6), 271-287. doi:10.1080/02643294.2019.1607272.

    Abstract

    Does language influence how we perceive the world? This study examines how linguistic encoding of relational information by means of verbs implicitly affects visual processing, by measuring perceptual judgements behaviourally, and visual perception and attention in EEG. Verbal systems can vary cross-linguistically: Dutch uses posture verbs to describe inanimate object configurations (the bottle stands/lies on the table). In English, however, such use of posture verbs is rare (the bottle is on the table). Using this test case, we ask (1) whether previously attested language-perception interactions extend to more complex domains, and (2) whether differences in linguistic usage probabilities affect perception. We report three nonverbal experiments in which Dutch and English participants performed a picture-matching task. Prime and target pictures contained object configurations (e.g., a bottle on a table); in the critical condition, prime and target showed a mismatch in object position (standing/lying). In both language groups, we found similar responses, suggesting that probabilistic differences in linguistic encoding of relational information do not affect perception.
  • Fleur, D. S., Flecken, M., Rommers, J., & Nieuwland, M. S. (2020). Definitely saw it coming? The dual nature of the pre-nominal prediction effect. Cognition, 204: 104335. doi:10.1016/j.cognition.2020.104335.

    Abstract

    In well-known demonstrations of lexical prediction during language comprehension, pre-nominal articles that mismatch a likely upcoming noun's gender elicit different neural activity than matching articles. However, theories differ on what this pre-nominal prediction effect means and on what is being predicted. Does it reflect mismatch with a predicted article, or ‘merely’ revision of the noun prediction? We contrasted the ‘article prediction mismatch’ hypothesis and the ‘noun prediction revision’ hypothesis in two ERP experiments on Dutch mini-story comprehension, with pre-registered data collection and analyses. We capitalized on the Dutch gender system, which marks gender on definite articles (‘de/het’) but not on indefinite articles (‘een’). If articles themselves are predicted, mismatching gender should have little effect when readers expected an indefinite article without gender marking. Participants read contexts that strongly suggested either a definite or indefinite noun phrase as its best continuation, followed by a definite noun phrase with the expected noun or an unexpected, different gender noun phrase (‘het boek/de roman’, the book/the novel). Experiment 1 (N = 48) showed a pre-nominal prediction effect, but evidence for the article prediction mismatch hypothesis was inconclusive. Informed by exploratory analyses and power analyses, direct replication Experiment 2 (N = 80) yielded evidence for article prediction mismatch at a newly pre-registered occipital region-of-interest. However, at frontal and posterior channels, unexpectedly definite articles also elicited a gender-mismatch effect, and this support for the noun prediction revision hypothesis was further strengthened by exploratory analyses: ERPs elicited by gender-mismatching articles correlated with incurred constraint towards a new noun (next-word entropy), and N400s for initially unpredictable nouns decreased when articles made them more predictable. By demonstrating its dual nature, our results reconcile two prevalent explanations of the pre-nominal prediction effect.
  • Fox, N. P., Leonard, M., Sjerps, M. J., & Chang, E. F. (2020). Transformation of a temporal speech cue to a spatial neural code in human auditory cortex. eLife, 9: e53051. doi:10.7554/eLife.53051.

    Abstract

    In speech, listeners extract continuously-varying spectrotemporal cues from the acoustic signal to perceive discrete phonetic categories. Spectral cues are spatially encoded in the amplitude of responses in phonetically-tuned neural populations in auditory cortex. It remains unknown whether similar neurophysiological mechanisms encode temporal cues like voice-onset time (VOT), which distinguishes sounds like /b/ and/p/. We used direct brain recordings in humans to investigate the neural encoding of temporal speech cues with a VOT continuum from /ba/ to /pa/. We found that distinct neural populations respond preferentially to VOTs from one phonetic category, and are also sensitive to sub-phonetic VOT differences within a population’s preferred category. In a simple neural network model, simulated populations tuned to detect either temporal gaps or coincidences between spectral cues captured encoding patterns observed in real neural data. These results demonstrate that a spatial/amplitude neural code underlies the cortical representation of both spectral and temporal speech cues.

    Additional information

    Data and code
  • Gerakaki, S. (2020). The moment in between: Planning speech while listening. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Gilbers, S., Hoeksema, N., De Bot, K., & Lowie, W. (2020). Regional variation in West and East Coast African-American English prosody and rap flows. Language and Speech, 63(4), 713-745. doi:10.1177/0023830919881479.

    Abstract

    Regional variation in African-American English (AAE) is especially salient to its speakers involved with hip-hop culture, as hip-hop assigns great importance to regional identity and regional accents are a key means of expressing regional identity. However, little is known about AAE regional variation regarding prosodic rhythm and melody. In hip-hop music, regional variation can also be observed, with different regions’ rap performances being characterized by distinct “flows” (i.e., rhythmic and melodic delivery), an observation which has not been quantitatively investigated yet. This study concerns regional variation in AAE speech and rap, specifically regarding the United States’ East and West Coasts. It investigates how East Coast and West Coast AAE prosody are distinct, how East Coast and West Coast rap flows differ, and whether the two domains follow a similar pattern: more rhythmic and melodic variation on the West Coast compared to the East Coast for both speech and rap. To this end, free speech and rap recordings of 16 prominent African-American members of the East Coast and West Coast hip-hop communities were phonetically analyzed regarding rhythm (e.g., syllable isochrony and musical timing) and melody (i.e., pitch fluctuation) using a combination of existing and novel methodological approaches. The results mostly confirm the hypotheses that East Coast AAE speech and rap are less rhythmically diverse and more monotone than West Coast AAE speech and rap, respectively. They also show that regional variation in AAE prosody and rap flows pattern in similar ways, suggesting a connection between rhythm and melody in language and music.
  • Hagoort, P. (2020). Taal. In O. Van den Heuvel, Y. Van der Werf, B. Schmand, & B. Sabbe (Eds.), Leerboek neurowetenschappen voor de klinische psychiatrie (pp. 234-239). Amsterdam: Boom Uitgevers.
  • Heidlmayr, K., Kihlstedt, M., & Isel, F. (2020). A review on the electroencephalography markers of Stroop executive control processes. Brain and Cognition, 146: 105637. doi:10.1016/j.bandc.2020.105637.

    Abstract

    The present article on executive control addresses the issue of the locus of the Stroop effect by examining neurophysiological components marking conflict monitoring, interference suppression, and conflict resolution. Our goal was to provide an overview of a series of determining neurophysiological findings including neural source reconstruction data on distinct executive control processes and sub-processes involved in the Stroop task. Consistently, a fronto-central N2 component is found to reflect conflict monitoring processes, with its main neural generator being the anterior cingulate cortex (ACC). Then, for cognitive control tasks that involve a linguistic component like the Stroop task, the N2 is followed by a centro-posterior N400 and subsequently a late sustained potential (LSP). The N400 is mainly generated by the ACC and the prefrontal cortex (PFC) and is thought to reflect interference suppression, whereas the LSP plausibly reflects conflict resolution processes. The present overview shows that ERP constitute a reliable methodological tool for tracing with precision the time course of different executive processes and sub-processes involved in experimental tasks involving a cognitive conflict. Future research should shed light on the fine-grained mechanisms of control respectively involved in linguistic and non-linguistic tasks.
  • Heidlmayr, K., Weber, K., Takashima, A., & Hagoort, P. (2020). No title, no theme: The joined neural space between speakers and listeners during production and comprehension of multi-sentence discourse. Cortex, 130, 111-126. doi:10.1016/j.cortex.2020.04.035.

    Abstract

    Speakers and listeners usually interact in larger discourses than single words or even single sentences. The goal of the present study was to identify the neural bases reflecting how the mental representation of the situation denoted in a multi-sentence discourse (situation model) is constructed and shared between speakers and listeners. An fMRI study using a variant of the ambiguous text paradigm was designed. Speakers (n=15) produced ambiguous texts in the scanner and listeners (n=27) subsequently listened to these texts in different states of ambiguity: preceded by a highly informative, intermediately informative or no title at all. Conventional BOLD activation analyses in listeners, as well as inter-subject correlation analyses between the speakers’ and the listeners’ hemodynamic time courses were performed. Critically, only the processing of disambiguated, coherent discourse with an intelligible situation model representation involved (shared) activation in bilateral lateral parietal and medial prefrontal regions. This shared spatiotemporal pattern of brain activation between the speaker and the listener suggests that the process of memory retrieval in medial prefrontal regions and the binding of retrieved information in the lateral parietal cortex constitutes a core mechanism underlying the communication of complex conceptual representations.

    Additional information

    supplementary data
  • Heilbron, M., Richter, D., Ekman, M., Hagoort, P., & De Lange, F. P. (2020). Word contexts enhance the neural representation of individual letters in early visual cortex. Nature Communications, 11: 321. doi:10.1038/s41467-019-13996-4.

    Abstract

    Visual context facilitates perception, but how this is neurally implemented remains unclear. One example of contextual facilitation is found in reading, where letters are more easily identified when embedded in a word. Bottom-up models explain this word advantage as a post-perceptual decision bias, while top-down models propose that word contexts enhance perception itself. Here, we arbitrate between these accounts by presenting words and nonwords and probing the representational fidelity of individual letters using functional magnetic resonance imaging. In line with top-down models, we find that word contexts enhance letter representations in early visual cortex. Moreover, we observe increased coupling between letter information in visual cortex and brain activity in key areas of the reading network, suggesting these areas may be the source of the enhancement. Our results provide evidence for top-down representational enhancement in word recognition, demonstrating that word contexts can modulate perceptual processing already at the earliest visual regions.

    Additional information

    Supplementary information
  • Heyselaar, E., Peeters, D., & Hagoort, P. (2020). Do we predict upcoming speech content in naturalistic environments? Language, Cognition and Neuroscience. Advance online publication. doi:10.1080/23273798.2020.1859568.

    Abstract

    The ability to predict upcoming actions is a hallmark of cognition. It remains unclear, however, whether the predictive behaviour observed in controlled lab environments generalises to rich, everyday settings. In four virtual reality experiments, we tested whether a well-established marker of linguistic prediction (anticipatory eye movements) replicated when increasing the naturalness of the paradigm by means of immersing participants in naturalistic scenes (Experiment 1), increasing the number of distractor objects (Experiment 2), modifying the proportion of predictable noun-referents (Experiment 3), and manipulating the location of referents relative to the joint attentional space (Experiment 4). Robust anticipatory eye movements were observed for Experiments 1–3. The anticipatory effect disappeared, however, in Experiment 4. Our findings suggest that predictive processing occurs in everyday communication if the referents are situated in the joint attentional space. Methodologically, our study confirms that ecological validity and experimental control may go hand-in-hand in the study of human predictive behaviour.
  • Hoeksema, N., Wiesmann, M., Kiliaan, A., Hagoort, P., & Vernes, S. C. (2020). Bats and the comparative neurobiology of vocal learning. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 165-167). Nijmegen: The Evolution of Language Conferences.
  • Hoeksema, N., Villanueva, S., Mengede, J., Salazar Casals, A., Rubio-García, A., Curcic-Blake, B., Vernes, S. C., & Ravignani, A. (2020). Neuroanatomy of the grey seal brain: Bringing pinnipeds into the neurobiological study of vocal learning. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 162-164). Nijmegen: The Evolution of Language Conferences.
  • Huizeling, E., Wang, H., Holland, C., & Kessler, K. (2020). Age-related changes in attentional refocusing during simulated driving. Brain sciences, 10(8): 530. doi:10.3390/brainsci10080530.

    Abstract

    We recently reported that refocusing attention between temporal and spatial tasks becomes more difficult with increasing age, which could impair daily activities such as driving (Callaghan et al., 2017). Here, we investigated the extent to which difficulties in refocusing attention extend to naturalistic settings such as simulated driving. A total of 118 participants in five age groups (18–30; 40–49; 50–59; 60–69; 70–91 years) were compared during continuous simulated driving, where they repeatedly switched from braking due to traffic ahead (a spatially focal yet temporally complex task) to reading a motorway road sign (a spatially more distributed task). Sequential-Task (switching) performance was compared to Single-Task performance (road sign only) to calculate age-related switch-costs. Electroencephalography was recorded in 34 participants (17 in the 18–30 and 17 in the 60+ years groups) to explore age-related changes in the neural oscillatory signatures of refocusing attention while driving. We indeed observed age-related impairments in attentional refocusing, evidenced by increased switch-costs in response times and by deficient modulation of theta and alpha frequencies. Our findings highlight virtual reality (VR) and Neuro-VR as important methodologies for future psychological and gerontological research.
  • Knudsen, B., Creemers, A., & Meyer, A. S. (2020). Forgotten little words: How backchannels and particles may facilitate speech planning in conversation? Frontiers in Psychology, 11: 593671. doi:10.3389/fpsyg.2020.593671.

    Abstract

    In everyday conversation, turns often follow each other immediately or overlap in time. It has been proposed that speakers achieve this tight temporal coordination between their turns by engaging in linguistic dual-tasking, i.e., by beginning to plan their utterance during the preceding turn. This raises the question of how speakers manage to co-ordinate speech planning and listening with each other. Experimental work addressing this issue has mostly concerned the capacity demands and interference arising when speakers retrieve some content words while listening to others. However, many contributions to conversations are not content words, but backchannels, such as “hm”. Backchannels do not provide much conceptual content and are therefore easy to plan and respond to. To estimate how much they might facilitate speech planning in conversation, we determined their frequency in a Dutch and a German corpus of conversational speech. We found that 19% of the contributions in the Dutch corpus, and 16% of contributions in the German corpus were backchannels. In addition, many turns began with fillers or particles, most often translation equivalents of “yes” or “no,” which are likewise easy to plan.We proposed that to generate comprehensive models of using language in conversation psycholinguists should study not only the generation and processing of content words, as is commonly done, but also consider backchannels, fillers, and particles.
  • König, C. J., Langer, M., Fell, C. B., Pathak, R. D., Bajwa, N. u. H., Derous, E., Geißler, S. M., Hirose, S., Hülsheger, U., Javakhishvili, N., Junges, N., Knudsen, B., Lee, M. S. W., Mariani, M. G., Nag, G. C., Petrescu, C., Robie, C., Rohorua, H., Sammel, L. D., Schichtel, D. and 4 moreKönig, C. J., Langer, M., Fell, C. B., Pathak, R. D., Bajwa, N. u. H., Derous, E., Geißler, S. M., Hirose, S., Hülsheger, U., Javakhishvili, N., Junges, N., Knudsen, B., Lee, M. S. W., Mariani, M. G., Nag, G. C., Petrescu, C., Robie, C., Rohorua, H., Sammel, L. D., Schichtel, D., Titov, S., Todadze, K., von Lautz, A. H., & Ziem, M. (2020). Economic predictors of differences in interview faking between countries: Economic inequality matters, not the state of economy. Applied Psychology. doi:10.1111/apps.12278.

    Abstract

    Many companies recruit employees from different parts of the globe, and faking behavior by potential employees is a ubiquitous phenomenon. It seems that applicants from some countries are more prone to faking compared to others, but the reasons for these differences are largely unexplored. This study relates country-level economic variables to faking behavior in hiring processes. In a cross-national study across 20 countries, participants (N = 3839) reported their faking behavior in their last job interview. This study used the random response technique (RRT) to ensure participants anonymity and to foster honest answers regarding faking behavior. Results indicate that general economic indicators (gross domestic product per capita [GDP] and unemployment rate) show negligible correlations with faking across the countries, whereas economic inequality is positively related to the extent of applicant faking to a substantial extent. These findings imply that people are sensitive to inequality within countries and that inequality relates to faking, because inequality might actuate other psychological processes (e.g., envy) which in turn increase the probability for unethical behavior in many forms.
  • Kösem, A., Bosker, H. R., Jensen, O., Hagoort, P., & Riecke, L. (2020). Biasing the perception of spoken words with transcranial alternating current stimulation. Journal of Cognitive Neuroscience, 32(8), 1428-1437. doi:10.1162/jocn_a_01579.

    Abstract

    Recent neuroimaging evidence suggests that the frequency of entrained oscillations in auditory cortices influences the perceived duration of speech segments, impacting word perception (Kösem et al. 2018). We further tested the causal influence of neural entrainment frequency during speech processing, by manipulating entrainment with continuous transcranial alternating current stimulation (tACS) at distinct oscillatory frequencies (3 Hz and 5.5 Hz) above the auditory cortices. Dutch participants listened to speech and were asked to report their percept of a target Dutch word, which contained a vowel with an ambiguous duration. Target words were presented either in isolation (first experiment) or at the end of spoken sentences (second experiment). We predicted that the tACS frequency would influence neural entrainment and therewith how speech is perceptually sampled, leading to a perceptual over- or underestimation of the vowel’s duration. Whereas results from Experiment 1 did not confirm this prediction, results from experiment 2 suggested a small effect of tACS frequency on target word perception: Faster tACS lead to more long-vowel word percepts, in line with the previous neuroimaging findings. Importantly, the difference in word perception induced by the different tACS frequencies was significantly larger in experiment 1 vs. experiment 2, suggesting that the impact of tACS is dependent on the sensory context. tACS may have a stronger effect on spoken word perception when the words are presented in continuous speech as compared to when they are isolated, potentially because prior (stimulus-induced) entrainment of brain oscillations might be a prerequisite for tACS to be effective.
  • Liao, Y., Flecken, M., Dijkstra, K., & Zwaan, R. A. (2020). Going places in Dutch and mandarin Chinese: Conceptualising the path of motion cross-linguistically. Language, Cognition and Neuroscience, 35(4), 498-520. doi:10.1080/23273798.2019.1676455.

    Abstract

    We study to what extent linguistic differences in grammatical aspect systems and verb lexicalisation patterns of Dutch and mandarin Chinese affect how speakers conceptualise the path of motion in motion events, using description and memory tasks. We hypothesised that speakers of the two languages would show different preferences towards the selection of endpoint-, trajectory- or location-information in Endpoint-oriented (not reached) events, whilst showing a similar bias towards encoding endpoints in Endpoint-reached events. Our findings show that (1) groups did not differ in endpoint encoding and memory for both event types; (2) Dutch speakers conceptualised Endpoint-oriented motion focusing on the trajectory, whereas Chinese speakers focused on the location of the moving entity. In addition, we report detailed linguistic patterns of how grammatical aspect, verb semantics and adjuncts containing path-information are combined in the two languages. Results are discussed in relation to typologies of motion expression and event cognition theory.

    Additional information

    Supplemental material
  • Lopopolo, A., Van de Bosch, A., Petersson, K. M., & Willems, R. M. (2020). Distinguishing syntactic operations in the brain: Dependency and phrase-structure parsing. Neurobiology of Language. Advance online publication. doi:10.1162/nol_a_00029.

    Abstract

    Finding the structure of a sentence — the way its words hold together to convey meaning — is a fundamental step in language comprehension. Several brain regions, including the left inferior frontal gyrus, the left posterior superior temporal gyrus, and the left anterior temporal pole, are supposed to support this operation. The exact role of these areas is nonetheless still debated. In this paper we investigate the hypothesis that different brain regions could be sensitive to different kinds of syntactic computations. We compare the fit of phrase-structure and dependency structure descriptors to activity in brain areas using fMRI. Our results show a division between areas with regard to the type of structure computed, with the left ATP and left IFG favouring dependency structures and left pSTG favouring phrase structures.
  • Mak, M., De Vries, C., & Willems, R. M. (2020). The influence of mental imagery instructions and personality characteristics on reading experiences. Collabra: Psychology, 6(1): 43. doi:10.1525/collabra.281.

    Abstract

    It is well established that readers form mental images when reading a narrative. However, the consequences of mental imagery (i.e. the influence of mental imagery on the way people experience stories) are still unclear. Here we manipulated the amount of mental imagery that participants engaged in while reading short literary stories in two experiments. Participants received pre-reading instructions aimed at encouraging or discouraging mental imagery. After reading, participants answered questions about their reading experiences. We also measured individual trait differences that are relevant for literary reading experiences. The results from the first experiment suggests an important role of mental imagery in determining reading experiences. However, the results from the second experiment show that mental imagery is only a weak predictor of reading experiences compared to individual (trait) differences in how imaginative participants were. Moreover, the influence of mental imagery instructions did not extend to reading experiences unrelated to mental imagery. The implications of these results for the relationship between mental imagery and reading experiences are discussed.
  • Misersky, J., & Redl, T. (2020). A psycholinguistic view on stereotypical and grammatical gender: The effects and remedies. In C. D. J. Bulten, C. F. Perquin-Deelen, M. H. Sinninghe Damsté, & K. J. Bakker (Eds.), Diversiteit. Een multidisciplinaire terreinverkenning (pp. 237-255). Deventer: Wolters Kluwer.
  • Mongelli, V. (2020). The role of neural feedback in language unification: How awareness affects combinatorial processing. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Montero-Melis, G., & Jaeger, T. F. (2020). Changing expectations mediate adaptation in L2 production. Bilingualism: Language and Cognition, 23(3), 602-617. doi:10.1017/S1366728919000506.

    Abstract

    Native language (L1) processing draws on implicit expectations. An open question is whether non-native learners of a second language (L2) similarly draw on expectations, and whether these expectations are based on learners’ L1 or L2 knowledge. We approach this question by studying inverse preference effects on lexical encoding. L1 and L2 speakers of Spanish described motion events, while they were either primed to express path, manner, or neither. In line with other work, we find that L1 speakers adapted more strongly after primes that are unexpected in their L1. For L2 speakers, adaptation depended on their L2 proficiency: The least proficient speakers exhibited the inverse preference effect on adaptation based on what was unexpected in their L1; but the more proficient speakers were, the more they exhibited inverse preference effects based on what was unexpected in the L2. We discuss implications for L1 transfer and L2 acquisition.
  • Montero-Melis, G., Isaksson, P., Van Paridon, J., & Ostarek, M. (2020). Does using a foreign language reduce mental imagery? Cognition, 196: 104134. doi:10.1016/j.cognition.2019.104134.

    Abstract

    In a recent article, Hayakawa and Keysar (2018) propose that mental imagery is less vivid when evoked in a foreign than in a native language. The authors argue that reduced mental imagery could even account for moral foreign language effects, whereby moral choices become more utilitarian when made in a foreign language. Here we demonstrate that Hayakawa and Keysar's (2018) key results are better explained by reduced language comprehension in a foreign language than by less vivid imagery. We argue that the paradigm used in Hayakawa and Keysar (2018) does not provide a satisfactory test of reduced imagery and we discuss an alternative paradigm based on recent experimental developments.

    Additional information

    Supplementary data and scripts
  • Nieuwland, M. S., Arkhipova, Y., & Rodríguez-Gómez, P. (2020). Anticipating words during spoken discourse comprehension: A large-scale, pre-registered replication study using brain potentials. Cortex, 133, 1-36. doi:10.1016/j.cortex.2020.09.007.

    Abstract

    Numerous studies report brain potential evidence for the anticipation of specific words during language comprehension. In the most convincing demonstrations, highly predictable nouns exert an influence on processing even before they appear to a reader or listener, as indicated by the brain's neural response to a prenominal adjective or article when it mismatches the expectations about the upcoming noun. However, recent studies suggest that some well-known demonstrations of prediction may be hard to replicate. This could signal the use of data-contingent analysis, but might also mean that readers and listeners do not always use prediction-relevant information in the way that psycholinguistic theories typically suggest. To shed light on this issue, we performed a close replication of one of the best-cited ERP studies on word anticipation (Van Berkum, Brown, Zwitserlood, Kooijman & Hagoort, 2005; Experiment 1), in which participants listened to Dutch spoken mini-stories. In the original study, the marking of grammatical gender on pre-nominal adjectives (‘groot/grote’) elicited an early positivity when mismatching the gender of an unseen, highly predictable noun, compared to matching gender. The current pre-registered study involved that same manipulation, but used a novel set of materials twice the size of the original set, an increased sample size (N = 187), and Bayesian mixed-effects model analyses that better accounted for known sources of variance than the original. In our study, mismatching gender elicited more negative voltage than matching gender at posterior electrodes. However, this N400-like effect was small in size and lacked support from Bayes Factors. In contrast, we successfully replicated the original's noun effects. While our results yielded some support for prediction, they do not support the Van Berkum et al. effect and highlight the risks associated with commonly employed data-contingent analyses and small sample sizes. Our results also raise the question whether Dutch listeners reliably or consistently use adjectival inflection information to inform their noun predictions.
  • Nieuwland, M. S., Barr, D. J., Bartolozzi, F., Busch-Moreno, S., Darley, E., Donaldson, D. I., Ferguson, H. J., Fu, X., Heyselaar, E., Huettig, F., Husband, E. M., Ito, A., Kazanina, N., Kogan, V., Kohút, Z., Kulakova, E., Mézière, D., Politzer-Ahles, S., Rousselet, G., Rueschemeyer, S.-A. and 3 moreNieuwland, M. S., Barr, D. J., Bartolozzi, F., Busch-Moreno, S., Darley, E., Donaldson, D. I., Ferguson, H. J., Fu, X., Heyselaar, E., Huettig, F., Husband, E. M., Ito, A., Kazanina, N., Kogan, V., Kohút, Z., Kulakova, E., Mézière, D., Politzer-Ahles, S., Rousselet, G., Rueschemeyer, S.-A., Segaert, K., Tuomainen, J., & Von Grebmer Zu Wolfsthurn, S. (2020). Dissociable effects of prediction and integration during language comprehension: Evidence from a large-scale study using brain potentials. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 375: 20180522. doi:10.1098/rstb.2018.0522.

    Abstract

    Composing sentence meaning is easier for predictable words than for unpredictable words. Are predictable words genuinely predicted, or simply more plausible and therefore easier to integrate with sentence context? We addressed this persistent and fundamental question using data from a recent, large-scale (N = 334) replication study, by investigating the effects of word predictability and sentence plausibility on the N400, the brain’s electrophysiological index of semantic processing. A spatiotemporally fine-grained mixed-effects multiple regression analysis revealed overlapping effects of predictability and plausibility on the N400, albeit with distinct spatiotemporal profiles. Our results challenge the view that the predictability-dependent N400 reflects the effects of either prediction or integration, and suggest that semantic facilitation of predictable words arises from a cascade of processes that activate and integrate word meaning with context into a sentence-level meaning.
  • Nieuwland, M. S., & Kazanina, N. (2020). The neural basis of linguistic prediction: Introduction to the special issue. Neuropsychologia, 146: 107532. doi:10.1016/j.neuropsychologia.2020.107532.
  • Ortega, G., Ozyurek, A., & Peeters, D. (2020). Iconic gestures serve as manual cognates in hearing second language learners of a sign language: An ERP study. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(3), 403-415. doi:10.1037/xlm0000729.

    Abstract

    When learning a second spoken language, cognates, words overlapping in form and meaning with one’s native language, help breaking into the language one wishes to acquire. But what happens when the to-be-acquired second language is a sign language? We tested whether hearing nonsigners rely on their gestural repertoire at first exposure to a sign language. Participants saw iconic signs with high and low overlap with the form of iconic gestures while electrophysiological brain activity was recorded. Upon first exposure, signs with low overlap with gestures elicited enhanced positive amplitude in the P3a component compared to signs with high overlap. This effect disappeared after a training session. We conclude that nonsigners generate expectations about the form of iconic signs never seen before based on their implicit knowledge of gestures, even without having to produce them. Learners thus draw from any available semiotic resources when acquiring a second language, and not only from their linguistic experience
  • Peeters, D. (2020). Bilingual switching between languages and listeners: Insights from immersive virtual reality. Cognition, 195: 104107. doi:10.1016/j.cognition.2019.104107.

    Abstract

    Perhaps the main advantage of being bilingual is the capacity to communicate with interlocutors that have different language backgrounds. In the life of a bilingual, switching interlocutors hence sometimes involves switching languages. We know that the capacity to switch from one language to another is supported by control mechanisms, such as task-set reconfiguration. This study investigates whether similar neurophysiological mechanisms support bilingual switching between different listeners, within and across languages. A group of 48 unbalanced Dutch-English bilinguals named pictures for two monolingual Dutch and two monolingual English life-size virtual listeners in an immersive virtual reality environment. In terms of reaction times, switching languages came at a cost over and above the significant cost of switching from one listener to another. Analysis of event-related potentials showed similar electrophysiological correlates for switching listeners and switching languages. However, it was found that having to switch listeners and languages at the same time delays the onset of lexical processes more than a switch between listeners within the same language. Findings are interpreted in light of the interplay between proactive (sustained inhibition) and reactive (task-set reconfiguration) control in bilingual speech production. It is argued that a possible bilingual advantage in executive control may not be due to the process of switching per se. This study paves the way for the study of bilingual language switching in ecologically valid, naturalistic, experimental settings.

    Additional information

    Supplementary data
  • Preisig, B., Sjerps, M. J., Hervais-Adelman, A., Kösem, A., Hagoort, P., & Riecke, L. (2020). Bilateral gamma/delta transcranial alternating current stimulation affects interhemispheric speech sound integration. Journal of Cognitive Neuroscience, 32(7), 1242-1250. doi:10.1162/jocn_a_01498.

    Abstract

    Perceiving speech requires the integration of different speech cues, that is, formants. When the speech signal is split so that different cues are presented to the right and left ear (dichotic listening), comprehension requires the integration of binaural information. Based on prior electrophysiological evidence, we hypothesized that the integration of dichotically presented speech cues is enabled by interhemispheric phase synchronization between primary and secondary auditory cortex in the gamma frequency band. We tested this hypothesis by applying transcranial alternating current stimulation (TACS) bilaterally above the superior temporal lobe to induce or disrupt interhemispheric gamma-phase coupling. In contrast to initial predictions, we found that gamma TACS applied in-phase above the two hemispheres (interhemispheric lag 0°) perturbs interhemispheric integration of speech cues, possibly because the applied stimulation perturbs an inherent phase lag between the left and right auditory cortex. We also observed this disruptive effect when applying antiphasic delta TACS (interhemispheric lag 180°). We conclude that interhemispheric phase coupling plays a functional role in interhemispheric speech integration. The direction of this effect may depend on the stimulation frequency.
  • Rasenberg, M., Rommers, J., & Van Bergen, G. (2020). Anticipating predictability: An ERP investigation of expectation-managing discourse markers in dialogue comprehension. Language, Cognition and Neuroscience, 35(1), 1-16. doi:10.1080/23273798.2019.1624789.

    Abstract

    n two ERP experiments, we investigated how the Dutch discourse markers eigenlijk “actually”, signalling expectation disconfirmation, and inderdaad “indeed”, signalling expectation confirmation, affect incremental dialogue comprehension. We investigated their effects on the processing of subsequent (un)predictable words, and on the quality of word representations in memory. Participants read dialogues with (un)predictable endings that followed a discourse marker (eigenlijk in Experiment 1, inderdaad in Experiment 2) or a control adverb. We found no strong evidence that discourse markers modulated online predictability effects elicited by subsequently read words. However, words following eigenlijk elicited an enhanced posterior post-N400 positivity compared with words following an adverb regardless of their predictability, potentially reflecting increased processing costs associated with pragmatically driven discourse updating. No effects of inderdaad were found on online processing, but inderdaad seemed to influence memory for (un)predictable dialogue endings. These findings nuance our understanding of how pragmatic markers affect incremental language comprehension.

    Additional information

    plcp_a_1624789_sm6686.docx
  • Sharpe, V., Weber, K., & Kuperberg, G. R. (2020). Impairments in probabilistic prediction and Bayesian learning can explain reduced neural semantic priming in schizophrenia. Schizophrenia Bulletin, 46(6), 1558-1566. doi:10.1093/schbul/sbaa069.

    Abstract

    It has been proposed that abnormalities in probabilistic prediction and dynamic belief updating explain the multiple features of schizophrenia. Here, we used electroencephalography (EEG) to ask whether these abnormalities can account for the well-established reduction in semantic priming observed in schizophrenia under nonautomatic conditions. We isolated predictive contributions to the neural semantic priming effect by manipulating the prime’s predictive validity and minimizing retroactive semantic matching mechanisms. We additionally examined the link between prediction and learning using a Bayesian model that probed dynamic belief updating as participants adapted to the increase in predictive validity. We found that patients were less likely than healthy controls to use the prime to predictively facilitate semantic processing on the target, resulting in a reduced N400 effect. Moreover, the trial-by-trial output of our Bayesian computational model explained between-group differences in trial-by-trial N400 amplitudes as participants transitioned from conditions of lower to higher predictive validity. These findings suggest that, compared with healthy controls, people with schizophrenia are less able to mobilize predictive mechanisms to facilitate processing at the earliest stages of accessing the meanings of incoming words. This deficit may be linked to a failure to adapt to changes in the broader environment. This reciprocal relationship between impairments in probabilistic prediction and Bayesian learning/adaptation may drive a vicious cycle that maintains cognitive disturbances in schizophrenia.

    Additional information

    supplementary material
  • Snijders, T. M., Benders, T., & Fikkert, P. (2020). Infants segment words from songs - an EEG study. Brain Sciences, 10( 1): 39. doi:10.3390/brainsci10010039.

    Abstract

    Children’s songs are omnipresent and highly attractive stimuli in infants’ input. Previous work suggests that infants process linguistic–phonetic information from simplified sung melodies. The present study investigated whether infants learn words from ecologically valid children’s songs. Testing 40 Dutch-learning 10-month-olds in a familiarization-then-test electroencephalography (EEG) paradigm, this study asked whether infants can segment repeated target words embedded in songs during familiarization and subsequently recognize those words in continuous speech in the test phase. To replicate previous speech work and compare segmentation across modalities, infants participated in both song and speech sessions. Results showed a positive event-related potential (ERP) familiarity effect to the final compared to the first target occurrences during both song and speech familiarization. No evidence was found for word recognition in the test phase following either song or speech. Comparisons across the stimuli of the present and a comparable previous study suggested that acoustic prominence and speech rate may have contributed to the polarity of the ERP familiarity effect and its absence in the test phase. Overall, the present study provides evidence that 10-month-old infants can segment words embedded in songs, and it raises questions about the acoustic and other factors that enable or hinder infant word segmentation from songs and speech.
  • Takashima, A., Konopka, A. E., Meyer, A. S., Hagoort, P., & Weber, K. (2020). Speaking in the brain: The interaction between words and syntax in sentence production. Journal of Cognitive Neuroscience, 32(8), 1466-1483. doi:10.1162/jocn_a_01563.

    Abstract

    This neuroimaging study investigated the neural infrastructure of sentence-level language production. We compared brain activation patterns, as measured with BOLD-fMRI, during production of sentences that differed in verb argument structures (intransitives, transitives, ditransitives) and the lexical status of the verb (known verbs or pseudoverbs). The experiment consisted of 30 mini-blocks of six sentences each. Each mini-block started with an example for the type of sentence to be produced in that block. On each trial in the mini-blocks, participants were first given the (pseudo-)verb followed by three geometric shapes to serve as verb arguments in the sentences. Production of sentences with known verbs yielded greater activation compared to sentences with pseudoverbs in the core language network of the left inferior frontal gyrus, the left posterior middle temporalgyrus, and a more posterior middle temporal region extending into the angular gyrus, analogous to effects observed in language comprehension. Increasing the number of verb arguments led to greater activation in an overlapping left posterior middle temporal gyrus/angular gyrus area, particularly for known verbs, as well as in the bilateral precuneus. Thus, producing sentences with more complex structures using existing verbs leads to increased activation in the language network, suggesting some reliance on memory retrieval of stored lexical–syntactic information during sentence production. This study thus provides evidence from sentence-level language production in line with functional models of the language network that have so far been mainly based on single-word production, comprehension, and language processing in aphasia.
  • Tan, Y., & Hagoort, P. (2020). Catecholaminergic modulation of semantic processing in sentence comprehension. Cerebral Cortex, 30(12), 6426-6443. doi:10.1093/cercor/bhaa204.

    Abstract

    Catecholamine (CA) function has been widely implicated in cognitive functions that are tied to the prefrontal cortex and striatal areas. The present study investigated the effects of methylphenidate, which is a CA agonist, on the electroencephalogram (EEG) response related to semantic processing using a double-blind, placebo-controlled, randomized, crossover, within-subject design. Forty-eight healthy participants read semantically congruent or incongruent sentences after receiving 20-mg methylphenidate or a placebo while their brain activity was monitored with EEG. To probe whether the catecholaminergic modulation is task-dependent, in one condition participants had to focus on comprehending the sentences, while in the other condition, they only had to attend to the font size of the sentence. The results demonstrate that methylphenidate has a task-dependent effect on semantic processing. Compared to placebo, when semantic processing was task-irrelevant, methylphenidate enhanced the detection of semantic incongruence as indexed by a larger N400 amplitude in the incongruent sentences; when semantic processing was task-relevant, methylphenidate induced a larger N400 amplitude in the semantically congruent condition, which was followed by a larger late positive complex effect. These results suggest that CA-related neurotransmitters influence language processing, possibly through the projections between the prefrontal cortex and the striatum, which contain many CA receptors.
  • Ter Bekke, M., Drijvers, L., & Holler, J. (2020). The predictive potential of hand gestures during conversation: An investigation of the timing of gestures in relation to speech. In Proceedings of the 7th GESPIN - Gesture and Speech in Interaction Conference. Stockholm: KTH Royal Institute of Technology.

    Abstract

    In face-to-face conversation, recipients might use the bodily movements of the speaker (e.g. gestures) to facilitate language processing. It has been suggested that one way through which this facilitation may happen is prediction. However, for this to be possible, gestures would need to precede speech, and it is unclear whether this is true during natural conversation. In a corpus of Dutch conversations, we annotated hand gestures that represent semantic information and occurred during questions, and the word(s) which corresponded most closely to the gesturally depicted meaning. Thus, we tested whether representational gestures temporally precede their lexical affiliates. Further, to see whether preceding gestures may indeed facilitate language processing, we asked whether the gesture-speech asynchrony predicts the response time to the question the gesture is part of. Gestures and their strokes (most meaningful movement component) indeed preceded the corresponding lexical information, thus demonstrating their predictive potential. However, while questions with gestures got faster responses than questions without, there was no evidence that questions with larger gesture-speech asynchronies get faster responses. These results suggest that gestures indeed have the potential to facilitate predictive language processing, but further analyses on larger datasets are needed to test for links between asynchrony and processing advantages.
  • Terporten, R. (2020). The power of context: How linguistic contextual information shapes brain dynamics during sentence processing. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Uhlmann, M. (2020). Neurobiological models of sentence processing. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Vanlangendonck, F., Peeters, D., Rüschemeyer, S.-A., & Dijkstra, T. (2020). Mixing the stimulus list in bilingual lexical decision turns cognate facilitation effects into mirrored inhibition effects. Bilingualism: Language and Cognition, 23(4), 836-844. doi:10.1017/S1366728919000531.

    Abstract

    To test the BIA+ and Multilink models’ accounts of how bilinguals process words with different degrees of cross-linguistic orthographic and semantic overlap, we conducted two experiments manipulating stimulus list composition. Dutch-English late bilinguals performed two English lexical decision tasks including the same set of cognates, interlingual homographs, English control words, and pseudowords. In one task, half of the pseudowords were replaced with Dutch words, requiring a ‘no’ response. This change from pure to mixed language list context was found to turn cognate facilitation effects into inhibition. Relative to control words, larger effects were found for cognate pairs with an increasing cross-linguistic form overlap. Identical cognates produced considerably larger effects than non-identical cognates, supporting their special status in the bilingual lexicon. Response patterns for different item types are accounted for in terms of the items’ lexical representation and their binding to ‘yes’ and ‘no’ responses in pure vs mixed lexical decision.

    Additional information

    S1366728919000531sup001.pdf
  • Willems, R. M., Nastase, S. A., & Milivojevic, B. (2020). Narratives for Neuroscience. Trends in Neurosciences, 43(5), 271-273. doi:10.1016/j.tins.2020.03.003.

    Abstract

    People organize and convey their thoughts according to narratives. However, neuroscientists are often reluctant to incorporate narrative stimuli into their experiments. We argue that narratives deserve wider adoption in human neuroscience because they tap into the brain’s native machinery for representing the world and provide rich variability for testing hypotheses.
  • Aparicio, X., Heidlmayr, K., & Isel, F. (2017). Inhibition Efficiency in Highly Proficient Bilinguals and Simultaneous Interpreters: Evidence from Language Switching and Stroop Tasks. Journal of Psycholinguistic Research, 46, 1427-1451. doi:10.1007/s10936-017-9501-3.

    Abstract

    The present behavioral study aimed to examine the impact of language control expertise on two domain-general control processes, i.e. active inhibition of competing representations and overcoming of inhibition. We compared how Simultaneous Interpreters (SI) and Highly Proficient Bilinguals—two groups assumed to differ in language control capacity—performed executive tasks involving specific inhibition processes. In Experiment 1 (language decision task), both active and overcoming of inhibition processes are involved, while in Experiment 2 (bilingual Stroop task) only interference suppression is supposed to be required. The results of Experiment 1 showed a language switching effect only for the highly proficient bilinguals, potentially because overcoming of inhibition requires more cognitive resources than in SI. Nevertheless, both groups performed similarly on the Stroop task in Experiment 2, which suggests that active inhibition may work similarly in both groups. These contrasting results suggest that overcoming of inhibition may be harder to master than active inhibition. Taken together, these data indicate that some executive control processes may be less sensitive to the degree of expertise in bilingual language control than others. Our findings lend support to psycholinguistic models of bilingualism postulating a higher-order mechanism regulating language activation.
  • Armeni, K., Willems, R. M., & Frank, S. (2017). Probabilistic language models in cognitive neuroscience: Promises and pitfalls. Neuroscience and Biobehavioral Reviews, 83, 579-588. doi:10.1016/j.neubiorev.2017.09.001.

    Abstract

    Cognitive neuroscientists of language comprehension study how neural computations relate to cognitive computations during comprehension. On the cognitive part of the equation, it is important that the computations and processing complexity are explicitly defined. Probabilistic language models can be used to give a computationally explicit account of language complexity during comprehension. Whereas such models have so far predominantly been evaluated against behavioral data, only recently have the models been used to explain neurobiological signals. Measures obtained from these models emphasize the probabilistic, information-processing view of language understanding and provide a set of tools that can be used for testing neural hypotheses about language comprehension. Here, we provide a cursory review of the theoretical foundations and example neuroimaging studies employing probabilistic language models. We highlight the advantages and potential pitfalls of this approach and indicate avenues for future research
  • De Boer, M., Kokal, I., Blokpoel, M., Liu, R., Stolk, A., Roelofs, K., Van Rooij, I., & Toni, I. (2017). Oxytocin modulates human communication by enhancing cognitive exploration. Psychoneuroendocrinology, 86, 64-72. doi:10.1016/j.psyneuen.2017.09.010.

    Abstract

    Oxytocin is a neuropeptide known to influence how humans share material resources. Here we explore whether oxytocin influences how we share knowledge. We focus on two distinguishing features of human communication, namely the ability to select communicative signals that disambiguate the many-to-many mappings that exist between a signal’s form and meaning, and adjustments of those signals to the presumed cognitive characteristics of the addressee (“audience design”). Fifty-five males participated in a randomized, double-blind, placebo controlled experiment involving the intranasal administration of oxytocin. The participants produced novel non-verbal communicative signals towards two different addressees, an adult or a child, in an experimentally-controlled live interactive setting. We found that oxytocin administration drives participants to generate signals of higher referential quality, i.e. signals that disambiguate more communicative problems; and to rapidly adjust those communicative signals to what the addressee understands. The combined effects of oxytocin on referential quality and audience design fit with the notion that oxytocin administration leads participants to explore more pervasively behaviors that can convey their intention, and diverse models of the addressees. These findings suggest that, besides affecting prosocial drive and salience of social cues, oxytocin influences how we share knowledge by promoting cognitive exploration
  • Bosker, H. R., & Kösem, A. (2017). An entrained rhythm's frequency, not phase, influences temporal sampling of speech. In Proceedings of Interspeech 2017 (pp. 2416-2420). doi:10.21437/Interspeech.2017-73.

    Abstract

    Brain oscillations have been shown to track the slow amplitude fluctuations in speech during comprehension. Moreover, there is evidence that these stimulus-induced cortical rhythms may persist even after the driving stimulus has ceased. However, how exactly this neural entrainment shapes speech perception remains debated. This behavioral study investigated whether and how the frequency and phase of an entrained rhythm would influence the temporal sampling of subsequent speech. In two behavioral experiments, participants were presented with slow and fast isochronous tone sequences, followed by Dutch target words ambiguous between as /ɑs/ “ash” (with a short vowel) and aas /a:s/ “bait” (with a long vowel). Target words were presented at various phases of the entrained rhythm. Both experiments revealed effects of the frequency of the tone sequence on target word perception: fast sequences biased listeners to more long /a:s/ responses. However, no evidence for phase effects could be discerned. These findings show that an entrained rhythm’s frequency, but not phase, influences the temporal sampling of subsequent speech. These outcomes are compatible with theories suggesting that sensory timing is evaluated relative to entrained frequency. Furthermore, they suggest that phase tracking of (syllabic) rhythms by theta oscillations plays a limited role in speech parsing.
  • Bouhali, F., Mongelli, V., & Cohen, L. (2017). Musical literacy shifts asymmetries in the ventral visual cortex. NeuroImage, 156, 445-455. doi:10.1016/j.neuroimage.2017.04.027.

    Abstract

    The acquisition of literacy has a profound impact on the functional specialization and lateralization of the visual cortex. Due to the overall lateralization of the language network, specialization for printed words develops in the left occipitotemporal cortex, allegedly inducing a secondary shift of visual face processing to the right, in literate as compared to illiterate subjects. Applying the same logic to the acquisition of high-level musical literacy, we predicted that, in musicians as compared to non-musicians, occipitotemporal activations should show a leftward shift for music reading, and an additional rightward push for face perception. To test these predictions, professional musicians and non-musicians viewed pictures of musical notation, faces, words, tools and houses in the MRI, and laterality was assessed in the ventral stream combining ROI and voxel-based approaches. The results supported both predictions, and allowed to locate the leftward shift to the inferior temporal gyrus and the rightward shift to the fusiform cortex. Moreover, these laterality shifts generalized to categories other than music and faces. Finally, correlation measures across subjects did not support a causal link between the leftward and rightward shifts. Thus the acquisition of an additional perceptual expertise extensively modifies the laterality pattern in the visual system

    Additional information

    1-s2.0-S1053811917303208-mmc1.docx

    Files private

    Request files
  • Coco, M. I., Araujo, S., & Petersson, K. M. (2017). Disentangling stimulus plausibility and contextual congruency: Electro-physiological evidence for differential cognitive dynamics. Neuropsychologia, 96, 150-163. doi:10.1016/j.neuropsychologia.2016.12.008.

    Abstract

    Expectancy mechanisms are routinely used by the cognitive system in stimulus processing and in anticipation of appropriate responses. Electrophysiology research has documented negative shifts of brain activity when expectancies are violated within a local stimulus context (e.g., reading an implausible word in a sentence) or more globally between consecutive stimuli (e.g., a narrative of images with an incongruent end). In this EEG study, we examine the interaction between expectancies operating at the level of stimulus plausibility and at more global level of contextual congruency to provide evidence for, or against, a disassociation of the underlying processing mechanisms. We asked participants to verify the congruency of pairs of cross-modal stimuli (a sentence and a scene), which varied in plausibility. ANOVAs on ERP amplitudes in selected windows of interest show that congruency violation has longer-lasting (from 100 to 500 ms) and more widespread effects than plausibility violation (from 200 to 400 ms). We also observed critical interactions between these factors, whereby incongruent and implausible pairs elicited stronger negative shifts than their congruent counterpart, both early on (100–200 ms) and between 400–500 ms. Our results suggest that the integration mechanisms are sensitive to both global and local effects of expectancy in a modality independent manner. Overall, we provide novel insights into the interdependence of expectancy during meaning integration of cross-modal stimuli in a verification task
  • Dai, B., McQueen, J. M., Hagoort, P., & Kösem, A. (2017). Pure linguistic interference during comprehension of competing speech signals. The Journal of the Acoustical Society of America, 141, EL249-EL254. doi:10.1121/1.4977590.

    Abstract

    Speech-in-speech perception can be challenging because the processing of competing acoustic and linguistic information leads to informational masking. Here, a method is proposed to isolate the linguistic component of informational masking while keeping the distractor's acoustic information unchanged. Participants performed a dichotic listening cocktail-party task before and after training on 4-band noise-vocoded sentences that became intelligible through the training. Distracting noise-vocoded speech interfered more with target speech comprehension after training (i.e., when intelligible) than before training (i.e., when unintelligible) at −3 dB SNR. These findings confirm that linguistic and acoustic information have distinct masking effects during speech-in‐speech comprehension
  • Fitz, H., & Chang, F. (2017). Meaningful questions: The acquisition of auxiliary inversion in a connectionist model of sentence production. Cognition, 166, 225-250. doi:10.1016/j.cognition.2017.05.008.

    Abstract

    Nativist theories have argued that language involves syntactic principles which are unlearnable from the input children receive. A paradigm case of these innate principles is the structure dependence of auxiliary inversion in complex polar questions (Chomsky, 1968, 1975, 1980). Computational approaches have focused on the properties of the input in explaining how children acquire these questions. In contrast, we argue that messages are structured in a way that supports structure dependence in syntax. We demonstrate this approach within a connectionist model of sentence production (Chang, 2009) which learned to generate a range of complex polar questions from a structured message without positive exemplars in the input. The model also generated different types of error in development that were similar in magnitude to those in children (e.g., auxiliary doubling, Ambridge, Rowland, & Pine, 2008; Crain & Nakayama, 1987). Through model comparisons we trace how meaning constraints and linguistic experience interact during the acquisition of auxiliary inversion. Our results suggest that auxiliary inversion rules in English can be acquired without innate syntactic principles, as long as it is assumed that speakers who ask complex questions express messages that are structured into multiple propositions
  • Frank, S. L., & Willems, R. M. (2017). Word predictability and semantic similarity show distinct patterns of brain activity during language comprehension. Language, Cognition and Neuroscience, 32(9), 1192-1203. doi:10.1080/23273798.2017.1323109.

    Abstract

    We investigate the effects of two types of relationship between the words of a sentence or text – predictability and semantic similarity – by reanalysing electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data from studies in which participants comprehend naturalistic stimuli. Each content word's predictability given previous words is quantified by a probabilistic language model, and semantic similarity to previous words is quantified by a distributional semantics model. Brain activity time-locked to each word is regressed on the two model-derived measures. Results show that predictability and semantic similarity have near identical N400 effects but are dissociated in the fMRI data, with word predictability related to activity in, among others, the visual word-form area, and semantic similarity related to activity in areas associated with the semantic network. This indicates that both predictability and similarity play a role during natural language comprehension and modulate distinct cortical regions.
  • Franken, M. K., Eisner, F., Schoffelen, J.-M., Acheson, D. J., Hagoort, P., & McQueen, J. M. (2017). Audiovisual recalibration of vowel categories. In Proceedings of Interspeech 2017 (pp. 655-658). doi:10.21437/Interspeech.2017-122.

    Abstract

    One of the most daunting tasks of a listener is to map a continuous auditory stream onto known speech sound categories and lexical items. A major issue with this mapping problem is the variability in the acoustic realizations of sound categories, both within and across speakers. Past research has suggested listeners may use visual information (e.g., lipreading) to calibrate these speech categories to the current speaker. Previous studies have focused on audiovisual recalibration of consonant categories. The present study explores whether vowel categorization, which is known to show less sharply defined category boundaries, also benefit from visual cues. Participants were exposed to videos of a speaker pronouncing one out of two vowels, paired with audio that was ambiguous between the two vowels. After exposure, it was found that participants had recalibrated their vowel categories. In addition, individual variability in audiovisual recalibration is discussed. It is suggested that listeners’ category sharpness may be related to the weight they assign to visual information in audiovisual speech perception. Specifically, listeners with less sharp categories assign more weight to visual information during audiovisual speech recognition.
  • Franken, M. K., Acheson, D. J., McQueen, J. M., Eisner, F., & Hagoort, P. (2017). Individual variability as a window on production-perception interactions in speech motor control. The Journal of the Acoustical Society of America, 142(4), 2007-2018. doi:10.1121/1.5006899.

    Abstract

    An important part of understanding speech motor control consists of capturing the interaction between speech production and speech perception. This study tests a prediction of theoretical frameworks that have tried to account for these interactions: if speech production targets are specified in auditory terms, individuals with better auditory acuity should have more precise speech targets, evidenced by decreased within-phoneme variability and increased between-phoneme distance. A study was carried out consisting of perception and production tasks in counterbalanced order. Auditory acuity was assessed using an adaptive speech discrimination task, while production variability was determined using a pseudo-word reading task. Analyses of the production data were carried out to quantify average within-phoneme variability as well as average between-phoneme contrasts. Results show that individuals not only vary in their production and perceptual abilities, but that better discriminators have more distinctive vowel production targets (that is, targets with less within-phoneme variability and greater between-phoneme distances), confirming the initial hypothesis. This association between speech production and perception did not depend on local phoneme density in vowel space. This study suggests that better auditory acuity leads to more precise speech production targets, which may be a consequence of auditory feedback affecting speech production over time.
  • Grabot, L., Kösem, A., Azizi, L., & Van Wassenhove, V. (2017). Prestimulus Alpha Oscillations and the Temporal Sequencing of Audio-visual Events. Journal of Cognitive Neuroscience, 29(9), 1566-1582. doi:10.1162/jocn_a_01145.

    Abstract

    Perceiving the temporal order of sensory events typically depends on participants' attentional state, thus likely on the endogenous fluctuations of brain activity. Using magnetoencephalography, we sought to determine whether spontaneous brain oscillations could disambiguate the perceived order of auditory and visual events presented in close temporal proximity, that is, at the individual's perceptual order threshold (Point of Subjective Simultaneity [PSS]). Two neural responses were found to index an individual's temporal order perception when contrasting brain activity as a function of perceived order (i.e., perceiving the sound first vs. perceiving the visual event first) given the same physical audiovisual sequence. First, average differences in prestimulus auditory alpha power indicated perceiving the correct ordering of audiovisual events irrespective of which sensory modality came first: a relatively low alpha power indicated perceiving auditory or visual first as a function of the actual sequence order. Additionally, the relative changes in the amplitude of the auditory (but not visual) evoked responses were correlated with participant's correct performance. Crucially, the sign of the magnitude difference in prestimulus alpha power and evoked responses between perceived audiovisual orders correlated with an individual's PSS. Taken together, our results suggest that spontaneous oscillatory activity cannot disambiguate subjective temporal order without prior knowledge of the individual's bias toward perceiving one or the other sensory modality first. Altogether, our results suggest that, under high perceptual uncertainty, the magnitude of prestimulus alpha (de)synchronization indicates the amount of compensation needed to overcome an individual's prior in the serial ordering and temporal sequencing of information
  • Hagoort, P. (2017). Don't forget neurobiology: An experimental approach to linguistic representation. Commentary on Branigan and Pickering "An experimental approach to linguistic representation". Behavioral and Brain Sciences, 40: e292. doi:10.1017/S0140525X17000401.

    Abstract

    Acceptability judgments are no longer acceptable as the holy grail for testing the nature of linguistic representations. Experimental and quantitative methods should be used to test theoretical claims in psycholinguistics. These methods should include not only behavior, but also the more recent possibilities to probe the neural codes for language-relevant representation
  • Hagoort, P. (2017). It is the facts, stupid. In J. Brockman, F. Van der Wa, & H. Corver (Eds.), Wetenschappelijke parels: het belangrijkste wetenschappelijke nieuws volgens 193 'briljante geesten'. Amsterdam: Maven Press.
  • Hagoort, P. (2017). The core and beyond in the language-ready brain. Neuroscience and Biobehavioral Reviews, 81, 194-204. doi:10.1016/j.neubiorev.2017.01.048.

    Abstract

    In this paper a general cognitive architecture of spoken language processing is specified. This is followed by an account of how this cognitive architecture is instantiated in the human brain. Both the spatial aspects of the networks for language are discussed, as well as the temporal dynamics and the underlying neurophysiology. A distinction is proposed between networks for coding/decoding linguistic information and additional networks for getting from coded meaning to speaker meaning, i.e. for making the inferences that enable the listener to understand the intentions of the speaker
  • Hagoort, P. (2017). The neural basis for primary and acquired language skills. In E. Segers, & P. Van den Broek (Eds.), Developmental Perspectives in Written Language and Literacy: In honor of Ludo Verhoeven (pp. 17-28). Amsterdam: Benjamins. doi:10.1075/z.206.02hag.

    Abstract

    Reading is a cultural invention that needs to recruit cortical infrastructure that was not designed for it (cultural recycling of cortical maps). In the case of reading both visual cortex and networks for speech processing are recruited. Here I discuss current views on the neurobiological underpinnings of spoken language that deviate in a number of ways from the classical Wernicke-Lichtheim-Geschwind model. More areas than Broca’s and Wernicke’s region are involved in language. Moreover, a division along the axis of language production and language comprehension does not seem to be warranted. Instead, for central aspects of language processing neural infrastructure is shared between production and comprehension. Arguments are presented in favor of a dynamic network view, in which the functionality of a region is co-determined by the network of regions in which it is embedded at particular moments in time. Finally, core regions of language processing need to interact with other networks (e.g. the attentional networks and the ToM network) to establish full functionality of language and communication. The consequences of this architecture for reading are discussed.
  • Hartung, F. (2017). Getting under your skin: The role of perspective and simulation of experience in narrative comprehension. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Hartung, F., Hagoort, P., & Willems, R. M. (2017). Readers select a comprehension mode independent of pronoun: Evidence from fMRI during narrative comprehension. Brain and Language, 170, 29-38. doi:10.1016/j.bandl.2017.03.007.

    Abstract

    Perspective is a crucial feature for communicating about events. Yet it is unclear how linguistically encoded perspective relates to cognitive perspective taking. Here, we tested the effect of perspective taking with short literary stories. Participants listened to stories with 1st or 3rd person pronouns referring to the protagonist, while undergoing fMRI. When comparing action events with 1st and 3rd person pronouns, we found no evidence for a neural dissociation depending on the pronoun. A split sample approach based on the self-reported experience of perspective taking revealed 3 comprehension preferences. One group showed a strong 1st person preference, another a strong 3rd person preference, while a third group engaged in 1st and 3rd person perspective taking simultaneously. Comparing brain activations of the groups revealed different neural networks. Our results suggest that comprehension is perspective dependent, but not on the perspective suggested by the text, but on the reader’s (situational) preference
  • Hartung, F., Withers, P., Hagoort, P., & Willems, R. M. (2017). When fiction is just as real as fact: No differences in reading behavior between stories believed to be based on true or fictional events. Frontiers in Psychology, 8: 1618. doi:10.3389/fpsyg.2017.01618.

    Abstract

    Experiments have shown that compared to fictional texts, readers read factual texts faster and have better memory for described situations. Reading fictional texts on the other hand seems to improve memory for exact wordings and expressions. Most of these studies used a ‘newspaper’ versus ‘literature’ comparison. In the present study, we investigated the effect of reader’s expectation to whether information is true or fictional with a subtler manipulation by labelling short stories as either based on true or fictional events. In addition, we tested whether narrative perspective or individual preference in perspective taking affects reading true or fictional stories differently. In an online experiment, participants (final N=1742) read one story which was introduced as based on true events or as fictional (factor fictionality). The story could be narrated in either 1st or 3rd person perspective (factor perspective). We measured immersion in and appreciation of the story, perspective taking, as well as memory for events. We found no evidence that knowing a story is fictional or based on true events influences reading behavior or experiential aspects of reading. We suggest that it is not whether a story is true or fictional, but rather expectations towards certain reading situations (e.g. reading newspaper or literature) which affect behavior by activating appropriate reading goals. Results further confirm that narrative perspective partially influences perspective taking and experiential aspects of reading
  • Heyselaar, E., Hagoort, P., & Segaert, K. (2017). How social opinion influences syntactic processing – An investigation using virtual reality. PLoS One, 12(4): e0174405. doi:10.1371/journal.pone.0174405.
  • Heyselaar, E. (2017). Influences on the magnitude of syntactic priming. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Heyselaar, E., Hagoort, P., & Segaert, K. (2017). In dialogue with an avatar, language behavior is identical to dialogue with a human partner. Behavior Research Methods, 49(1), 46-60. doi:10.3758/s13428-015-0688-7.

    Abstract

    The use of virtual reality (VR) as a methodological tool is becoming increasingly popular in behavioral research as its flexibility allows for a wide range of applications. This new method has not been as widely accepted in the field of psycholinguistics, however, possibly due to the assumption that language processing during human-computer interactions does not accurately reflect human-human interactions. Yet at the same time there is a growing need to study human-human language interactions in a tightly controlled context, which has not been possible using existing methods. VR, however, offers experimental control over parameters that cannot be (as finely) controlled in the real world. As such, in this study we aim to show that human-computer language interaction is comparable to human-human language interaction in virtual reality. In the current study we compare participants’ language behavior in a syntactic priming task with human versus computer partners: we used a human partner, a human-like avatar with human-like facial expressions and verbal behavior, and a computer-like avatar which had this humanness removed. As predicted, our study shows comparable priming effects between the human and human-like avatar suggesting that participants attributed human-like agency to the human-like avatar. Indeed, when interacting with the computer-like avatar, the priming effect was significantly decreased. This suggests that when interacting with a human-like avatar, sentence processing is comparable to interacting with a human partner. Our study therefore shows that VR is a valid platform for conducting language research and studying dialogue interactions in an ecologically valid manner.
  • Heyselaar, E., Segaert, K., Walvoort, S. J., Kessels, R. P., & Hagoort, P. (2017). The role of nondeclarative memory in the skill for language: Evidence from syntactic priming in patients with amnesia. Neuropsychologia, 101, 97-105. doi:10.1016/j.neuropsychologia.2017.04.033.

    Abstract

    Syntactic priming, the phenomenon in which participants adopt the linguistic behaviour of their partner, is widely used in psycholinguistics to investigate syntactic operations. Although the phenomenon of syntactic priming is well documented, the memory system that supports the retention of this syntactic information long enough to influence future utterances, is not as widely investigated. We aim to shed light on this issue by assessing patients with Korsakoff's amnesia on an active-passive syntactic priming task and compare their performance to controls matched in age, education, and premorbid intelligence. Patients with Korsakoff's syndrome display deficits in all subdomains of declarative memory, yet their nondeclarative memory remains intact, making them an ideal patient group to determine which memory system supports syntactic priming. In line with the hypothesis that syntactic priming relies on nondeclarative memory, the patient group shows strong priming tendencies (12.6% passive structure repetition). Our healthy control group did not show a priming tendency, presumably due to cognitive interference between declarative and nondeclarative memory. We discuss the results in relation to amnesia, aging, and compensatory mechanisms.
  • Hirschmann, J., Schoffelen, J.-M., Schnitzler, A., & Van Gerven, M. A. J. (2017). Parkinsonian rest tremor can be detected accurately based on neuronal oscillations recorded from the subthalamic nucleus. Clinical Neurophysiology, 128, 2029-2036. doi:10.1016/j.clinph.2017.07.419.

    Abstract

    Objective: To investigate the possibility of tremor detection based on deep brain activity. Methods: We re-analyzed recordings of local field potentials (LFPs) from the subthalamic nucleus in 10 PD patients (12 body sides) with spontaneously fluctuating rest tremor. Power in several frequency bands was estimated and used as input to Hidden Markov Models (HMMs) which classified short data segments as either tremor-free rest or rest tremor. HMMs were compared to direct threshold application to individual power features. Results: Applying a threshold directly to band-limited power was insufficient for tremor detection (mean area under the curve [AUC] of receiver operating characteristic: 0.64, STD: 0.19). Multi-feature HMMs, in contrast, allowed for accurate detection (mean AUC: 0.82, STD: 0.15), using four power features obtained from a single contact pair. Within-patient training yielded better accuracy than across-patient training (0.84 vs. 0.78, p = 0.03), yet tremor could often be detected accurately with either approach. High frequency oscillations (>200 Hz) were the best performing individual feature. Conclusions: LFP-based markers of tremor are robust enough to allow for accurate tremor detection in short data segments, provided that appropriate statistical models are used. Significance: LFP-based markers of tremor could be useful control signals for closed-loop deep brain stimulation.
  • Ito, A., Martin, A. E., & Nieuwland, M. S. (2017). Why the A/AN prediction effect may be hard to replicate: A rebuttal to DeLong, Urbach & Kutas (2017). Language, Cognition and Neuroscience, 32(8), 974-983. doi:10.1080/23273798.2017.1323112.
  • Kita, S., Alibali, M. W., & Chu, M. (2017). How Do Gestures Influence Thinking and Speaking? The Gesture-for-Conceptualization Hypothesis. Psychological Review, 124(3), 245-266. doi:10.1037/rev0000059.

    Abstract

    People spontaneously produce gestures during speaking and thinking. The authors focus here on gestures that depict or indicate information related to the contents of concurrent speech or thought (i.e., representational gestures). Previous research indicates that such gestures have not only communicative functions, but also self-oriented cognitive functions. In this article, the authors propose a new theoretical framework, the gesture-for-conceptualization hypothesis, which explains the self-oriented functions of representational gestures. According to this framework, representational gestures affect cognitive processes in 4 main ways: gestures activate, manipulate, package, and explore spatio-motoric information for speaking and thinking. These four functions are shaped by gesture's ability to schematize information, that is, to focus on a small subset of available information that is potentially relevant to the task at hand. The framework is based on the assumption that gestures are generated from the same system that generates practical actions, such as object manipulation; however, gestures are distinct from practical actions in that they represent information. The framework provides a novel, parsimonious, and comprehensive account of the self-oriented functions of gestures. The authors discuss how the framework accounts for gestures that depict abstract or metaphoric content, and they consider implications for the relations between self-oriented and communicative functions of gestures
  • Kösem, A., & Van Wassenhove, V. (2017). Distinct contributions of low and high frequency neural oscillations to speech comprehension. Language, Cognition and Neuroscience, 32(5), 536-544. doi:10.1080/23273798.2016.1238495.

    Abstract

    In the last decade, the involvement of neural oscillatory mechanisms in speech comprehension has been increasingly investigated. Current evidence suggests that low-frequency and high-frequency neural entrainment to the acoustic dynamics of speech are linked to its analysis. One crucial question is whether acoustical processing primarily modulates neural entrainment, or whether entrainment instead reflects linguistic processing. Here, we review studies investigating the effect of linguistic manipulations on neural oscillatory activity. In light of the current findings, we argue that theta (3–8 Hz) entrainment may primarily reflect the analysis of the acoustic features of speech. In contrast, recent evidence suggests that delta (1–3 Hz) and high-frequency activity (>40 Hz) are reliable indicators of perceived linguistic representations. The interdependence between low-frequency and high-frequency neural oscillations, as well as their causal role on speech comprehension, is further discussed with regard to neurophysiological models of speech processing
  • Kunert, R., & Jongman, S. R. (2017). Entrainment to an auditory signal: Is attention involved? Journal of Experimental Psychology: General, 146(1), 77-88. doi:10.1037/xge0000246.

    Abstract

    Many natural auditory signals, including music and language, change periodically. The effect of such auditory rhythms on the brain is unclear however. One widely held view, dynamic attending theory, proposes that the attentional system entrains to the rhythm and increases attention at moments of rhythmic salience. In support, 2 experiments reported here show reduced response times to visual letter strings shown at auditory rhythm peaks, compared with rhythm troughs. However, we argue that an account invoking the entrainment of general attention should further predict rhythm entrainment to also influence memory for visual stimuli. In 2 pseudoword memory experiments we find evidence against this prediction. Whether a pseudoword is shown during an auditory rhythm peak or not is irrelevant for its later recognition memory in silence. Other attention manipulations, dividing attention and focusing attention, did result in a memory effect. This raises doubts about the suggested attentional nature of rhythm entrainment. We interpret our findings as support for auditory rhythm perception being based on auditory-motor entrainment, not general attention entrainment.
  • Kunert, R. (2017). Music and language comprehension in the brain. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Lam, N. H. L. (2017). Comprehending comprehension: Insights from neuronal oscillations on the neuronal basis of language. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Lam, K. J. Y., Bastiaansen, M. C. M., Dijkstra, T., & Rueschemeyer, S. A. (2017). Making sense: motor activation and action plausibility during sentence processing. Language, Cognition and Neuroscience, 32(5), 590-600. doi:10.1080/23273798.2016.1164323.

    Abstract

    The current electroencephalography study investigated the relationship between the motor and (language) comprehension systems by simultaneously measuring mu and N400 effects. Specifically, we examined whether the pattern of motor activation elicited by verbs depends on the larger sentential context. A robust N400 congruence effect confirmed the contextual manipulation of action plausibility, a form of semantic congruency. Importantly, this study showed that: (1) Action verbs elicited more mu power decrease than non-action verbs when sentences described plausible actions. Action verbs thus elicited more motor activation than non-action verbs. (2) In contrast, when sentences described implausible actions, mu activity was present but the difference between the verb types was not observed. The increased processing associated with a larger N400 thus coincided with mu activity in sentences describing implausible actions. Altogether, context-dependent motor activation appears to play a functional role in deriving context-sensitive meaning
  • Lewis, A. G., Schoffelen, J.-M., Hoffmann, C., Bastiaansen, M. C. M., & Schriefers, H. (2017). Discourse-level semantic coherence influences beta oscillatory dynamics and the N400 during sentence comprehension. Language, Cognition and Neuroscience, 32(5), 601-617. doi:10.1080/23273798.2016.1211300.

    Abstract

    In this study, we used electroencephalography to investigate the influence of discourse-level semantic coherence on electrophysiological signatures of local sentence-level processing. Participants read groups of four sentences that could either form coherent stories or were semantically unrelated. For semantically coherent discourses compared to incoherent ones, the N400 was smaller at sentences 2–4, while the visual N1 was larger at the third and fourth sentences. Oscillatory activity in the beta frequency range (13–21 Hz) was higher for coherent discourses. We relate the N400 effect to a disruption of local sentence-level semantic processing when sentences are unrelated. Our beta findings can be tentatively related to disruption of local sentence-level syntactic processing, but it cannot be fully ruled out that they are instead (or also) related to disrupted local sentence-level semantic processing. We conclude that manipulating discourse-level semantic coherence does have an effect on oscillatory power related to local sentence-level processing.
  • Lewis, A. G. (2017). Explorations of beta-band neural oscillations during language comprehension: Sentence processing and beyond. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Lockwood, G. (2017). Talking sense: The behavioural and neural correlates of sound symbolism. PhD Thesis, Radboud University, Nijmegen.
  • Lopopolo, A., Frank, S. L., Van den Bosch, A., & Willems, R. M. (2017). Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain. PLoS One, 12(5): e0177794. doi:10.1371/journal.pone.0177794.

    Abstract

    Language comprehension involves the simultaneous processing of information at the phonological, syntactic, and lexical level. We track these three distinct streams of information in the brain by using stochastic measures derived from computational language models to detect neural correlates of phoneme, part-of-speech, and word processing in an fMRI experiment. Probabilistic language models have proven to be useful tools for studying how language is processed as a sequence of symbols unfolding in time. Conditional probabilities between sequences of words are at the basis of probabilistic measures such as surprisal and perplexity which have been successfully used as predictors of several behavioural and neural correlates of sentence processing. Here we computed perplexity from sequences of words and their parts of speech, and their phonemic transcriptions. Brain activity time-locked to each word is regressed on the three model-derived measures. We observe that the brain keeps track of the statistical structure of lexical, syntactic and phonological information in distinct areas.

    Additional information

    Data availability
  • Martin, A. E., Huettig, F., & Nieuwland, M. S. (2017). Can structural priming answer the important questions about language? A commentary on Branigan and Pickering "An experimental approach to linguistic representation". Behavioral and Brain Sciences, 40: e304. doi:10.1017/S0140525X17000528.

    Abstract

    While structural priming makes a valuable contribution to psycholinguistics, it does not allow direct observation of representation, nor escape “source ambiguity.” Structural priming taps into implicit memory representations and processes that may differ from what is used online. We question whether implicit memory for language can and should be equated with linguistic representation or with language processing.
  • Nieuwland, M. S., & Martin, A. E. (2017). Neural oscillations and a nascent corticohippocampal theory of reference. Journal of Cognitive Neuroscience, 29(5), 896-910. doi:10.1162/jocn_a_01091.

    Abstract

    The ability to use words to refer to the world is vital to the communicative power of human language. In particular, the anaphoric use of words to refer to previously mentioned concepts (antecedents) allows dialogue to be coherent and meaningful. Psycholinguistic theory posits that anaphor comprehension involves reactivating a memory representation of the antecedent. Whereas this implies the involvement of recognition memory, or the mnemonic sub-routines by which people distinguish old from new, the neural processes for reference resolution are largely unknown. Here, we report time-frequency analysis of four EEG experiments to reveal the increased coupling of functional neural systems associated with referentially coherent expressions compared to referentially problematic expressions. Despite varying in modality, language, and type of referential expression, all experiments showed larger gamma-band power for referentially coherent expressions compared to referentially problematic expressions. Beamformer analysis in high-density Experiment 4 localised the gamma-band increase to posterior parietal cortex around 400-600 ms after anaphor-onset and to frontaltemporal cortex around 500-1000 ms. We argue that the observed gamma-band power increases reflect successful referential binding and resolution, which links incoming information to antecedents through an interaction between the brain’s recognition memory networks and frontal-temporal language network. We integrate these findings with previous results from patient and neuroimaging studies, and we outline a nascent cortico-hippocampal theory of reference.
  • Peeters, D., Snijders, T. M., Hagoort, P., & Ozyurek, A. (2017). Linking language to the visual world: Neural correlates of comprehending verbal reference to objects through pointing and visual cues. Neuropsychologia, 95, 21-29. doi:10.1016/j.neuropsychologia.2016.12.004.

    Abstract

    In everyday communication speakers often refer in speech and/or gesture to objects in their immediate environment, thereby shifting their addressee's attention to an intended referent. The neurobiological infrastructure involved in the comprehension of such basic multimodal communicative acts remains unclear. In an event-related fMRI study, we presented participants with pictures of a speaker and two objects while they concurrently listened to her speech. In each picture, one of the objects was singled out, either through the speaker's index-finger pointing gesture or through a visual cue that made the object perceptually more salient in the absence of gesture. A mismatch (compared to a match) between speech and the object singled out by the speaker's pointing gesture led to enhanced activation in left IFG and bilateral pMTG, showing the importance of these areas in conceptual matching between speech and referent. Moreover, a match (compared to a mismatch) between speech and the object made salient through a visual cue led to enhanced activation in the mentalizing system, arguably reflecting an attempt to converge on a jointly attended referent in the absence of pointing. These findings shed new light on the neurobiological underpinnings of the core communicative process of comprehending a speaker's multimodal referential act and stress the power of pointing as an important natural device to link speech to objects.
  • Rommers, J., Dickson, D. S., Norton, J. J. S., Wlotko, E. W., & Federmeier, K. D. (2017). Alpha and theta band dynamics related to sentential constraint and word expectancy. Language, Cognition and Neuroscience, 32(5), 576-589. doi:10.1080/23273798.2016.1183799.

    Abstract

    Despite strong evidence for prediction during language comprehension, the underlying mechanisms, and the extent to which they are specific to language, remain unclear. Re-analysing an event-related potentials study, we examined responses in the time-frequency domain to expected and unexpected (but plausible) words in strongly and weakly constraining sentences, and found results similar to those reported in nonverbal domains. Relative to expected words, unexpected words elicited an increase in the theta band (4–7 Hz) in strongly constraining contexts, suggesting the involvement of control processes to deal with the consequences of having a prediction disconfirmed. Prior to critical word onset, strongly constraining sentences exhibited a decrease in the alpha band (8–12 Hz) relative to weakly constraining sentences, suggesting that comprehenders can take advantage of predictive sentence contexts to prepare for the input. The results suggest that the brain recruits domain-general preparation and control mechanisms when making and assessing predictions during sentence comprehension
  • Rommers, J., Meyer, A. S., & Praamstra, P. (2017). Lateralized electrical brain activity reveals covert attention allocation during speaking. Neuropsychologia, 95, 101-110. doi:10.1016/j.neuropsychologia.2016.12.013.

    Abstract

    Speakers usually begin to speak while only part of the utterance has been planned. Earlier work has shown that speech planning processes are reflected in speakers’ eye movements as they describe visually presented objects. However, to-be-named objects can be processed to some extent before they have been fixated upon, presumably because attention can be allocated to objects covertly, without moving the eyes. The present study investigated whether EEG could track speakers’ covert attention allocation as they produced short utterances to describe pairs of objects (e.g., “dog and chair”). The processing difficulty of each object was varied by presenting it in upright orientation (easy) or in upside down orientation (difficult). Background squares flickered at different frequencies in order to elicit steady-state visual evoked potentials (SSVEPs). The N2pc component, associated with the focusing of attention on an item, was detectable not only prior to speech onset, but also during speaking. The time course of the N2pc showed that attention shifted to each object in the order of mention prior to speech onset. Furthermore, greater processing difficulty increased the time speakers spent attending to each object. This demonstrates that the N2pc can track covert attention allocation in a naming task. In addition, an effect of processing difficulty at around 200–350 ms after stimulus onset revealed early attention allocation to the second to-be-named object. The flickering backgrounds elicited SSVEPs, but SSVEP amplitude was not influenced by processing difficulty. These results help complete the picture of the coordination of visual information uptake and motor output during speaking.
  • Schoffelen, J.-M., Hulten, A., Lam, N. H. L., Marquand, A. F., Udden, J., & Hagoort, P. (2017). Frequency-specific directed interactions in the human brain network for language. Proceedings of the National Academy of Sciences of the United States of America, 114(30), 8083-8088. doi:10.1073/pnas.1703155114.

    Abstract

    The brain’s remarkable capacity for language requires bidirectional interactions between functionally specialized brain regions. We used magnetoencephalography to investigate interregional interactions in the brain network for language while 102 participants were reading sentences. Using Granger causality analysis, we identified inferior frontal cortex and anterior temporal regions to receive widespread input and middle temporal regions to send widespread output. This fits well with the notion that these regions play a central role in language processing. Characterization of the functional topology of this network, using data-driven matrix factorization, which allowed for partitioning into a set of subnetworks, revealed directed connections at distinct frequencies of interaction. Connections originating from temporal regions peaked at alpha frequency, whereas connections originating from frontal and parietal regions peaked at beta frequency. These findings indicate that the information flow between language-relevant brain areas, which is required for linguistic processing, may depend on the contributions of distinct brain rhythms

    Additional information

    pnas.201703155SI.pdf
  • Schoot, L. (2017). Language processing in a conversation context. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Shitova, N., Roelofs, A., Schriefers, H., Bastiaansen, M., & Schoffelen, J.-M. (2017). Control adjustments in speaking: Electrophysiology of the Gratton effect in picture naming. Cortex, 92, 289-303. doi:10.1016/j.cortex.2017.04.017.

    Abstract

    Accumulating evidence suggests that spoken word production requires different amounts of top-down control depending on the prevailing circumstances. For example, during Stroop-like tasks, the interference in response time (RT) is typically larger following congruent trials than following incongruent trials. This effect is called the Gratton effect, and has been taken to reflect top-down control adjustments based on the previous trial type. Such control adjustments have been studied extensively in Stroop and Eriksen flanker tasks (mostly using manual responses), but not in the picture-word interference (PWI) task, which is a workhorse of language production research. In one of the few studies of the Gratton effect in PWI, Van Maanen and Van Rijn (2010) examined the effect in picture naming RTs during dual-task performance. Based on PWI effect differences between dual-task conditions, they argued that the functional locus of the PWI effect differs between post-congruent trials (i.e., locus in perceptual and conceptual encoding) and post-incongruent trials (i.e., locus in word planning). However, the dual-task procedure may have contaminated the results. We therefore performed an EEG study on the Gratton effect in a regular PWI task. We observed a PWI effect in the RTs, in the N400 component of the event-related brain potentials, and in the midfrontal theta power, regardless of the previous trial type. Moreover, the RTs, N400, and theta power reflected the Gratton effect. These results provide evidence that the PWI effect arises at the word planning stage following both congruent and incongruent trials, while the amount of top-down control changes depending on the previous trial type.
  • Silva, S., Inácio, F., Folia, V., & Petersson, K. M. (2017). Eye movements in implicit artificial grammar learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(9), 1387-1402. doi:10.1037/xlm0000350.

    Abstract

    Artificial grammar learning (AGL) has been probed with forced-choice behavioral tests (active tests). Recent attempts to probe the outcomes of learning (implicitly acquired knowledge) with eye-movement responses (passive tests) have shown null results. However, these latter studies have not tested for sensitivity effects, for example, increased eye movements on a printed violation. In this study, we tested for sensitivity effects in AGL tests with (Experiment 1) and without (Experiment 2) concurrent active tests (preference- and grammaticality classification) in an eye-tracking experiment. Eye movements discriminated between sequence types in passive tests and more so in active tests. The eye-movement profile did not differ between preference and grammaticality classification, and it resembled sensitivity effects commonly observed in natural syntax processing. Our findings show that the outcomes of implicit structured sequence learning can be characterized in eye tracking. More specifically, whole trial measures (dwell time, number of fixations) showed robust AGL effects, whereas first-pass measures (first-fixation duration) did not. Furthermore, our findings strengthen the link between artificial and natural syntax processing, and they shed light on the factors that determine performance differences in preference and grammaticality classification tests
  • Silva, S., Petersson, K. M., & Castro, S. L. (2017). The effects of ordinal load on incidental temporal learning. Quarterly Journal of Experimental Psychology, 70(4), 664-674. doi:10.1080/17470218.2016.1146909.

    Abstract

    How can we grasp the temporal structure of events? A few studies have indicated that representations of temporal structure are acquired when there is an intention to learn, but not when learning is incidental. Response-to-stimulus intervals, uncorrelated temporal structures, unpredictable ordinal information, and lack of metrical organization have been pointed out as key obstacles to incidental temporal learning, but the literature includes piecemeal demonstrations of learning under all these circumstances. We suggest that the unacknowledged effects of ordinal load may help reconcile these conflicting findings, ordinal load referring to the cost of identifying the sequence of events (e.g., tones, locations) where a temporal pattern is embedded. In a first experiment, we manipulated ordinal load into simple and complex levels. Participants learned ordinal-simple sequences, despite their uncorrelated temporal structure and lack of metrical organization. They did not learn ordinal-complex sequences, even though there were no response-to-stimulus intervals nor unpredictable ordinal information. In a second experiment, we probed learning of ordinal-complex sequences with strong metrical organization, and again there was no learning. We conclude that ordinal load is a key obstacle to incidental temporal learning. Further analyses showed that the effect of ordinal load is to mask the expression of temporal knowledge, rather than to prevent learning.
  • Silva, S., Folia, V., Hagoort, P., & Petersson, K. M. (2017). The P600 in Implicit Artificial Grammar Learning. Cognitive Science, 41(1), 137-157. doi:10.1111/cogs.12343.

    Abstract

    The suitability of the Artificial Grammar Learning (AGL) paradigm to capture relevant aspects of the acquisition of linguistic structures has been empirically tested in a number of EEG studies. Some have shown a syntax-related P600 component, but it has not been ruled out that the AGL P600 effect is a response to surface features (e.g., subsequence familiarity) rather than the underlying syntax structure. Therefore, in this study, we controlled for the surface characteristics of the test sequences (associative chunk strength) and recorded the EEG before (baseline preference classification) and after (preference and grammaticality classification) exposure to a grammar. A typical, centroparietal P600 effect was elicited by grammatical violations after exposure, suggesting that the AGL P600 effect signals a response to structural irregularities. Moreover, preference and grammaticality classification showed a qualitatively similar ERP profile, strengthening the idea that the implicit structural mere exposure paradigm in combination with preference classification is a suitable alternative to the traditional grammaticality classification test.
  • Simon, E., & Sjerps, M. J. (2017). Phonological category quality in the mental lexicon of child and adult learners. International Journal of Bilingualism, 21(4), 474-499. doi:10.1177/1367006915626589.

    Abstract

    Aims and objectives: The aim was to identify which criteria children use to decide on the category membership of native and non-native vowels, and to get insight into the organization of phonological representations in the bilingual mind. Methodology: The study consisted of two cross-language mispronunciation detection tasks in which L2 vowels were inserted into L1 words and vice versa. In Experiment 1, 10- to 12-year-old Dutch-speaking children were presented with Dutch words which were either pronounced with the target Dutch vowel or with an English vowel inserted in the Dutch consonantal frame. Experiment 2 was a mirror of the first, with English words which were pronounced “correctly” or which were “mispronounced” with a Dutch vowel. Data and analysis: Analyses focused on extent to which child and adult listeners accepted substitutions of Dutch vowels by English ones, and vice versa. Findings: The results of Experiment 1 revealed that between the age of ten and twelve children have well-established phonological vowel categories in their native language. However, Experiment 2 showed that in their non-native language, children tended to accept mispronounced items which involve sounds from their native language. At the same time, though, they did not fully rely on their native phonemic inventory because the children accepted most of the correctly pronounced English items. Originality: While many studies have examined native and non-native perception by infants and adults, studies on first and second language perception of school-age children are rare. This study adds to the body of literature aimed at expanding our knowledge in this area. Implications: The study has implications for models of the organization of the bilingual mind: while proficient adult non-native listeners generally have clearly separated sets of phonological representations for their two languages, for non-proficient child learners the L1 phonology still exerts a strong influence on the L2 phonology.
  • Soutschek, A., Burke, C. J., Beharelle, A. R., Schreiber, R., Weber, S. C., Karipidis, I. I., Ten Velden, J., Weber, B., Haker, H., Kalenscher, T., & Tobler, P. N. (2017). The dopaminergic reward system underpins gender differences in social preferences. Nature Human Behaviour, 1, 819-827. doi:10.1038/s41562-017-0226-y.

    Abstract

    Women are known to have stronger prosocial preferences than men, but it remains an open question as to how these behavioural differences arise from differences in brain functioning. Here, we provide a neurobiological account for the hypothesized gender difference. In a pharmacological study and an independent neuroimaging study, we tested the hypothesis that the neural reward system encodes the value of sharing money with others more strongly in women than in men. In the pharmacological study, we reduced receptor type-specific actions of dopamine, a neurotransmitter related to reward processing, which resulted in more selfish decisions in women and more prosocial decisions in men. Converging findings from an independent neuroimaging study revealed gender-related activity in neural reward circuits during prosocial decisions. Thus, the neural reward system appears to be more sensitive to prosocial rewards in women than in men, providing a neurobiological account for why women often behave more prosocially than men. A large body of evidence suggests that women are often more prosocial (for example, generous, altruistic and inequality averse) than men, at least when other factors such as reputation and strategic considerations are excluded1,2,3. This dissociation could result from cultural expectations and gender stereotypes, because in Western societies women are more strongly expected to be prosocial4,5,6 and sensitive to variations in social context than men1. It remains an open question, however, whether and how on a neurobiological level the social preferences of women and men arise from differences in brain functioning. The assumption of gender differences in social preferences predicts that the neural reward system’s sensitivity to prosocial and selfish rewards should differ between women and men. Specifically, the hypothesis would be that the neural reward system is more sensitive to prosocial than selfish rewards in women and more sensitive to selfish than prosocial rewards in men. The goal of the current study was to test in two independent experiments for the hypothesized gender differences on both a pharmacological and a haemodynamic level. In particular, we examined the functions of the neurotransmitter dopamine using a dopamine receptor antagonist, and the role of the striatum (a brain region strongly innervated by dopamine neurons) during social decision-making in women and men using neuroimaging. The neurotransmitter dopamine is thought to play a key role in neural reward processing7,8. Recent evidence suggests that dopaminergic activity is sensitive not only to rewards for oneself but to rewards for others as well9. The assumption that dopamine is sensitive to both self- and other-related outcomes is consistent with the finding that the striatum shows activation for both selfish and shared rewards10,11,12,13,14,15. The dopaminergic response may represent a net signal encoding the difference between the value of preferred and unpreferred rewards8. Regarding the hypothesized gender differences in social preferences, this account makes the following predictions. If women prefer shared (prosocial) outcomes2, women’s dopaminergic signals to shared rewards will be stronger than to non-shared (selfish) rewards, so reducing dopaminergic activity should bias women to make more selfish decisions. In line with this hypothesis, a functional imaging study reported enhanced striatal activation in female participants during charitable donations11. In contrast, if men prefer selfish over prosocial rewards, dopaminergic activity should be enhanced to selfish compared to prosocial rewards. In line with this view, upregulating dopaminergic activity in a sample of exclusively male participants increased selfish behaviour in a bargaining game16. Thus, contrary to the hypothesized effect in women, reducing dopaminergic neurotransmission should render men more prosocial. Taken together, the current study tested the following three predictions: we expected the dopaminergic reward system (1) to be more sensitive to prosocial than selfish rewards in women and (2) to be more sensitive to selfish than prosocial rewards in men. As a consequence of these two predictions, we also predicted (3) dopaminoceptive regions such as the striatum to show stronger activation to prosocial relative to selfish rewards in women than in men. To test these predictions, we conducted a pharmacological study in which we reduced dopaminergic neurotransmission with amisulpride. Amisulpride is a dopamine antagonist that is highly specific for dopaminergic D2/D3 receptors17. After receiving amisulpride or placebo, participants performed an interpersonal decision task18,19,20, in which they made choices between a monetary reward only for themselves (selfish reward option) and sharing money with others (prosocial reward option). We expected that blocking dopaminergic neurotransmission with amisulpride, relative to placebo, would result in fewer prosocial choices in women and more prosocial choices in men. To investigate whether potential gender-related effects of dopamine are selective for social decision-making, we also tested the effects of amisulpride on time preferences in a non-social control task that was matched to the interpersonal decision task in terms of choice structure. In addition, because dopaminergic neurotransmission plays a crucial role in brain regions involved in value processing, such as the striatum21, a gender-related role of dopaminergic activity for social decision-making should also be reflected by dissociable activity patterns in the striatum. Therefore, to further test our hypothesis, we investigated the neural correlates of social decision-making in a functional imaging study. In line with our predictions for the pharmacological study, we expected to find stronger striatum activity during prosocial relative to selfish decisions in women, whereas men should show enhanced activity in the striatum for selfish relative to prosocial choices.

    Additional information

    Supplementary Information
  • Ye, Z., Stolk, A., Toni, I., & Hagoort, P. (2017). Oxytocin modulates semantic integration in speech comprehension. Journal of Cognitive Neuroscience, 29, 267-276. doi:10.1162/jocn_a_01044.

    Abstract

    Listeners interpret utterances by integrating information from multiple sources including word level semantics and world knowledge. When the semantics of an expression is inconsistent with his or her knowledge about the world, the listener may have to search through the conceptual space for alternative possible world scenarios that can make the expression more acceptable. Such cognitive exploration requires considerable computational resources and might depend on motivational factors. This study explores whether and how oxytocin, a neuropeptide known to influence socialmotivation by reducing social anxiety and enhancing affiliative tendencies, can modulate the integration of world knowledge and sentence meanings. The study used a betweenparticipant double-blind randomized placebo-controlled design. Semantic integration, indexed with magnetoencephalography through the N400m marker, was quantified while 45 healthymale participants listened to sentences that were either congruent or incongruent with facts of the world, after receiving intranasally delivered oxytocin or placebo. Compared with congruent sentences, world knowledge incongruent sentences elicited a stronger N400m signal from the left inferior frontal and anterior temporal regions and medial pFC (the N400m effect) in the placebo group. Oxytocin administration significantly attenuated the N400meffect at both sensor and cortical source levels throughout the experiment, in a state-like manner. Additional electrophysiological markers suggest that the absence of the N400m effect in the oxytocin group is unlikely due to the lack of early sensory or semantic processing or a general downregulation of attention. These findings suggest that oxytocin drives listeners to resolve challenges of semantic integration, possibly by promoting the cognitive exploration of alternative possible world scenarios.
  • Takashima, A., Bakker, I., Van Hell, J. G., Janzen, G., & McQueen, J. M. (2017). Interaction between episodic and semantic memory networks in the acquisition and consolidation of novel spoken words. Brain and Language, 167, 44-60. doi:10.1016/j.bandl.2016.05.009.

    Abstract

    When a novel word is learned, its memory representation is thought to undergo a process of consolidation and integration. In this study, we tested whether the neural representations of novel words change as a function of consolidation by observing brain activation patterns just after learning and again after a delay of one week. Words learned with meanings were remembered better than those learned without meanings. Both episodic (hippocampus-dependent) and semantic (dependent on distributed neocortical areas) memory systems were utilised during recognition of the novel words. The extent to which the two systems were involved changed as a function of time and the amount of associated information, with more involvement of both systems for the meaningful words than for the form-only words after the one-week delay. These results suggest that the reason the meaningful words were remembered better is that their retrieval can benefit more from these two complementary memory systems
  • Tan, Y., Martin, R. C., & Van Dyke, J. A. (2017). Semantic and syntactic interference in sentence comprehension: A comparison of working memory models. Frontiers in Psychology, 8: 198. doi:10.3389/fpsyg.2017.00198.

    Abstract

    This study investigated the nature of the underlying working memory system supporting sentence processing through examining individual differences in sensitivity to retrieval interference effects during sentence comprehension. Interference effects occur when readers incorrectly retrieve sentence constituents which are similar to those required during integrative processes. We examined interference arising from a partial match between distracting constituents and syntactic and semantic cues, and related these interference effects to performance on working memory, short-term memory (STM), vocabulary, and executive function tasks. For online sentence comprehension, as measured by self-paced reading, the magnitude of individuals' syntactic interference effects was predicted by general WM capacity and the relation remained significant when partialling out vocabulary, indicating that the effects were not due to verbal knowledge. For offline sentence comprehension, as measured by responses to comprehension questions, both general WM capacity and vocabulary knowledge interacted with semantic interference for comprehension accuracy, suggesting that both general WM capacity and the quality of semantic representations played a role in determining how well interference was resolved offline. For comprehension question reaction times, a measure of semantic STM capacity interacted with semantic but not syntactic interference. However, a measure of phonological capacity (digit span) and a general measure of resistance to response interference (Stroop effect) did not predict individuals' interference resolution abilities in either online or offline sentence comprehension. The results are discussed in relation to the multiple capacities account of working memory (e.g., Martin and Romani, 1994; Martin and He, 2004), and the cue-based retrieval parsing approach (e.g., Lewis et al., 2006; Van Dyke et al., 2014). While neither approach was fully supported, a possible means of reconciling the two approaches and directions for future research are proposed.
  • Tsuji, S., Fikkert, P., Minagawa, Y., Dupoux, E., Filippin, L., Versteegh, M., Hagoort, P., & Cristia, A. (2017). The more, the better? Behavioral and neural correlates of frequent and infrequent vowel exposure. Developmental Psychobiology, 59, 603-612. doi:10.1002/dev.21534.

    Abstract

    A central assumption in the perceptual attunement literature holds that exposure to a speech sound contrast leads to improvement in native speech sound processing. However, whether the amount of exposure matters for this process has not been put to a direct test. We elucidated indicators of frequency-dependent perceptual attunement by comparing 5–8-month-old Dutch infants’ discrimination of tokens containing a highly frequent [hɪt-he:t] and a highly infrequent [hʏt-hø:t] native vowel contrast as well as a non-native [hɛt-hæt] vowel contrast in a behavioral visual habituation paradigm (Experiment 1). Infants discriminated both native contrasts similarly well, but did not discriminate the non-native contrast. We sought further evidence for subtle differences in the processing of the two native contrasts using near-infrared spectroscopy and a within-participant design (Experiment 2). The neuroimaging data did not provide additional evidence that responses to native contrasts are modulated by frequency of exposure. These results suggest that even large differences in exposure to a native contrast may not directly translate to behavioral and neural indicators of perceptual attunement, raising the possibility that frequency of exposure does not influence improvements in discriminating native contrasts.

    Additional information

    dev21534-sup-0001-SuppInfo-S1.docx
  • Udden, J., Snijders, T. M., Fisher, S. E., & Hagoort, P. (2017). A common variant of the CNTNAP2 gene is associated with structural variation in the left superior occipital gyrus. Brain and Language, 172, 16-21. doi:10.1016/j.bandl.2016.02.003.

    Abstract

    The CNTNAP2 gene encodes a cell-adhesion molecule that influences the properties of neural networks and the morphology and density of neurons and glial cells. Previous studies have shown association of CNTNAP2 variants with language-related phenotypes in health and disease. Here, we report associations of a common CNTNAP2 polymorphism (rs7794745) with variation in grey matter in a region in the dorsal visual stream. We tried to replicate an earlier study on 314 subjects by Tan and colleagues (2010), but now in a substantially larger group of more than 1700 subjects. Carriers of the T allele showed reduced grey matter volume in left superior occipital gyrus, while we did not replicate associations with grey matter volume in other regions identified by Tan et al (2010). Our work illustrates the importance of independent replication in neuroimaging genetic studies of language-related candidate genes.

Share this page