Publications

Displaying 1 - 100 of 128
  • Acheson, D. J., & Hagoort, P. (2014). Twisting tongues to test for conflict monitoring in speech production. Frontiers in Human Neuroscience, 8: 206. doi:10.3389/fnhum.2014.00206.

    Abstract

    A number of recent studies have hypothesized that monitoring in speech production may occur via domain-general mechanisms responsible for the detection of response conflict. Outside of language, two ERP components have consistently been elicited in conflict-inducing tasks (e.g., the flanker task): the stimulus-locked N2 on correct trials, and the response-locked error-related negativity (ERN). The present investigation used these electrophysiological markers to test whether a common response conflict monitor is responsible for monitoring in speech and non-speech tasks. Electroencephalography (EEG) was recorded while participants performed a tongue twister (TT) task and a manual version of the flanker task. In the TT task, people rapidly read sequences of four nonwords arranged in TT and non-TT patterns three times. In the flanker task, people responded with a left/right button press to a center-facing arrow, and conflict was manipulated by the congruency of the flanking arrows. Behavioral results showed typical effects of both tasks, with increased error rates and slower speech onset times for TT relative to non-TT trials and for incongruent relative to congruent flanker trials. In the flanker task, stimulus-locked EEG analyses replicated previous results, with a larger N2 for incongruent relative to congruent trials, and a response-locked ERN. In the TT task, stimulus-locked analyses revealed broad, frontally-distributed differences beginning around 50 ms and lasting until just before speech initiation, with TT trials more negative than non-TT trials; response-locked analyses revealed an ERN. Correlation across these measures showed some correlations within a task, but little evidence of systematic cross-task correlation. Although the present results do not speak against conflict signals from the production system serving as cues to self-monitoring, they are not consistent with signatures of response conflict being mediated by a single, domain-general conflict monitor
  • Araújo, S., Faísca, L., Bramão, I., Petersson, K. M., & Reis, A. (2014). Lexical and phonological processes in dyslexic readers: Evidences from a visual lexical decision task. Dyslexia, 20, 38-53. doi:10.1002/dys.1461.

    Abstract

    The aim of the present study was to investigate whether reading failure in the context of an orthography of intermediate consistency is linked to inefficient use of the lexical orthographic reading procedure. The performance of typically developing and dyslexic Portuguese-speaking children was examined in a lexical decision task, where the stimulus lexicality, word frequency and length were manipulated. Both lexicality and length effects were larger in the dyslexic group than in controls, although the interaction between group and frequency disappeared when the data were transformed to control for general performance factors. Children with dyslexia were influenced in lexical decision making by the stimulus length of words and pseudowords, whereas age-matched controls were influenced by the length of pseudowords only. These findings suggest that non-impaired readers rely mainly on lexical orthographic information, but children with dyslexia preferentially use the phonological decoding procedure—albeit poorly—most likely because they struggle to process orthographic inputs as a whole such as controls do. Accordingly, dyslexic children showed significantly poorer performance than controls for all types of stimuli, including words that could be considered over-learned, such as high-frequency words. This suggests that their orthographic lexical entries are less established in the orthographic lexicon
  • Basnakova, J., Weber, K., Petersson, K. M., Van Berkum, J. J. A., & Hagoort, P. (2014). Beyond the language given: The neural correlates of inferring speaker meaning. Cerebral Cortex, 24(10), 2572-2578. doi:10.1093/cercor/bht112.

    Abstract

    Even though language allows us to say exactly what we mean, we often use language to say things indirectly, in a way that depends on the specific communicative context. For example, we can use an apparently straightforward sentence like "It is hard to give a good presentation" to convey deeper meanings, like "Your talk was a mess!" One of the big puzzles in language science is how listeners work out what speakers really mean, which is a skill absolutely central to communication. However, most neuroimaging studies of language comprehension have focused on the arguably much simpler, context-independent process of understanding direct utterances. To examine the neural systems involved in getting at contextually constrained indirect meaning, we used functional magnetic resonance imaging as people listened to indirect replies in spoken dialog. Relative to direct control utterances, indirect replies engaged dorsomedial prefrontal cortex, right temporo-parietal junction and insula, as well as bilateral inferior frontal gyrus and right medial temporal gyrus. This suggests that listeners take the speaker's perspective on both cognitive (theory of mind) and affective (empathy-like) levels. In line with classic pragmatic theories, our results also indicate that currently popular "simulationist" accounts of language comprehension fail to explain how listeners understand the speaker's intended message.
  • Cai, D., Fonteijn, H. M., Guadalupe, T., Zwiers, M., Wittfeld, K., Teumer, A., Hoogman, M., Arias Vásquez, A., Yang, Y., Buitelaar, J., Fernández, G., Brunner, H. G., Van Bokhoven, H., Franke, B., Hegenscheid, K., Homuth, G., Fisher, S. E., Grabe, H. J., Francks, C., & Hagoort, P. (2014). A genome wide search for quantitative trait loci affecting the cortical surface area and thickness of Heschl's gyrus. Genes, Brain and Behavior, 13, 675-685. doi:10.1111/gbb.12157.

    Abstract

    Heschl's gyrus (HG) is a core region of the auditory cortex whose morphology is highly variable across individuals. This variability has been linked to sound perception ability in both speech and music domains. Previous studies show that variations in morphological features of HG, such as cortical surface area and thickness, are heritable. To identify genetic variants that affect HG morphology, we conducted a genome-wide association scan (GWAS) meta-analysis in 3054 healthy individuals using HG surface area and thickness as quantitative traits. None of the single nucleotide polymorphisms (SNPs) showed association P values that would survive correction for multiple testing over the genome. The most significant association was found between right HG area and SNP rs72932726 close to gene DCBLD2 (3q12.1; P=2.77x10(-7)). This SNP was also associated with other regions involved in speech processing. The SNP rs333332 within gene KALRN (3q21.2; P=2.27x10(-6)) and rs143000161 near gene COBLL1 (2q24.3; P=2.40x10(-6)) were associated with the area and thickness of left HG, respectively. Both genes are involved in the development of the nervous system. The SNP rs7062395 close to the X-linked deafness gene POU3F4 was associated with right HG thickness (Xq21.1; P=2.38x10(-6)). This is the first molecular genetic analysis of variability in HG morphology
  • Capilla, A., Schoffelen, J.-M., Paterson, G., Thut, G., & Gross, J. (2014). Dissociated α-band modulations in the dorsal and ventral visual pathways in visuospatial attention and perception. Cerebral Cortex., 24(2), 550-561. doi:10.1093/cercor/bhs343.

    Abstract

    Modulations of occipito-parietal α-band (8–14 Hz) power that are opposite in direction (α-enhancement vs. α-suppression) and origin of generation (ipsilateral vs. contralateral to the locus of attention) are a robust correlate of anticipatory visuospatial attention. Yet, the neural generators of these α-band modulations, their interdependence across homotopic areas, and their respective contribution to subsequent perception remain unclear. To shed light on these questions, we employed magnetoencephalography, while human volunteers performed a spatially cued detection task. Replicating previous findings, we found α-power enhancement ipsilateral to the attended hemifield and contralateral α-suppression over occipitoparietal sensors. Source localization (beamforming) analysis showed that α-enhancement and suppression were generated in 2 distinct brain regions, located in the dorsal and ventral visual streams, respectively. Moreover, α-enhancement and suppression showed different dynamics and contribution to perception. In contrast to the initial and transient dorsal α-enhancement, α-suppression in ventro-lateral occipital cortex was sustained and influenced subsequent target detection. This anticipatory biasing of ventrolateral extrastriate α-activity probably reflects increased receptivity in the brain region specialized in processing upcoming target features. Our results add to current models on the role of α-oscillations in attention orienting by showing that α-enhancement and suppression can be dissociated in time, space, and perceptual relevance.

    Additional information

    Capilla_Suppl_Data.pdf
  • Chu, M., Meyer, A. S., Foulkes, L., & Kita, S. (2014). Individual differences in frequency and saliency of speech-accompanying gestures: The role of cognitive abilities and empathy. Journal of Experimental Psychology: General, 143, 694-709. doi:10.1037/a0033861.

    Abstract

    The present study concerns individual differences in gesture production. We used correlational and multiple regression analyses to examine the relationship between individuals’ cognitive abilities and empathy levels and their gesture frequency and saliency. We chose predictor variables according to experimental evidence of the functions of gesture in speech production and communication. We examined 3 types of gestures: representational gestures, conduit gestures, and palm-revealing gestures. Higher frequency of representational gestures was related to poorer visual and spatial working memory, spatial transformation ability, and conceptualization ability; higher frequency of conduit gestures was related to poorer visual working memory, conceptualization ability, and higher levels of empathy; and higher frequency of palm-revealing gestures was related to higher levels of empathy. The saliency of all gestures was positively related to level of empathy. These results demonstrate that cognitive abilities and empathy levels are related to individual differences in gesture frequency and saliency
  • Chu, M., & Hagoort, P. (2014). Synchronization of speech and gesture: Evidence for interaction in action. Journal of Experimental Psychology: General, 143(4), 1726-1741. doi:10.1037/a0036281.

    Abstract

    Language and action systems are highly interlinked. A critical piece of evidence is that speech and its accompanying gestures are tightly synchronized. Five experiments were conducted to test 2 hypotheses about the synchronization of speech and gesture. According to the interactive view, there is continuous information exchange between the gesture and speech systems, during both their planning and execution phases. According to the ballistic view, information exchange occurs only during the planning phases of gesture and speech, but the 2 systems become independent once their execution has been initiated. In all experiments, participants were required to point to and/or name a light that had just lit up. Virtual reality and motion tracking technologies were used to disrupt their gesture or speech execution. Participants delayed their speech onset when their gesture was disrupted. They did so even when their gesture was disrupted at its late phase and even when they received only the kinesthetic feedback of their gesture. Also, participants prolonged their gestures when their speech was disrupted. These findings support the interactive view and add new constraints on models of speech and gesture production
  • Cristia, A., Minagawa-Kawai, Y., Egorova, N., Gervain, J., Filippin, L., Cabrol, D., & Dupoux, E. (2014). Neural correlates of infant accent discrimination: An fNIRS study. Developmental Science, 17(4), 628-635. doi:10.1111/desc.12160.

    Abstract

    The present study investigated the neural correlates of infant discrimination of very similar linguistic varieties (Quebecois and Parisian French) using functional Near InfraRed Spectroscopy. In line with previous behavioral and electrophysiological data, there was no evidence that 3-month-olds discriminated the two regional accents, whereas 5-month-olds did, with the locus of discrimination in left anterior perisylvian regions. These neuroimaging results suggest that a developing language network relying crucially on left perisylvian cortices sustains infants' discrimination of similar linguistic varieties within this early period of infancy.

    Files private

    Request files
  • Cristia, A., Seidl, A., Junge, C., Soderstrom, M., & Hagoort, P. (2014). Predicting individual variation in language from infant speech perception measures. Child development, 85(4), 1330-1345. doi:10.1111/cdev.12193.

    Abstract

    There are increasing reports that individual variation in behavioral and neurophysiological measures of infant speech processing predicts later language outcomes, and specifically concurrent or subsequent vocabulary size. If such findings are held up under scrutiny, they could both illuminate theoretical models of language development and contribute to the prediction of communicative disorders. A qualitative, systematic review of this emergent literature illustrated the variety of approaches that have been used and highlighted some conceptual problems regarding the measurements. A quantitative analysis of the same data established that the bivariate relation was significant, with correlations of similar strength to those found for well-established nonlinguistic predictors of language. Further exploration of infant speech perception predictors, particularly from a methodological perspective, is recommended.
  • Cristia, A., & Seidl, A. (2014). The hyperarticulation hypothesis of infant-directed speech. Journal of Child Language, 41(4), 913-934. doi:10.1017/S0305000912000669.

    Abstract

    Typically, the point vowels [i,ɑ,u] are acoustically more peripheral in infant-directed speech (IDS) compared to adult-directed speech (ADS). If caregivers seek to highlight lexically relevant contrasts in IDS, then two sounds that are contrastive should become more distinct, whereas two sounds that are surface realizations of the same underlying sound category should not. To test this prediction, vowels that are phonemically contrastive ([i-ɪ] and [eɪ-ε]), vowels that map onto the same underlying category ([æ- ] and [ε- ]), and the point vowels [i,ɑ,u] were elicited in IDS and ADS by American English mothers of two age groups of infants (four- and eleven-month-olds). As in other work, point vowels were produced in more peripheral positions in IDS compared to ADS. However, there was little evidence of hyperarticulation per se (e.g. [i-ɪ] was hypoarticulated). We suggest that across-the-board lexically based hyperarticulation is not a necessary feature of IDS.

    Additional information

    CORRIGENDUM
  • Dautriche, I., Cristia, A., Brusini, P., Yuan, S., Fisher, C., & Christophe, A. (2014). Toddlers default to canonical surface-to-meaning mapping when learning verbs. Child Development, 85(3), 1168-1180. doi:10.1111/cdev.12183.

    Abstract

    This work was supported by grants from the French Agence Nationale de la Recherche (ANR-2010-BLAN-1901) and from French Fondation de France to Anne Christophe, from the National Institute of Child Health and Human Development (HD054448) to Cynthia Fisher, Fondation Fyssen and Ecole de Neurosciences de Paris to Alex Cristia, and a PhD fellowship from the Direction Générale de l'Armement (DGA, France) supported by the PhD program FdV (Frontières du Vivant) to Isabelle Dautriche. We thank Isabelle Brunet for the recruitment, Michel Dutat for the technical support, and Hernan Anllo for his puppet mastery skill. We are grateful to the families that participated in this study. We also thank two anonymous reviewers for their comments on an earlier draft of this manuscript.
  • Dolscheid, S., Hunnius, S., Casasanto, D., & Majid, A. (2014). Prelinguistic infants are sensitive to space-pitch associations found across cultures. Psychological Science, 25(6), 1256-1261. doi:10.1177/0956797614528521.

    Abstract

    People often talk about musical pitch using spatial metaphors. In English, for instance, pitches can be “high” or “low” (i.e., height-pitch association), whereas in other languages, pitches are described as “thin” or “thick” (i.e., thickness-pitch association). According to results from psychophysical studies, metaphors in language can shape people’s nonlinguistic space-pitch representations. But does language establish mappings between space and pitch in the first place, or does it only modify preexisting associations? To find out, we tested 4-month-old Dutch infants’ sensitivity to height-pitch and thickness-pitch mappings using a preferential-looking paradigm. The infants looked significantly longer at cross-modally congruent stimuli for both space-pitch mappings, which indicates that infants are sensitive to these associations before language acquisition. The early presence of space-pitch mappings means that these associations do not originate from language. Instead, language builds on preexisting mappings, changing them gradually via competitive associative learning. Space-pitch mappings that are language-specific in adults develop from mappings that may be universal in infants.
  • Folia, V., & Petersson, K. M. (2014). Implicit structured sequence learning: An fMRI study of the structural mere-exposure effect. Frontiers in Psychology, 5: 41. doi:10.3389/fpsyg.2014.00041.

    Abstract

    In this event-related FMRI study we investigated the effect of five days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the FMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45) and the medial prefrontal regions (centered on BA 8/32). Importantly, and central to this study, the inclusion of a naive preference FMRI baseline measurement allowed us to conclude that these FMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax) in unsupervised AGL paradigms with proper learning designs.
  • De Grauwe, S., Willems, R. M., Rüschemeyer, S.-A., Lemhöfer, K., & Schriefers, H. (2014). Embodied language in first- and second-language speakers: Neural correlates of processing motor verbs. Neuropsychologia, 56, 334-349. doi:10.1016/j.neuropsychologia.2014.02.003.

    Abstract

    The involvement of neural motor and sensory systems in the processing of language has so far mainly been studied in native (L1) speakers. In an fMRI experiment, we investigated whether non-native (L2) semantic representations are rich enough to allow for activation in motor and somatosensory brain areas. German learners of Dutch and a control group of Dutch native speakers made lexical decisions about visually presented Dutch motor and non-motor verbs. Region-of-interest (ROI) and whole-brain analyses indicated that L2 speakers, like L1 speakers, showed significantly increased activation for simple motor compared to non-motor verbs in motor and somatosensory regions. This effect was not restricted to Dutch-German cognate verbs, but was also present for non-cognate verbs. These results indicate that L2 semantic representations are rich enough for motor-related activations to develop in motor and somatosensory areas.
  • De Grauwe, S., Lemhöfer, K., Willems, R. M., & Schriefers, H. (2014). L2 speakers decompose morphologically complex verbs: fMRI evidence from priming of transparent derived verbs. Frontiers in Human Neuroscience, 8: 802. doi:10.3389/fnhum.2014.00802.

    Abstract

    In this functional magnetic resonance imaging (fMRI) long-lag priming study, we investigated the processing of Dutch semantically transparent, derived prefix verbs. In such words, the meaning of the word as a whole can be deduced from the meanings of its parts, e.g., wegleggen “put aside.” Many behavioral and some fMRI studies suggest that native (L1) speakers decompose transparent derived words. The brain region usually implicated in morphological decomposition is the left inferior frontal gyrus (LIFG). In non-native (L2) speakers, the processing of transparent derived words has hardly been investigated, especially in fMRI studies, and results are contradictory: some studies find more reliance on holistic (i.e., non-decompositional) processing by L2 speakers; some find no difference between L1 and L2 speakers. In this study, we wanted to find out whether Dutch transparent derived prefix verbs are decomposed or processed holistically by German L2 speakers of Dutch. Half of the derived verbs (e.g., omvallen “fall down”) were preceded by their stem (e.g., vallen “fall”) with a lag of 4–6 words (“primed”); the other half (e.g., inslapen “fall asleep”) were not (“unprimed”). L1 and L2 speakers of Dutch made lexical decisions on these visually presented verbs. Both region of interest analyses and whole-brain analyses showed that there was a significant repetition suppression effect for primed compared to unprimed derived verbs in the LIFG. This was true both for the analyses over L2 speakers only and for the analyses over the two language groups together. The latter did not reveal any interaction with language group (L1 vs. L2) in the LIFG. Thus, L2 speakers show a clear priming effect in the LIFG, an area that has been associated with morphological decomposition. Our findings are consistent with the idea that L2 speakers engage in decomposition of transparent derived verbs rather than processing them holistically

    Additional information

    Data Sheet 1.docx
  • Guadalupe, T., Willems, R. M., Zwiers, M., Arias Vasquez, A., Hoogman, M., Hagoort, P., Fernández, G., Buitelaar, J., Franke, B., Fisher, S. E., & Francks, C. (2014). Differences in cerebral cortical anatomy of left- and right-handers. Frontiers in Psychology, 5: 261. doi:10.3389/fpsyg.2014.00261.

    Abstract

    The left and right sides of the human brain are specialized for different kinds of information processing, and much of our cognition is lateralized to an extent towards one side or the other. Handedness is a reflection of nervous system lateralization. Roughly ten percent of people are mixed- or left-handed, and they show an elevated rate of reductions or reversals of some cerebral functional asymmetries compared to right-handers. Brain anatomical correlates of left-handedness have also been suggested. However, the relationships of left-handedness to brain structure and function remain far from clear. We carried out a comprehensive analysis of cortical surface area differences between 106 left-handed subjects and 1960 right-handed subjects, measured using an automated method of regional parcellation (FreeSurfer, Destrieux atlas). This is the largest study sample that has so far been used in relation to this issue. No individual cortical region showed an association with left-handedness that survived statistical correction for multiple testing, although there was a nominally significant association with the surface area of a previously implicated region: the left precentral sulcus. Identifying brain structural correlates of handedness may prove useful for genetic studies of cerebral asymmetries, as well as providing new avenues for the study of relations between handedness, cerebral lateralization and cognition.
  • Guadalupe, T., Zwiers, M. P., Teumer, A., Wittfeld, K., Arias Vasquez, A., Hoogman, M., Hagoort, P., Fernández, G., Buitelaar, J., Hegenscheid, K., Völzke, H., Franke, B., Fisher, S. E., Grabe, H. J., & Francks, C. (2014). Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets. Human Brain Mapping, 35(7), 3277-3289. doi:10.1002/hbm.22401.

    Abstract

    Functional and anatomical asymmetries are prevalent features of the human brain, linked to gender, handedness, and cognition. However, little is known about the neurodevelopmental processes involved. In zebrafish, asymmetries arise in the diencephalon before extending within the central nervous system. We aimed to identify genes involved in the development of subtle, left-right volumetric asymmetries of human subcortical structures using large datasets. We first tested the feasibility of measuring left-right volume differences in such large-scale samples, as assessed by two automated methods of subcortical segmentation (FSL|FIRST and FreeSurfer), using data from 235 subjects who had undergone MRI twice. We tested the agreement between the first and second scan, and the agreement between the segmentation methods, for measures of bilateral volumes of six subcortical structures and the hippocampus, and their volumetric asymmetries. We also tested whether there were biases introduced by left-right differences in the regional atlases used by the methods, by analyzing left-right flipped images. While many bilateral volumes were measured well (scan-rescan r = 0.6-0.8), most asymmetries, with the exception of the caudate nucleus, showed lower repeatabilites. We meta-analyzed genome-wide association scan results for caudate nucleus asymmetry in a combined sample of 3,028 adult subjects but did not detect associations at genome-wide significance (P < 5 × 10-8). There was no enrichment of genetic association in genes involved in left-right patterning of the viscera. Our results provide important information for researchers who are currently aiming to carry out large-scale genome-wide studies of subcortical and hippocampal volumes, and their asymmetries
  • Hagoort, P. (2014). Nodes and networks in the neural architecture for language: Broca's region and beyond. Current Opinion in Neurobiology, 28, 136-141. doi:10.1016/j.conb.2014.07.013.

    Abstract

    Current views on the neurobiological underpinnings of language are discussed that deviate in a number of ways from the classical Wernicke–Lichtheim–Geschwind model. More areas than Broca's and Wernicke's region are involved in language. Moreover, a division along the axis of language production and language comprehension does not seem to be warranted. Instead, for central aspects of language processing neural infrastructure is shared between production and comprehension. Three different accounts of the role of Broca's area in language are discussed. Arguments are presented in favor of a dynamic network view, in which the functionality of a region is co-determined by the network of regions in which it is embedded at particular moments in time. Finally, core regions of language processing need to interact with other networks (e.g. the attentional networks and the ToM network) to establish full functionality of language and communication.
  • Hagoort, P., & Indefrey, P. (2014). The neurobiology of language beyond single words. Annual Review of Neuroscience, 37, 347-362. doi:10.1146/annurev-neuro-071013-013847.

    Abstract

    A hallmark of human language is that we combine lexical building blocks retrieved from memory in endless new ways. This combinatorial aspect of language is referred to as unification. Here we focus on the neurobiological infrastructure for syntactic and semantic unification. Unification is characterized by a high-speed temporal profile including both prediction and integration of retrieved lexical elements. A meta-analysis of numerous neuroimaging studies reveals a clear dorsal/ventral gradient in both left inferior frontal cortex and left posterior temporal cortex, with dorsal foci for syntactic processing and ventral foci for semantic processing. In addition to core areas for unification, further networks need to be recruited to realize language-driven communication to its full extent. One example is the theory of mind network, which allows listeners and readers to infer the intended message (speaker meaning) from the coded meaning of the linguistic utterance. This indicates that sensorimotor simulation cannot handle all of language processing.
  • Holler, J., Schubotz, L., Kelly, S., Hagoort, P., Schuetze, M., & Ozyurek, A. (2014). Social eye gaze modulates processing of speech and co-speech gesture. Cognition, 133, 692-697. doi:10.1016/j.cognition.2014.08.008.

    Abstract

    In human face-to-face communication, language comprehension is a multi-modal, situated activity. However, little is known about how we combine information from different modalities during comprehension, and how perceived communicative intentions, often signaled through visual signals, influence this process. We explored this question by simulating a multi-party communication context in which a speaker alternated her gaze between two recipients. Participants viewed speech-only or speech + gesture object-related messages when being addressed (direct gaze) or unaddressed (gaze averted to other participant). They were then asked to choose which of two object images matched the speaker’s preceding message. Unaddressed recipients responded significantly more slowly than addressees for speech-only utterances. However, perceiving the same speech accompanied by gestures sped unaddressed recipients up to a level identical to that of addressees. That is, when unaddressed recipients’ speech processing suffers, gestures can enhance the comprehension of a speaker’s message. We discuss our findings with respect to two hypotheses attempting to account for how social eye gaze may modulate multi-modal language comprehension.
  • Junge, C., Cutler, A., & Hagoort, P. (2014). Successful word recognition by 10-month-olds given continuous speech both at initial exposure and test. Infancy, 19(2), 179-193. doi:10.1111/infa.12040.

    Abstract

    Most words that infants hear occur within fluent speech. To compile a vocabulary, infants therefore need to segment words from speech contexts. This study is the first to investigate whether infants (here: 10-month-olds) can recognize words when both initial exposure and test presentation are in continuous speech. Electrophysiological evidence attests that this indeed occurs: An increased extended negativity (word recognition effect) appears for familiarized target words relative to control words. This response proved constant at the individual level: Only infants who showed this negativity at test had shown such a response, within six repetitions after first occurrence, during familiarization.
  • Keller, K. L., Fritz, R. S., Zoubek, C. M., Kennedy, E. H., Cronin, K. A., Rothwell, E. S., & Serfass, T. L. (2014). Effects of transport on fecal glucocorticoid levels in captive-bred cotton-top tamarins (Saguinus oedipus). Journal of the Pennsylvania Academy of Science, 88(2), 84-88.

    Abstract

    The relocation of animals can induce stress when animals are placed in novel environmental conditions. The movement of captive animals among facilities is common, especially for non-human primates used in research. The stress response begins with the activation of the hypothalamic-pituitary-adrenal (HPA) axis which results in the release of glucocorticoid hormones (GC), which at chronic levels could lead to deleterious physiological effects. There is a substantial body of data concerning GC levels affecting reproduction, and rank and aggression in primates. However, the effect of transport has received much less attention. Fecal samples from eight (four male and four female) captive-bred cotton-top tamarins (Saguinus oedipus) were collected at four different time points (two pre-transport and two post-transport). The fecal samples were analyzed using an immunoassay to determine GC levels. A repeated measures analysis of variance (ANOVA) demonstrated that GC levels differed among transport times (p = 0.009), but not between sexes (p = 0.963). Five of the eight tamarins exhibited an increase in GC levels after transport. Seven of the eight tamarins exhibited a decrease in GC levels from three to six days post-transport to three weeks post-transport. Most values returned to pre-transport levels after three weeks. The results indicate that these tamarins experienced elevated GC levels following transport, but these increases were of short duration. This outcome would suggest that the negative effects of elevated GC levels were also of short duration.
  • Kunert, R., & Scheepers, C. (2014). Speed and accuracy of dyslexic versus typical word recognition: An eye-movement investigation. Frontiers in Psychology, 5: 1129. doi:10.3389/fpsyg.2014.01129.

    Abstract

    Developmental dyslexia is often characterized by a dual deficit in both word recognition accuracy and general processing speed. While previous research into dyslexic word recognition may have suffered from speed-accuracy trade-off, the present study employed a novel eye-tracking task that is less prone to such confounds. Participants (10 dyslexics and 12 controls) were asked to look at real word stimuli, and to ignore simultaneously presented non-word stimuli, while their eye-movements were recorded. Improvements in word recognition accuracy over time were modeled in terms of a continuous non-linear function. The words' rhyme consistency and the non-words' lexicality (unpronounceable, pronounceable, pseudohomophone) were manipulated within-subjects. Speed-related measures derived from the model fits confirmed generally slower processing in dyslexics, and showed a rhyme consistency effect in both dyslexics and controls. In terms of overall error rate, dyslexics (but not controls) performed less accurately on rhyme-inconsistent words, suggesting a representational deficit for such words in dyslexics. Interestingly, neither group showed a pseudohomophone effect in speed or accuracy, which might call the task-independent pervasiveness of this effect into question. The present results illustrate the importance of distinguishing between speed- vs. accuracy-related effects for our understanding of dyslexic word recognition

    Additional information

    Kunert_Data Sheet 1.DOCX
  • Lai, V. T., Garrido Rodriguez, G., & Narasimhan, B. (2014). Thinking-for-speaking in early and late bilinguals. Bilingualism: Language and Cognition, 17, 139-152. doi:10.1017/S1366728913000151.

    Abstract

    When speakers describe motion events using different languages, they subsequently classify those events in language-specific ways (Gennari, Sloman, Malt & Fitch, 2002). Here we ask if bilingual speakers flexibly shift their event classification preferences based on the language in which they verbally encode those events. English–Spanish bilinguals and monolingual controls described motion events in either Spanish or English. Subsequently they judged the similarity of the motion events in a triad task. Bilinguals tested in Spanish and Spanish monolinguals were more likely to make similarity judgments based on the path of motion versus bilinguals tested in English and English monolinguals. The effect is modulated in bilinguals by the age of acquisition of the second language. Late bilinguals based their judgments on path more often when Spanish was used to describe the motion events versus English. Early bilinguals had a path preference independent of the language in use. These findings support “thinking-for-speaking” (Slobin, 1996) in late bilinguals.
  • Lartseva, A., Dijkstra, T., Kan, C. C., & Buitelaar, J. K. (2014). Processing of emotion words by patients with Autism Spectrum Disorders: Evidence from reaction times and EEG. Journal of Autism and Developmental Disorders, 44, 2882-2894. doi:10.1007/s10803-014-2149-z.

    Abstract

    This study investigated processing of emotion words in autism spectrum disorders (ASD) using reaction times and event-related potentials (ERP). Adults with (n = 21) and without (n = 20) ASD performed a lexical decision task on emotion and neutral words while their brain activity was recorded. Both groups showed faster responses to emotion words compared to neutral, suggesting intact early processing of emotion in ASD. In the ERPs, the control group showed a typical late positive component (LPC) at 400-600 ms for emotion words compared to neutral, while the ASD group showed no LPC. The between-group difference in LPC amplitude was significant, suggesting that emotion words were processed differently by individuals with ASD, although their behavioral performance was similar to that of typical individuals
  • Levy, J., Hagoort, P., & Démonet, J.-F. (2014). A neuronal gamma oscillatory signature during morphological unification in the left occipitotemporal junction. Human Brain Mapping, 35, 5847-5860. doi:10.1002/hbm.22589.

    Abstract

    Morphology is the aspect of language concerned with the internal structure of words. In the past decades, a large body of masked priming (behavioral and neuroimaging) data has suggested that the visual word recognition system automatically decomposes any morphologically complex word into a stem and its constituent morphemes. Yet the reliance of morphology on other reading processes (e.g., orthography and semantics), as well as its underlying neuronal mechanisms are yet to be determined. In the current magnetoencephalography study, we addressed morphology from the perspective of the unification framework, that is, by applying the Hold/Release paradigm, morphological unification was simulated via the assembly of internal morphemic units into a whole word. Trials representing real words were divided into words with a transparent (true) or a nontransparent (pseudo) morphological relationship. Morphological unification of truly suffixed words was faster and more accurate and additionally enhanced induced oscillations in the narrow gamma band (60–85 Hz, 260–440 ms) in the left posterior occipitotemporal junction. This neural signature could not be explained by a mere automatic lexical processing (i.e., stem perception), but more likely it related to a semantic access step during the morphological unification process. By demonstrating the validity of unification at the morphological level, this study contributes to the vast empirical evidence on unification across other language processes. Furthermore, we point out that morphological unification relies on the retrieval of lexical semantic associations via induced gamma band oscillations in a cerebral hub region for visual word form processing.
  • Lüttjohann, A., Schoffelen, J.-M., & Van Luijtelaar, G. (2014). Termination of ongoing spike-wave discharges investigated by cortico-thalamic network analyses. Neurobiology of Disease, 70, 127-137. doi:10.1016/j.nbd.2014.06.007.

    Abstract

    Purpose While decades of research were devoted to study generation mechanisms of spontaneous spike and wave discharges (SWD), little attention has been paid to network mechanisms associated with the spontaneous termination of SWD. In the current study coupling-dynamics at the onset and termination of SWD were studied in an extended part of the cortico-thalamo-cortical system of freely moving, genetic absence epileptic WAG/Rij rats. Methods Local-field potential recordings of 16 male WAG/Rij rats, equipped with multiple electrodes targeting layer 4 to 6 of the somatosensory-cortex (ctx4, ctx5, ctx6), rostral and caudal reticular thalamic nucleus (rRTN & cRTN), Ventral Postero Medial (VPM), anterior- (ATN) and posterior (Po) thalamic nucleus, were obtained. Six seconds lasting pre-SWD->SWD, SWD->post SWD and control periods were analyzed with time-frequency methods and between-region interactions were quantified with frequencyresolved Granger Causality (GC) analysis. Results Most channel-pairs showed increases in GC lasting from onset to offset of the SWD. While for most thalamo-thalamic pairs a dominant coupling direction was found during the complete SWD, most cortico-thalamic pairs only showed a dominant directional drive (always from cortex to thalamus) during the first 500ms of SWD. Channel-pair ctx4-rRTN showed a longer lasting dominant cortical drive, which stopped 1.5 sec prior to SWD offset. This early decrease in directional coupling was followed by an increase in directional coupling from cRTN to rRTN 1 sec prior to SWD offset. For channel pairs ctx5-Po and ctx6-Po the heightened cortex->thalamus coupling remained until 1.5 sec following SWD offset, while the thalamus->cortex coupling for these pairs stopped at SWD offset. Conclusion The high directional coupling from somatosensory cortex to the thalamus at SWD onset is in good agreement with the idea of a cortical epileptic focus that initiates and entrains other brain structures into seizure activity. The decrease of cortex to rRTN coupling as well as the increased coupling from cRTN to rRTN preceding SWD termination demonstrate that SWD termination is a gradual process that involves both cortico-thalamic as well as intrathalamic processes. The rostral RTN seems to be an important resonator for SWD and relevant for maintenance, while the cRTN might inhibit this oscillation. The somatosensory cortex seems to attempt to reinitiate SWD following its offset via its strong coupling to the posterior thalamus.
  • Magyari, L., Bastiaansen, M. C. M., De Ruiter, J. P., & Levinson, S. C. (2014). Early anticipation lies behind the speed of response in conversation. Journal of Cognitive Neuroscience, 26(11), 2530-2539. doi:10.1162/jocn_a_00673.

    Abstract

    RTs in conversation, with average gaps of 200 msec and often less, beat standard RTs, despite the complexity of response and the lag in speech production (600 msec or more). This can only be achieved by anticipation of timing and content of turns in conversation, about which little is known. Using EEG and an experimental task with conversational stimuli, we show that estimation of turn durations are based on anticipating the way the turn would be completed. We found a neuronal correlate of turn-end anticipation localized in ACC and inferior parietal lobule, namely a beta-frequency desynchronization as early as 1250 msec, before the end of the turn. We suggest that anticipation of the other's utterance leads to accurately timed transitions in everyday conversations.
  • Pacheco, A., Araújo, S., Faísca, L., de Castro, S. L., Petersson, K. M., & Reis, A. (2014). Dyslexia's heterogeneity: Cognitive profiling of Portuguese children with dyslexia. Reading and Writing, 27(9), 1529-1545. doi:10.1007/s11145-014-9504-5.

    Abstract

    Recent studies have emphasized that developmental dyslexia is a multiple-deficit disorder, in contrast to the traditional single-deficit view. In this context, cognitive profiling of children with dyslexia may be a relevant contribution to this unresolved discussion. The aim of this study was to profile 36 Portuguese children with dyslexia from the 2nd to 5th grade. Hierarchical cluster analysis was used to group participants according to their phonological awareness, rapid automatized naming, verbal short-term memory, vocabulary, and nonverbal intelligence abilities. The results suggested a two-cluster solution: a group with poorer performance on phoneme deletion and rapid automatized naming compared with the remaining variables (Cluster 1) and a group characterized by underperforming on the variables most related to phonological processing (phoneme deletion and digit span), but not on rapid automatized naming (Cluster 2). Overall, the results seem more consistent with a hybrid perspective, such as that proposed by Pennington and colleagues (2012), for understanding the heterogeneity of dyslexia. The importance of characterizing the profiles of individuals with dyslexia becomes clear within the context of constructing remediation programs that are specifically targeted and are more effective in terms of intervention outcome.

    Additional information

    11145_2014_9504_MOESM1_ESM.doc
  • Peeters, D., Runnqvist, E., Bertrand, D., & Grainger, J. (2014). Asymmetrical switch costs in bilingual language production induced by reading words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(1), 284-292. doi:10.1037/a0034060.

    Abstract

    We examined language-switching effects in French–English bilinguals using a paradigm where pictures are always named in the same language (either French or English) within a block of trials, and on each trial, the picture is preceded by a printed word from the same language or from the other language. Participants had to either make a language decision on the word or categorize it as an animal name or not. Picture-naming latencies in French (Language 1 [L1]) were slower when pictures were preceded by an English word than by a French word, independently of the task performed on the word. There were no language-switching effects when pictures were named in English (L2). This pattern replicates asymmetrical switch costs found with the cued picture-naming paradigm and shows that the asymmetrical pattern can be obtained (a) in the absence of artificial (nonlinguistic) language cues, (b) when the switch involves a shift from comprehension in 1 language to production in another, and (c) when the naming language is blocked (univalent response). We concluded that language switch costs in bilinguals cannot be reduced to effects driven by task control or response-selection mechanisms.
  • Peeters, D., & Dresler, M. (2014). The scientific significance of sleep-talking. Frontiers for Young Minds, 2(9). Retrieved from http://kids.frontiersin.org/articles/24/the_scientific_significance_of_sleep_talking/.

    Abstract

    Did one of your parents, siblings, or friends ever tell you that you were talking in your sleep? Nothing to be ashamed of! A recent study found that more than half of all people have had the experience of speaking out loud while being asleep [1]. This might even be underestimated, because often people do not notice that they are sleep-talking, unless somebody wakes them up or tells them the next day. Most neuroscientists, linguists, and psychologists studying language are interested in our language production and language comprehension skills during the day. In the present article, we will explore what is known about the production of overt speech during the night. We suggest that the study of sleep-talking may be just as interesting and informative as the study of wakeful speech.
  • Piai, V., Roelofs, A., Jensen, O., Schoffelen, J.-M., & Bonnefond, M. (2014). Distinct patterns of brain activity characterise lexical activation and competition in spoken word production. PLoS One, 9(2): e88674. doi:10.1371/journal.pone.0088674.

    Abstract

    According to a prominent theory of language production, concepts activate multiple associated words in memory, which enter into competition for selection. However, only a few electrophysiological studies have identified brain responses reflecting competition. Here, we report a magnetoencephalography study in which the activation of competing words was manipulated by presenting pictures (e.g., dog) with distractor words. The distractor and picture name were semantically related (cat), unrelated (pin), or identical (dog). Related distractors are stronger competitors to the picture name because they receive additional activation from the picture relative to other distractors. Picture naming times were longer with related than unrelated and identical distractors. Phase-locked and non-phase-locked activity were distinct but temporally related. Phase-locked activity in left temporal cortex, peaking at 400 ms, was larger on unrelated than related and identical trials, suggesting differential activation of alternative words by the picture-word stimuli. Non-phase-locked activity between roughly 350–650 ms (4–10 Hz) in left superior frontal gyrus was larger on related than unrelated and identical trials, suggesting differential resolution of the competition among the alternatives, as reflected in the naming times. These findings characterise distinct patterns of activity associated with lexical activation and competition, supporting the theory that words are selected by competition.
  • Schoot, L., Menenti, L., Hagoort, P., & Segaert, K. (2014). A little more conversation - The influence of communicative context on syntactic priming in brain and behavior. Frontiers in Psychology, 5: 208. doi:10.3389/fpsyg.2014.00208.

    Abstract

    We report on an fMRI syntactic priming experiment in which we measure brain activity for participants who communicate with another participant outside the scanner. We investigated whether syntactic processing during overt language production and comprehension is influenced by having a (shared) goal to communicate. Although theory suggests this is true, the nature of this influence remains unclear. Two hypotheses are tested: i. syntactic priming effects (fMRI and RT) are stronger for participants in the communicative context than for participants doing the same experiment in a non-communicative context, and ii. syntactic priming magnitude (RT) is correlated with the syntactic priming magnitude of the speaker’s communicative partner. Results showed that across conditions, participants were faster to produce sentences with repeated syntax, relative to novel syntax. This behavioral result converged with the fMRI data: we found repetition suppression effects in the left insula extending into left inferior frontal gyrus (BA 47/45), left middle temporal gyrus (BA 21), left inferior parietal cortex (BA 40), left precentral gyrus (BA 6), bilateral precuneus (BA 7), bilateral supplementary motor cortex (BA 32/8) and right insula (BA 47). We did not find support for the first hypothesis: having a communicative intention does not increase the magnitude of syntactic priming effects (either in the brain or in behavior) per se. We did find support for the second hypothesis: if speaker A is strongly/weakly primed by speaker B, then speaker B is primed by speaker A to a similar extent. We conclude that syntactic processing is influenced by being in a communicative context, and that the nature of this influence is bi-directional: speakers are influenced by each other.
  • Segaert, K., Weber, K., Cladder-Micus, M., & Hagoort, P. (2014). The influence of verb-bound syntactic preferences on the processing of syntactic structures. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(5), 1448-1460. doi:10.1037/a0036796.

    Abstract

    Speakers sometimes repeat syntactic structures across sentences, a phenomenon called syntactic priming. We investigated the influence of verb-bound syntactic preferences on syntactic priming effects in response choices and response latencies for German ditransitive sentences. In the response choices we found inverse preference effects: There were stronger syntactic priming effects for primes in the less preferred structure, given the syntactic preference of the prime verb. In the response latencies we found positive preference effects: There were stronger syntactic priming effects for primes in the more preferred structure, given the syntactic preference of the prime verb. These findings provide further support for the idea that syntactic processing is lexically guided.
  • Shao, Z., Roelofs, A., Acheson, D. J., & Meyer, A. S. (2014). Electrophysiological evidence that inhibition supports lexical selection in picture naming. Brain Research, 1586, 130-142. doi:10.1016/j.brainres.2014.07.009.

    Abstract

    We investigated the neural basis of inhibitory control during lexical selection. Participants overtly named pictures while response times (RTs) and event-related brain potentials (ERPs) were recorded. The difficulty of lexical selection was manipulated by using object and action pictures with high name agreement (few response candidates) versus low name agreement (many response candidates). To assess the involvement of inhibition, we conducted delta plot analyses of naming RTs and examined the N2 component of the ERP. We found longer mean naming RTs and a larger N2 amplitude in the low relative to the high name agreement condition. For action naming we found a negative correlation between the slopes of the slowest delta segment and the difference in N2 amplitude between the low and high name agreement conditions. The converging behavioral and electrophysiological evidence suggests that selective inhibition is engaged to reduce competition during lexical selection in picture naming.
  • Silva, S., Branco, P., Barbosa, F., Marques-Teixeira, J., Petersson, K. M., & Castro, S. L. (2014). Musical phrase boundaries, wrap-up and the closure positive shift. Brain Research, 1585, 99-107. doi:10.1016/j.brainres.2014.08.025.

    Abstract

    We investigated global integration (wrap-up) processes at the boundaries of musical phrases by comparing the effects of well and non-well formed phrases on event-related potentials time-locked to two boundary points: the onset and the offset of the boundary pause. The Closure Positive Shift, which is elicited at the boundary offset, was not modulated by the quality of phrase structure (well vs. non-well formed). In contrast, the boundary onset potentials showed different patterns for well and non-well formed phrases. Our results contribute to specify the functional meaning of the Closure Positive Shift in music, shed light on the large-scale structural integration of musical input, and raise new hypotheses concerning shared resources between music and language.
  • Silva, S., Barbosa, F., Marques-Teixeira, J., Petersson, K. M., & Castro, S. L. (2014). You know when: Event-related potentials and theta/beat power indicate boundary prediction in music. Journal of Integrative Neuroscience, 13(1), 19-34. doi:10.1142/S0219635214500022.

    Abstract

    Neuroscientific and musicological approaches to music cognition indicate that listeners familiarized in the Western tonal tradition expect a musical phrase boundary at predictable time intervals. However, phrase boundary prediction processes in music remain untested. We analyzed event-related potentials (ERPs) and event-related induced power changes at the onset and offset of a boundary pause. We made comparisons with modified melodies, where the pause was omitted and filled by tones. The offset of the pause elicited a closure positive shift (CPS), indexing phrase boundary detection. The onset of the filling tones elicited significant increases in theta and beta powers. In addition, the P2 component was larger when the filling tones started than when they ended. The responses to boundary omission suggest that listeners expected to hear a boundary pause. Therefore, boundary prediction seems to coexist with boundary detection in music segmentation.
  • Simanova, I., Hagoort, P., Oostenveld, R., & Van Gerven, M. A. J. (2014). Modality-independent decoding of semantic information from the human brain. Cerebral Cortex, 24, 426-434. doi:10.1093/cercor/bhs324.

    Abstract

    An ability to decode semantic information from fMRI spatial patterns has been demonstrated in previous studies mostly for 1 specific input modality. In this study, we aimed to decode semantic category independent of the modality in which an object was presented. Using a searchlight method, we were able to predict the stimulus category from the data while participants performed a semantic categorization task with 4 stimulus modalities (spoken and written names, photographs, and natural sounds). Significant classification performance was achieved in all 4 modalities. Modality-independent decoding was implemented by training and testing the searchlight method across modalities. This allowed the localization of those brain regions, which correctly discriminated between the categories, independent of stimulus modality. The analysis revealed large clusters of voxels in the left inferior temporal cortex and in frontal regions. These voxels also allowed category discrimination in a free recall session where subjects recalled the objects in the absence of external stimuli. The results show that semantic information can be decoded from the fMRI signal independently of the input modality and have clear implications for understanding the functional mechanisms of semantic memory.
  • Stolk, A., Noordzij, M. L., Verhagen, L., Volman, I., Schoffelen, J.-M., Oostenveld, R., Hagoort, P., & Toni, I. (2014). Cerebral coherence between communicators marks the emergence of meaning. Proceedings of the National Academy of Sciences of the United States of America, 111, 18183-18188. doi:10.1073/pnas.1414886111.

    Abstract

    How can we understand each other during communicative interactions? An influential suggestion holds that communicators are primed by each other’s behaviors, with associative mechanisms automatically coordinating the production of communicative signals and the comprehension of their meanings. An alternative suggestion posits that mutual understanding requires shared conceptualizations of a signal’s use, i.e., “conceptual pacts” that are abstracted away from specific experiences. Both accounts predict coherent neural dynamics across communicators, aligned either to the occurrence of a signal or to the dynamics of conceptual pacts. Using coherence spectral-density analysis of cerebral activity simultaneously measured in pairs of communicators, this study shows that establishing mutual understanding of novel signals synchronizes cerebral dynamics across communicators’ right temporal lobes. This interpersonal cerebral coherence occurred only within pairs with a shared communicative history, and at temporal scales independent from signals’ occurrences. These findings favor the notion that meaning emerges from shared conceptualizations of a signal’s use.
  • Stolk, A., Noordzij, M. L., Volman, I., Verhagen, L., Overeem, S., van Elswijk, G., Bloem, B., Hagoort, P., & Toni, I. (2014). Understanding communicative actions: A repetitive TMS study. Cortex, 51, 25-34. doi:10.1016/j.cortex.2013.10.005.

    Abstract

    Despite the ambiguity inherent in human communication, people are remarkably efficient in establishing mutual understanding. Studying how people communicate in novel settings provides a window into the mechanisms supporting the human competence to rapidly generate and understand novel shared symbols, a fundamental property of human communication. Previous work indicates that the right posterior superior temporal sulcus (pSTS) is involved when people understand the intended meaning of novel communicative actions. Here, we set out to test whether normal functioning of this cerebral structure is required for understanding novel communicative actions using inhibitory low-frequency repetitive transcranial magnetic stimulation (rTMS). A factorial experimental design contrasted two tightly matched stimulation sites (right pSTS vs. left MT+, i.e. a contiguous homotopic task-relevant region) and tasks (a communicative task vs. a visual tracking task that used the same sequences of stimuli). Overall task performance was not affected by rTMS, whereas changes in task performance over time were disrupted according to TMS site and task combinations. Namely, rTMS over pSTS led to a diminished ability to improve action understanding on the basis of recent communicative history, while rTMS over MT+ perturbed improvement in visual tracking over trials. These findings qualify the contributions of the right pSTS to human communicative abilities, showing that this region might be necessary for incorporating previous knowledge, accumulated during interactions with a communicative partner, to constrain the inferential process that leads to action understanding.
  • Takashima, A., Wagensveld, B., Van Turennout, M., Zwitserlood, P., Hagoort, P., & Verhoeven, L. (2014). Training-induced neural plasticity in visual-word decoding and the role of syllables. Neuropsychologia, 61, 299-314. doi:10.1016/j.neuropsychologia.2014.06.017.

    Abstract

    To investigate the neural underpinnings of word decoding, and how it changes as a function of repeated exposure, we trained Dutch participants repeatedly over the course of a month of training to articulate a set of novel disyllabic input strings written in Greek script to avoid the use of familiar orthographic representations. The syllables in the input were phonotactically legal combinations but non-existent in the Dutch language, allowing us to assess their role in novel word decoding. Not only trained disyllabic pseudowords were tested but also pseudowords with recombined patterns of syllables to uncover the emergence of syllabic representations. We showed that with extensive training, articulation became faster and more accurate for the trained pseudowords. On the neural level, the initial stage of decoding was reflected by increased activity in visual attention areas of occipito-temporal and occipito-parietal cortices, and in motor coordination areas of the precentral gyrus and the inferior frontal gyrus. After one month of training, memory representations for holistic information (whole word unit) were established in areas encompassing the angular gyrus, the precuneus and the middle temporal gyrus. Syllabic representations also emerged through repeated training of disyllabic pseudowords, such that reading recombined syllables of the trained pseudowords showed similar brain activation to trained pseudowords and were articulated faster than novel combinations of letter strings used in the trained pseudowords.
  • Tsuji, S., & Cristia, A. (2014). Perceptual attunement in vowels: A meta-analysis. Developmental Psychobiology, 56(2), 179-191. doi:10.1002/dev.21179.

    Abstract

    Although the majority of evidence on perceptual narrowing in speech sounds is based on consonants, most models of infant speech perception generalize these findings to vowels, assuming that vowel perception improves for vowel sounds that are present in the infant's native language within the first year of life, and deteriorates for non-native vowel sounds over the same period of time. The present meta-analysis contributes to assessing to what extent these descriptions are accurate in the first comprehensive quantitative meta-analysis of perceptual narrowing in infant vowel discrimination, including results from behavioral, electrophysiological, and neuroimaging methods applied to infants 0–14 months of age. An analysis of effect sizes for native and non-native vowel discrimination over the first year of life revealed that they changed with age in opposite directions, being significant by about 6 months of age
  • Van Leeuwen, T. M., Lamers, M. J. A., Petersson, K. M., Gussenhoven, C., Poser, B., & Hagoort, P. (2014). Phonological markers of information structure: An fMRI study. Neuropsychologia, 58(1), 64-74. doi:10.1016/j.neuropsychologia.2014.03.017.

    Abstract

    In this fMRI study we investigate the neural correlates of information structure integration during sentence comprehension in Dutch. We looked into how prosodic cues (pitch accents) that signal the information status of constituents to the listener (new information) are combined with other types of information during the unification process. The difficulty of unifying the prosodic cues into overall sentence meaning was manipulated by constructing sentences in which the pitch accent did (focus-accent agreement), and sentences in which the pitch accent did not (focus-accent disagreement) match the expectations for focus constituents of the sentence. In case of a mismatch, the load on unification processes increases. Our results show two anatomically distinct effects of focus-accent disagreement, one located in the posterior left inferior frontal gyrus (LIFG, BA6/44), and one in the more anterior-ventral LIFG (BA 47/45). Our results confirm that information structure is taken into account during unification, and imply an important role for the LIFG in unification processes, in line with previous fMRI studies.

    Additional information

    mmc1.doc
  • Veenstra, A., Acheson, D. J., Bock, K., & Meyer, A. S. (2014). Effects of semantic integration on subject–verb agreement: Evidence from Dutch. Language, Cognition and Neuroscience, 29(3), 355-380. doi:10.1080/01690965.2013.862284.

    Abstract

    The generation of subject–verb agreement is a central component of grammatical encoding. It is sensitive to conceptual and grammatical influences, but the interplay between these factors is still not fully understood. We investigate how semantic integration of the subject noun phrase (‘the secretary of/with the governor’) and the Local Noun Number (‘the secretary with the governor/governors’) affect the ease of selecting the verb form. Two hypotheses are assessed: according to the notional hypothesis, integration encourages the assignment of the singular notional number to the noun phrase and facilitates the choice of the singular verb form. According to the lexical interference hypothesis, integration strengthens the competition between nouns within the subject phrase, making it harder to select the verb form when the nouns mismatch in number. In two experiments, adult speakers of Dutch completed spoken preambles (Experiment 1) or selected appropriate verb forms (Experiment 2). Results showed facilitatory effects of semantic integration (fewer errors and faster responses with increasing integration). These effects did not interact with the effects of the Local Noun Number (slower response times and higher error rates for mismatching than for matching noun numbers). The findings thus support the notional hypothesis and a model of agreement where conceptual and lexical factors independently contribute to the determination of the number of the subject noun phrase and, ultimately, the verb.
  • Veenstra, A., Acheson, D. J., & Meyer, A. S. (2014). Keeping it simple: Studying grammatical encoding with lexically-reduced item sets. Frontiers in Psychology, 5: 783. doi:10.3389/fpsyg.2014.00783.

    Abstract

    Compared to the large body of work on lexical access, little research has been done on grammatical encoding in language production. An exception is the generation of subject-verb agreement. Here, two key findings have been reported: (1) Speakers make more agreement errors when the head and local noun of a phrase mismatch in number than when they match (e.g., the key to the cabinet(s)); and (2) this attraction effect is asymmetric, with stronger attraction for singular than for plural head nouns. Although these findings are robust, the cognitive processes leading to agreement errors and their significance for the generation of correct agreement are not fully understood. We propose that future studies of agreement, and grammatical encoding in general, may benefit from using paradigms that tightly control the variability of the lexical content of the material. We report two experiments illustrating this approach. In both of them, the experimental items featured combinations of four nouns, four color adjectives, and two prepositions. In Experiment 1, native speakers of Dutch described pictures in sentences such as the circle next to the stars is blue. In Experiment 2, they carried out a forced-choice task, where they read subject noun phrases (e.g., the circle next to the stars) and selected the correct verb-phrase (is blue or are blue) with a button press. Both experiments showed an attraction effect, with more errors after subject phrases with mismatching, compared to matching head and local nouns. This effect was stronger for singular than plural heads, replicating the attraction asymmetry. In contrast, the response times recorded in Experiment 2 showed similar attraction effects for singular and plural head nouns. These results demonstrate that critical agreement phenomena can be elicited reliably in lexically-reduced contexts. We discuss the theoretical implications of the findings and the potential and limitations of studies using lexically simple materials.
  • Wegman, J., Fonteijn, H. M., van Ekert, J., Tyborowska, A., Jansen, C., & Janzen, G. (2014). Gray and white matter correlates of navigational ability in humans. Human Brain Mapping, 35(6), 2561-2572. doi:10.1002/hbm.22349.

    Abstract

    Humans differ widely in their navigational abilities. Studies have shown that self-reports on navigational abilities are good predictors of performance on navigation tasks in real and virtual environments. The caudate nucleus and medial temporal lobe regions have been suggested to subserve different navigational strategies. The ability to use different strategies might underlie navigational ability differences. This study examines the anatomical correlates of self-reported navigational ability in both gray and white matter. Local gray matter volume was compared between a group (N = 134) of good and bad navigators using voxel-based morphometry (VBM), as well as regional volumes. To compare between good and bad navigators, we also measured white matter anatomy using diffusion tensor imaging (DTI) and looked at fractional anisotropy (FA) values. We observed a trend toward higher local GM volume in right anterior parahippocampal/rhinal cortex for good versus bad navigators. Good male navigators showed significantly higher local GM volume in right hippocampus than bad male navigators. Conversely, bad navigators showed increased FA values in the internal capsule, the white matter bundle closest to the caudate nucleus and a trend toward higher local GM volume in the caudate nucleus. Furthermore, caudate nucleus regional volume correlated negatively with navigational ability. These convergent findings across imaging modalities are in line with findings showing that the caudate nucleus and the medial temporal lobes are involved in different wayfinding strategies. Our study is the first to show a link between self-reported large-scale navigational abilities and different measures of brain anatomy.
  • Whitmarsh, S., Barendregt, H., Schoffelen, J.-M., & Jensen, O. (2014). Metacognitive awareness of covert somatosensory attention corresponds to contralateral alpha power. NeuroImage, 85(2), 803-809. doi:10.1016/j.neuroimage.2013.07.031.

    Abstract

    Studies on metacognition have shown that participants can report on their performance on a wide range of perceptual, memory and behavioral tasks. We know little, however, about the ability to report on one's attentional focus. The degree and direction of somatosensory attention can, however, be readily discerned through suppression of alpha band frequencies in EEG/MEG produced by the somatosensory cortex. Such top-down attentional modulations of cortical excitability have been shown to result in better discrimination performance and decreased response times. In this study we asked whether the degree of attentional focus is also accessible for subjective report, and whether such evaluations correspond to the amount of somatosensory alpha activity. In response to auditory cues participants maintained somatosensory attention to either their left or right hand for intervals varying randomly between 5 and 32seconds, while their brain activity was recorded with MEG. Trials were terminated by a probe sound, to which they reported their level of attention on the cued hand right before probe-onset. Using a beamformer approach, we quantified the alpha activity in left and right somatosensory regions, one second before the probe. Alpha activity from contra- and ipsilateral somatosensory cortices for high versus low attention trials were compared. As predicted, the contralateral somatosensory alpha depression correlated with higher reported attentional focus. Finally, alpha activity two to three seconds before the probe-onset was correlated with attentional focus. We conclude that somatosensory attention is indeed accessible to metacognitive awareness.
  • Willems, R. M., Van der Haegen, L., Fisher, S. E., & Francks, C. (2014). On the other hand: Including left-handers in cognitive neuroscience and neurogenetics. Nature Reviews Neuroscience, 15, 193-201. doi:10.1038/nrn3679.

    Abstract

    Left-handers are often excluded from study cohorts in neuroscience and neurogenetics in order to reduce variance in the data. However, recent investigations have shown that the inclusion or targeted recruitment of left-handers can be informative in studies on a range of topics, such as cerebral lateralization and the genetic underpinning of asymmetrical brain development. Left-handed individuals represent a substantial portion of the human population and therefore left-handedness falls within the normal range of human diversity; thus, it is important to account for this variation in our understanding of brain functioning. We call for neuroscientists and neurogeneticists to recognize the potential of studying this often-discarded group of research subjects.
  • Willems, R. M., & Francks, C. (2014). Your left-handed brain. Frontiers for Young Minds, 2: 13. doi:10.3389/frym.2014.00013.

    Abstract

    While most people prefer to use their right hand to brush their teeth, throw a ball, or hold a tennis racket, left-handers prefer to use their left hand. This is the case for around 10 per cent of all people. There was a time (not so long ago) when left-handers were stigmatized in Western (and other) communities: it was considered a bad sign if you were left-handed, and left-handed children were often forced to write with their right hand. This is nonsensical: there is nothing wrong with being left-handed, and trying to write with the non-preferred hand is frustrating for almost everybody. As a matter of fact, science can learn from left-handers, and in this paper, we discuss how this may be the case. We review why some people are left-handed and others are not, how left-handers' brains differ from right-handers’, and why scientists study left-handedness in the first place
  • De Zubicaray, G. I., Hartsuiker, R. J., & Acheson, D. J. (2014). Mind what you say—general and specific mechanisms for monitoring in speech production. Frontiers in Human Neuroscience, 8: 514. doi:10.3389%2Ffnhum.2014.00514.

    Abstract

    For most people, speech production is relatively effortless and error-free. Yet it has long been recognized that we need some type of control over what we are currently saying and what we plan to say. Precisely how we monitor our internal and external speech has been a topic of research interest for several decades. The predominant approach in psycholinguistics has assumed monitoring of both is accomplished via systems responsible for comprehending others' speech.

    This special topic aimed to broaden the field, firstly by examining proposals that speech production might also engage more general systems, such as those involved in action monitoring. A second aim was to examine proposals for a production-specific, internal monitor. Both aims require that we also specify the nature of the representations subject to monitoring.
  • Zumer, J. M., Scheeringa, R., Schoffelen, J.-M., Norris, D. G., & Jensen, O. (2014). Occipital alpha activity during stimulus processing gates the information flow to object-selective cortex. PLoS Biology, 12(10): e1001965. doi:10.1371/journal.pbio.1001965.

    Abstract

    Given the limited processing capabilities of the sensory system, it is essential that attended information is gated to downstream areas, whereas unattended information is blocked. While it has been proposed that alpha band (8–13 Hz) activity serves to route information to downstream regions by inhibiting neuronal processing in task-irrelevant regions, this hypothesis remains untested. Here we investigate how neuronal oscillations detected by electroencephalography in visual areas during working memory encoding serve to gate information reflected in the simultaneously recorded blood-oxygenation-level-dependent (BOLD) signals recorded by functional magnetic resonance imaging in downstream ventral regions. We used a paradigm in which 16 participants were presented with faces and landscapes in the right and left hemifields; one hemifield was attended and the other unattended. We observed that decreased alpha power contralateral to the attended object predicted the BOLD signal representing the attended object in ventral object-selective regions. Furthermore, increased alpha power ipsilateral to the attended object predicted a decrease in the BOLD signal representing the unattended object. We also found that the BOLD signal in the dorsal attention network inversely correlated with visual alpha power. This is the first demonstration, to our knowledge, that oscillations in the alpha band are implicated in the gating of information from the visual cortex to the ventral stream, as reflected in the representationally specific BOLD signal. This link of sensory alpha to downstream activity provides a neurophysiological substrate for the mechanism of selective attention during stimulus processing, which not only boosts the attended information but also suppresses distraction. Although previous studies have shown a relation between the BOLD signal from the dorsal attention network and the alpha band at rest, we demonstrate such a relation during a visuospatial task, indicating that the dorsal attention network exercises top-down control of visual alpha activity.
  • Acheson, D. J. (2013). Signatures of response conflict monitoring in language production. Procedia - Social and Behavioral Sciences, 94, 214-215. doi:10.1016/j.sbspro.2013.09.106.
  • Acheson, D. J., & Hagoort, P. (2013). Stimulating the brain's language network: Syntactic ambiguity resolution after TMS to the IFG and MTG. Journal of Cognitive Neuroscience, 25(10), 1664-1677. doi:10.1162/jocn_a_00430.

    Abstract

    The posterior middle temporal gyrus (MTG) and inferior frontal gyrus (IFG) are two critical nodes of the brain's language network. Previous neuroimaging evidence has supported a dissociation in language comprehension in which parts of the MTG are involved in the retrieval of lexical syntactic information and the IFG is involved in unification operations that maintain, select, and integrate multiple sources of information over time. In the present investigation, we tested for causal evidence of this dissociation by modulating activity in IFG and MTG using an offline TMS procedure: continuous theta-burst stimulation. Lexical–syntactic retrieval was manipulated by using sentences with and without a temporarily word-class (noun/verb) ambiguity (e.g., run). In one group of participants, TMS was applied to the IFG and MTG, and in a control group, no TMS was applied. Eye movements were recorded and quantified at two critical sentence regions: a temporarily ambiguous region and a disambiguating region. Results show that stimulation of the IFG led to a modulation of the ambiguity effect (ambiguous–unambiguous) at the disambiguating sentence region in three measures: first fixation durations, total reading times, and regressive eye movements into the region. Both IFG and MTG stimulation modulated the ambiguity effect for total reading times in the temporarily ambiguous sentence region relative to a control group. The current results demonstrate that an offline repetitive TMS protocol can have influences at a different point in time during online processing and provide causal evidence for IFG involvement in unification operations during sentence comprehension.
  • Andics, A., McQueen, J. M., & Petersson, K. M. (2013). Mean-based neural coding of voices. NeuroImage, 79, 351-360. doi:10.1016/j.neuroimage.2013.05.002.

    Abstract

    The social significance of recognizing the person who talks to us is obvious, but the neural mechanisms that mediate talker identification are unclear. Regions along the bilateral superior temporal sulcus (STS) and the inferior frontal cortex (IFC) of the human brain are selective for voices, and they are sensitive to rapid voice changes. Although it has been proposed that voice recognition is supported by prototype-centered voice representations, the involvement of these category-selective cortical regions in the neural coding of such "mean voices" has not previously been demonstrated. Using fMRI in combination with a voice identity learning paradigm, we show that voice-selective regions are involved in the mean-based coding of voice identities. Voice typicality is encoded on a supra-individual level in the right STS along a stimulus-dependent, identity-independent (i.e., voice-acoustic) dimension, and on an intra-individual level in the right IFC along a stimulus-independent, identity-dependent (i.e., voice identity) dimension. Voice recognition therefore entails at least two anatomically separable stages, each characterized by neural mechanisms that reference the central tendencies of voice categories.
  • Asaridou, S. S., & McQueen, J. M. (2013). Speech and music shape the listening brain: Evidence for shared domain-general mechanisms. Frontiers in Psychology, 4: 321. doi:10.3389/fpsyg.2013.00321.

    Abstract

    Are there bi-directional influences between speech perception and music perception? An answer to this question is essential for understanding the extent to which the speech and music that we hear are processed by domain-general auditory processes and/or by distinct neural auditory mechanisms. This review summarizes a large body of behavioral and neuroscientific findings which suggest that the musical experience of trained musicians does modulate speech processing, and a sparser set of data, largely on pitch processing, which suggest in addition that linguistic experience, in particular learning a tone language, modulates music processing. Although research has focused mostly on music on speech effects, we argue that both directions of influence need to be studied, and conclude that the picture which thus emerges is one of mutual interaction across domains. In particular, it is not simply that experience with spoken language has some effects on music perception, and vice versa, but that because of shared domain-general subcortical and cortical networks, experiences in both domains influence behavior in both domains.
  • De Boer, M., Toni, I., & Willems, R. M. (2013). What drives successful verbal communication? Frontiers in Human Neuroscience, 7: 622. doi:10.3389/fnhum.2013.00622.

    Abstract

    There is a vast amount of potential mappings between behaviors and intentions in communication: a behavior can indicate a multitude of different intentions, and the same intention can be communicated with a variety of behaviors. Humans routinely solve these many-to-many referential problems when producing utterances for an Addressee. This ability might rely on social cognitive skills, for instance, the ability to manipulate unobservable summary variables to disambiguate ambiguous behavior of other agents (“mentalizing”) and the drive to invest resources into changing and understanding the mental state of other agents (“communicative motivation”). Alternatively, the ambiguities of verbal communicative interactions might be solved by general-purpose cognitive abilities that process cues that are incidentally associated with the communicative interaction. In this study, we assess these possibilities by testing which cognitive traits account for communicative success during a verbal referential task. Cognitive traits were assessed with psychometric scores quantifying motivation, mentalizing abilities, and general-purpose cognitive abilities, taxing abstract visuo-spatial abilities. Communicative abilities of participants were assessed by using an on-line interactive task that required a speaker to verbally convey a concept to an Addressee. The communicative success of the utterances was quantified by measuring how frequently a number of Evaluators would infer the correct concept. Speakers with high motivational and general-purpose cognitive abilities generated utterances that were more easily interpreted. These findings extend to the domain of verbal communication the notion that motivational and cognitive factors influence the human ability to rapidly converge on shared communicative innovations.
  • Campisi, E., & Ozyurek, A. (2013). Iconicity as a communicative strategy: Recipient design in multimodal demonstrations for adults and children. Journal of Pragmatics, 47, 14-27. doi:10.1016/j.pragma.2012.12.007.

    Abstract

    Humans are the only species that uses communication to teach new knowledge to novices, usually to children (Tomasello, 1999 and Csibra and Gergely, 2006). This context of communication can employ “demonstrations” and it takes place with or without the help of objects (Clark, 1996). Previous research has focused on understanding the nature of demonstrations for very young children and with objects involved. However, little is known about the strategies used in demonstrating an action to an older child in comparison to another adult and without the use of objects, i.e., with gestures only. We tested if during demonstration of an action speakers use different degrees of iconicity in gestures for a child compared to an adult. 18 Italian subjects described to a camera how to make coffee imagining the listener as a 12-year-old child, a novice or an expert adult. While speech was found more informative both for the novice adult and for the child compared to the expert adult, the rate of iconic gestures increased and they were more informative and bigger only for the child compared to both of the adult conditions. Iconicity in gestures can be a powerful communicative strategy in teaching new knowledge to children in demonstrations and this is in line with claims that it can be used as a scaffolding device in grounding knowledge in experience (Perniss et al., 2010).
  • Cappuccio, M. L., Chu, M., & Kita, S. (2013). Pointing as an instrumental gesture: Gaze representation through indication. Humana.Mente: Journal of Philosophical Studies, 24, 125-149.

    Abstract

    We call those gestures “instrumental” that can enhance certain thinking processes of an agent by offering him representational models of his actions in a virtual space of imaginary performative possibilities. We argue that pointing is an instrumental gesture in that it represents geometrical information on one’s own gaze direction (i.e., a spatial model for attentional/ocular fixation/orientation), and provides a ritualized template for initiating gaze coordination and joint attention. We counter two possible objections, asserting respectively that the representational content of pointing is not constitutive, but derived from language, and that pointing directly solicits gaze coordination, without representing it. We consider two studies suggesting that attention and spatial perception are actively modified by one’s own pointing activity: the first study shows that pointing gestures help children link sets of objects to their corresponding number words; the second, that adults are faster and more accurate in counting when they point.
  • Cristia, A., Dupoux, E., Hakuno, Y., Lloyd-Fox, S., Schuetze, M., Kivits, J., Bergvelt, T., Van Gelder, M., Filippin, L., Charron, S., & Minagawa-Kawai, Y. (2013). An online database of infant functional Near InfraRed Spectroscopy studies: A community-augmented systematic review. PLoS One, 8(3): e58906. doi:10.1371/journal.pone.0058906.

    Abstract

    Until recently, imaging the infant brain was very challenging. Functional Near InfraRed Spectroscopy (fNIRS) is a promising, relatively novel technique, whose use is rapidly expanding. As an emergent field, it is particularly important to share methodological knowledge to ensure replicable and robust results. In this paper, we present a community-augmented database which will facilitate precisely this exchange. We tabulated articles and theses reporting empirical fNIRS research carried out on infants below three years of age along several methodological variables. The resulting spreadsheet has been uploaded in a format allowing individuals to continue adding new results, and download the most recent version of the table. Thus, this database is ideal to carry out systematic reviews. We illustrate its academic utility by focusing on the factors affecting three key variables: infant attrition, the reliability of oxygenated and deoxygenated responses, and signal-to-noise ratios. We then discuss strengths and weaknesses of the DBIfNIRS, and conclude by suggesting a set of simple guidelines aimed to facilitate methodological convergence through the standardization of reports.
  • Cristia, A. (2013). Input to language: The phonetics of infant-directed speech. Language and Linguistics Compass, 7, 157-170. doi:10.1111/lnc3.12015.

    Abstract

    Over the first year of life, infant perception changes radically as the child learns the phonology of the ambient language from the speech she is exposed to. Since infant-directed speech attracts the child's attention more than other registers, it is necessary to describe that input in order to understand language development, and to address questions of learnability. In this review, evidence from corpora analyses, experimental studies, and observational paradigms is brought together to outline the first comprehensive empirical picture of infant-directed speech and its effects on language acquisition. The ensuing landscape suggests that infant-directed speech provides an emotionally and linguistically rich input to language acquisition

    Additional information

    Cristia_Suppl_Material.xls
  • Cristia, A., Mielke, J., Daland, R., & Peperkamp, S. (2013). Similarity in the generalization of implicitly learned sound patterns. Journal of Laboratory Phonology, 4(2), 259-285.

    Abstract

    A core property of language is the ability to generalize beyond observed examples. In two experiments, we explore how listeners generalize implicitly learned sound patterns to new nonwords and to new sounds, with the goal of shedding light on how similarity affects treatment of potential generalization targets. During the exposure phase, listeners heard nonwords whose onset consonant was restricted to a subset of a natural class (e.g., /d g v z Z/). During the test phase, listeners were presented with new nonwords and asked to judge how frequently they had been presented before; some of the test items began with a consonant from the exposure set (e.g., /d/), and some began with novel consonants with varying relations to the exposure set (e.g., /b/, which is highly similar to all onsets in the training set; /t/, which is highly similar to one of the training onsets; and /p/, which is less similar than the other two). The exposure onset was rated most frequent, indicating that participants encoded onset attestation in the exposure set, and generalized it to new nonwords. Participants also rated novel consonants as somewhat frequent, indicating generalization to onsets that did not occur in the exposure phase. While generalization could be accounted for in terms of featural distance, it was insensitive to natural class structure. Generalization to new sounds was predicted better by models requiring prior linguistic knowledge (either traditional distinctive features or articulatory phonetic information) than by a model based on a linguistically naïve measure of acoustic similarity.
  • Debreslioska, S., Ozyurek, A., Gullberg, M., & Perniss, P. M. (2013). Gestural viewpoint signals referent accessibility. Discourse Processes, 50(7), 431-456. doi:10.1080/0163853x.2013.824286.

    Abstract

    The tracking of entities in discourse is known to be a bimodal phenomenon. Speakers achieve cohesion in speech by alternating between full lexical forms, pronouns, and zero anaphora as they track referents. They also track referents in co-speech gestures. In this study, we explored how viewpoint is deployed in reference tracking, focusing on representations of animate entities in German narrative discourse. We found that gestural viewpoint systematically varies depending on discourse context. Speakers predominantly use character viewpoint in maintained contexts and observer viewpoint in reintroduced contexts. Thus, gestural viewpoint seems to function as a cohesive device in narrative discourse. The findings expand on and provide further evidence for the coordination between speech and gesture on the discourse level that is crucial to understanding the tight link between the two modalities.
  • Dolscheid, S., Shayan, S., Majid, A., & Casasanto, D. (2013). The thickness of musical pitch: Psychophysical evidence for linguistic relativity. Psychological Science, 24, 613-621. doi:10.1177/0956797612457374.

    Abstract

    Do people who speak different languages think differently, even when they are not using language? To find out, we used nonlinguistic psychophysical tasks to compare mental representations of musical pitch in native speakers of Dutch and Farsi. Dutch speakers describe pitches as high (hoog) or low (laag), whereas Farsi speakers describe pitches as thin (na-zok) or thick (koloft). Differences in language were reflected in differences in performance on two pitch-reproduction tasks, even though the tasks used simple, nonlinguistic stimuli and responses. To test whether experience using language influences mental representations of pitch, we trained native Dutch speakers to describe pitch in terms of thickness, as Farsi speakers do. After the training, Dutch speakers’ performance on a nonlinguistic psychophysical task resembled the performance of native Farsi speakers. People who use different linguistic space-pitch metaphors also think about pitch differently. Language can play a causal role in shaping nonlinguistic representations of musical pitch.

    Additional information

    DS_10.1177_0956797612457374.pdf
  • Eisner, F., Melinger, A., & Weber, A. (2013). Constraints on the transfer of perceptual learning in accented speech. Frontiers in Psychology, 4: 148. doi:10.3389/fpsyg.2013.00148.

    Abstract

    The perception of speech sounds can be re-tuned rapidly through a mechanism of lexically-driven learning (Norris et al 2003, Cogn.Psych. 47). Here we investigated this type of learning for English voiced stop consonants which are commonly de-voiced in word final position by Dutch learners of English . Specifically, this study asked under which conditions the change in pre-lexical representation encodes phonological information about the position of the critical sound within a word. After exposure to a Dutch learner’s productions of de-voiced stops in word-final position (but not in any other positions), British English listeners showed evidence of perceptual learning in a subsequent cross-modal priming task, where auditory primes with voiceless final stops (e.g., ‘seat’), facilitated recognition of visual targets with voiced final stops (e.g., SEED). This learning generalized to test pairs where the critical contrast was in word-initial position, e.g. auditory primes such as ‘town’ facilitated recognition of visual targets like DOWN (Experiment 1). Control listeners, who had not heard any stops by the speaker during exposure, showed no learning effects. The generalization to word-initial position did not occur when participants had also heard correctly voiced, word-initial stops during exposure (Experiment 2), and when the speaker was a native BE speaker who mimicked the word-final devoicing (Experiment 3). These results suggest that word position can be encoded in the pre-lexical adjustment to the accented phoneme contrast. Lexcially-guided feedback, distributional properties of the input, and long-term representations of accents all appear to modulate the pre-lexical re-tuning of phoneme categories.
  • Erb, J., Henry, M. J., Eisner, F., & Obleser, J. (2013). The brain dynamics of rapid perceptual adaptation to adverse listening conditions. The Journal of Neuroscience, 33, 10688-10697. doi:10.1523/​JNEUROSCI.4596-12.2013.

    Abstract

    Listeners show a remarkable ability to quickly adjust to degraded speech input. Here, we aimed to identify the neural mechanisms of such short-term perceptual adaptation. In a sparse-sampling, cardiac-gated functional magnetic resonance imaging (fMRI) acquisition, human listeners heard and repeated back 4-band-vocoded sentences (in which the temporal envelope of the acoustic signal is preserved, while spectral information is highly degraded). Clear-speech trials were included as baseline. An additional fMRI experiment on amplitude modulation rate discrimination quantified the convergence of neural mechanisms that subserve coping with challenging listening conditions for speech and non-speech. First, the degraded speech task revealed an “executive” network (comprising the anterior insula and anterior cingulate cortex), parts of which were also activated in the non-speech discrimination task. Second, trial-by-trial fluctuations in successful comprehension of degraded speech drove hemodynamic signal change in classic “language” areas (bilateral temporal cortices). Third, as listeners perceptually adapted to degraded speech, downregulation in a cortico-striato-thalamo-cortical circuit was observable. The present data highlight differential upregulation and downregulation in auditory–language and executive networks, respectively, with important subcortical contributions when successfully adapting to a challenging listening situation.
  • Gentner, D., Ozyurek, A., Gurcanli, O., & Goldin-Meadow, S. (2013). Spatial language facilitates spatial cognition: Evidence from children who lack language input. Cognition, 127, 318-330. doi:10.1016/j.cognition.2013.01.003.

    Abstract

    Does spatial language influence how people think about space? To address this question, we observed children who did not know a conventional language, and tested their performance on nonlinguistic spatial tasks. We studied deaf children living in Istanbul whose hearing losses prevented them from acquiring speech and whose hearing parents had not exposed them to sign. Lacking a conventional language, the children used gestures, called homesigns, to communicate. In Study 1, we asked whether homesigners used gesture to convey spatial relations, and found that they did not. In Study 2, we tested a new group of homesigners on a Spatial Mapping Task, and found that they performed significantly worse than hearing Turkish children who were matched to the deaf children on another cognitive task. The absence of spatial language thus went hand-in-hand with poor performance on the nonlinguistic spatial task, pointing to the importance of spatial language in thinking about space.
  • Gross, J., Baillet, S., Barnes, G. R., Henson, R. N., Hillebrand, A., Jensen, O., Jerbi, K., Litvak, V., Maess, B., Oostenveld, R., Parkkonen, L., Taylor, J. R., Van Wassenhove, V., Wibral, M., & Schoffelen, J.-M. (2013). Good practice for conducting and reporting MEG research. NeuroImage, 65, 349-363. doi:10.1016/j.neuroimage.2012.10.001.

    Abstract

    Magnetoencephalographic (MEG) recordings are a rich source of information about the neural dynamics underlying cognitive processes in the brain, with excellent temporal and good spatial resolution. In recent years there have been considerable advances in MEG hardware developments as well as methodological developments. Sophisticated analysis techniques are now routinely applied and continuously improved, leading to fascinating insights into the intricate dynamics of neural processes. However, the rapidly increasing level of complexity of the different steps in a MEG study make it difficult for novices, and sometimes even for experts, to stay aware of possible limitations and caveats. Furthermore, the complexity of MEG data acquisition and data analysis requires special attention when describing MEG studies in publications, in order to facilitate interpretation and reproduction of the results. This manuscript aims at making recommendations for a number of important data acquisition and data analysis steps and suggests details that should be specified in manuscripts reporting MEG studies. These recommendations will hopefully serve as guidelines that help to strengthen the position of the MEG research community within the field of neuroscience, and may foster discussion within the community in order to further enhance the quality and impact of MEG research.
  • Hagoort, P. (2013). MUC (Memory, Unification, Control) and beyond. Frontiers in Psychology, 4: 416. doi:10.3389/fpsyg.2013.00416.

    Abstract

    A neurobiological model of language is discussed that overcomes the shortcomings of the classical Wernicke-Lichtheim-Geschwind model. It is based on a subdivision of language processing into three components: Memory, Unification, and Control. The functional components as well as the neurobiological underpinnings of the model are discussed. In addition, the need for extension of the model beyond the classical core regions for language is shown. Attentional networks as well as networks for inferential processing are crucial to realize language comprehension beyond single word processing and beyond decoding propositional content. It is shown that this requires the dynamic interaction between multiple brain regions.
  • Hagoort, P., & Meyer, A. S. (2013). What belongs together goes together: the speaker-hearer perspective. A commentary on MacDonald's PDC account. Frontiers in Psychology, 4: 228. doi:10.3389/fpsyg.2013.00228.

    Abstract

    First paragraph:
    MacDonald (2013) proposes that distributional properties of language and processing biases in language comprehension can to a large extent be attributed to consequences of the language production process. In essence, the account is derived from the principle of least effort that was formulated by Zipf, among others (Zipf, 1949; Levelt, 2013). However, in Zipf's view the outcome of the least effort principle was a compromise between least effort for the speaker and least effort for the listener, whereas MacDonald puts most of the burden on the production process.
  • Holler, J., Turner, K., & Varcianna, T. (2013). It's on the tip of my fingers: Co-speech gestures during lexical retrieval in different social contexts. Language and Cognitive Processes, 28(10), 1509-1518. doi:10.1080/01690965.2012.698289.

    Abstract

    The Lexical Retrieval Hypothesis proposes that gestures function at the level of speech production, aiding in the retrieval of lexical items from the mental lexicon. However, empirical evidence for this account is mixed, and some critics argue that a more likely function of gestures during lexical retrieval is a communicative one. The present study was designed to test these predictions against each other by keeping lexical retrieval difficulty constant while varying social context. Participants' gestures were analysed during tip of the tongue experiences when communicating with a partner face-to-face (FTF), while being separated by a screen, or on their own by speaking into a voice recorder. The results show that participants in the FTF context produced significantly more representational gestures than participants in the solitary condition. This suggests that, even in the specific context of lexical retrieval difficulties, representational gestures appear to play predominantly a communicative role.

    Files private

    Request files
  • Kaltwasser, L., Ries, S., Sommer, W., Knight, R., & Willems, R. M. (2013). Independence of valence and reward in emotional word processing: Electrophysiological evidence. Frontiers in Psychology, 4: 168. doi:10.3389/fpsyg.2013.00168.

    Abstract

    Both emotion and reward are primary modulators of cognition: Emotional word content enhances word processing, and reward expectancy similarly amplifies cognitive processing from the perceptual up to the executive control level. Here, we investigate how these primary regulators of cognition interact. We studied how the anticipation of gain or loss modulates the neural time course (event-related potentials, ERPs) related to processing of emotional words. Participants performed a semantic categorization task on emotional and neutral words, which were preceded by a cue indicating that performance could lead to monetary gain or loss. Emotion-related and reward-related effects occurred in different time windows, did not interact statistically, and showed different topographies. This speaks for an independence of reward expectancy and the processing of emotional word content. Therefore, privileged processing given to emotionally valenced words seems immune to short-term modulation of reward. Models of language comprehension should be able to incorporate effects of reward and emotion on language processing, and the current study argues for an architecture in which reward and emotion do not share a common neurobiological mechanism
  • Kominsky, J. F., & Casasanto, D. (2013). Specific to whose body? Perspective taking and the spatial mapping of valence. Frontiers in Psychology, 4: 266. doi:10.3389/fpsyg.2013.00266.

    Abstract

    People tend to associate the abstract concepts of “good” and “bad” with their fluent and disfluent sides of space, as determined by their natural handedness or by experimental manipulation (Casasanto, 2011). Here we investigated influences of spatial perspective taking on the spatialization of “good” and “bad.” In the first experiment, participants indicated where a schematically drawn cartoon character would locate “good” and “bad” stimuli. Right-handers tended to assign “good” to the right and “bad” to the left side of egocentric space when the character shared their spatial perspective, but when the character was rotated 180° this spatial mapping was reversed: good was assigned to the character’s right side, not the participant’s. The tendency to spatialize valence from the character’s perspective was stronger in the second experiment, when participants were shown a full-featured photograph of the character. In a third experiment, most participants not only spatialized “good” and “bad” from the character’s perspective, they also based their judgments on a salient attribute of the character’s body (an injured hand) rather than their own body. Taking another’s spatial perspective encourages people to compute space-valence mappings using an allocentric frame of reference, based on the fluency with which the other person could perform motor actions with their right or left hand. When people reason from their own spatial perspective, their judgments depend, in part, on the specifics of their bodies; when people reason from someone else’s perspective, their judgments may depend on the specifics of the other person’s body, instead. - See more at: http://journal.frontiersin.org/Journal/10.3389/fpsyg.2013.00266
  • Kooijman, V., Junge, C., Johnson, E. K., Hagoort, P., & Cutler, A. (2013). Predictive brain signals of linguistic development. Frontiers in Psychology, 4: 25. doi:10.3389/fpsyg.2013.00025.

    Abstract

    The ability to extract word forms from continuous speech is a prerequisite for constructing a vocabulary and emerges in the first year of life. Electrophysiological (ERP) studies of speech segmentation by 9- to 12-month-old listeners in several languages have found a left-localized negativity linked to word onset as a marker of word detection. We report an ERP study showing significant evidence of speech segmentation in Dutch-learning 7-month-olds. In contrast to the left-localized negative effect reported with older infants, the observed overall mean effect had a positive polarity. Inspection of individual results revealed two participant sub-groups: a majority showing a positive-going response, and a minority showing the left negativity observed in older age groups. We retested participants at age three, on vocabulary comprehension and word and sentence production. On every test, children who at 7 months had shown the negativity associated with segmentation of words from speech outperformed those who had produced positive-going brain responses to the same input. The earlier that infants show the left-localized brain responses typically indicating detection of words in speech, the better their early childhood language skills.
  • Kristensen, L. B., Wang, L., Petersson, K. M., & Hagoort, P. (2013). The interface between language and attention: Prosodic focus marking recruits a general attention network in spoken language comprehension. Cerebral Cortex, 23, 1836-1848. doi:10.1093/cercor/bhs164.

    Abstract

    In spoken language, pitch accent can mark certain information as focus, whereby more attentional resources are allocated to the focused information. Using functional magnetic resonance imaging, this study examined whether pitch accent, used for marking focus, recruited general attention networks during sentence comprehension. In a language task, we independently manipulated the prosody and semantic/pragmatic congruence of sentences. We found that semantic/pragmatic processing affected bilateral inferior and middle frontal gyrus. The prosody manipulation showed bilateral involvement of the superior/inferior parietal cortex, superior and middle temporal cortex, as well as inferior, middle, and posterior parts of the frontal cortex. We compared these regions with attention networks localized in an auditory spatial attention task. Both tasks activated bilateral superior/inferior parietal cortex, superior temporal cortex, and left precentral cortex. Furthermore, an interaction between prosody and congruence was observed in bilateral inferior parietal regions: for incongruent sentences, but not for congruent ones, there was a larger activation if the incongruent word carried a pitch accent, than if it did not. The common activations between the language task and the spatial attention task demonstrate that pitch accent activates a domain general attention network, which is sensitive to semantic/pragmatic aspects of language. Therefore, attention and language comprehension are highly interactive.

    Additional information

    Kirstensen_Cer_Cor_Suppl_Mat.doc
  • Lai, V. T., & Curran, T. (2013). ERP evidence for conceptual mappings and comparison processes during the comprehension of conventional and novel metaphors. Brain and Language, 127(3), 484-496. doi:10.1016/j.bandl.2013.09.010.

    Abstract

    Cognitive linguists suggest that understanding metaphors requires activation of conceptual mappings between the involved concepts. We tested whether mappings are indeed in use during metaphor comprehension, and what mapping means as a cognitive process with Event-Related Potentials. Participants read literal, conventional metaphorical, novel metaphorical, and anomalous target sentences preceded by primes with related or unrelated mappings. Experiment 1 used sentence-primes to activate related mappings, and Experiment 2 used simile-primes to induce comparison thinking. In the unprimed conditions of both experiments, metaphors elicited N400s more negative than the literals. In Experiment 1, related sentence-primes reduced the metaphor-literal N400 difference in conventional, but not in novel metaphors. In Experiment 2, related simile-primes reduced the metaphor-literal N400 difference in novel, but not clearly in conventional metaphors. We suggest that mapping as a process occurs in metaphors, and the ways in which it can be facilitated by comparison differ between conventional and novel metaphors.

    Additional information

    Lai_2013_supp.docx Erratum figure 1-4
  • Lai, J., & Poletiek, F. H. (2013). How “small” is “starting small” for learning hierarchical centre-embedded structures? Journal of Cognitive Psychology, 25, 423-435. doi:10.1080/20445911.2013.779247.

    Abstract

    Hierarchical centre-embedded structures pose a large difficulty for language learners due to their complexity. A recent artificial grammar learning study (Lai & Poletiek, 2011) demonstrated a starting-small (SS) effect, i.e., staged-input and sufficient exposure to 0-level-of-embedding exemplars were the critical conditions in learning AnBn structures. The current study aims to test: (1) a more sophisticated type of SS (a gradually rather than discretely growing input), and (2) the frequency distribution of the input. The results indicate that SS optimally works under other conditional cues, such as a skewed frequency distribution with simple stimuli being more numerous than complex ones.
  • Lai, V. T., & Boroditsky, L. (2013). The immediate and chronic influence of spatio-temporal metaphors on the mental representations of time in English, Mandarin, and Mandarin-English speakers. Frontiers in Psychology, 4: 142. doi:10.3389/fpsyg.2013.00142.

    Abstract

    In this paper we examine whether experience with spatial metaphors for time has an influence on people’s representation of time. In particular we ask whether spatiotemporal metaphors can have both chronic and immediate effects on temporal thinking. In Study 1, we examine the prevalence of ego-moving representations for time in Mandarin speakers, English speakers, and Mandarin-English (ME) bilinguals. As predicted by observations in linguistic analyses, we find that Mandarin speakers are less likely to take an ego-moving perspective than are English speakers. Further, we find that ME bilinguals tested in English are less likely to take an ego-moving perspective than are English monolinguals (an effect of L1 on meaning-making in L2), and also that ME bilinguals tested in Mandarin are more likely to take an ego-moving perspective than are Mandarin monolinguals (an effect of L2 on meaning-making in L1). These findings demonstrate that habits of metaphor use in one language can influence temporal reasoning in another language, suggesting the metaphors can have a chronic effect on patterns in thought. In Study 2 we test Mandarin speakers using either horizontal or vertical metaphors in the immediate context of the task. We find that Mandarin speakers are more likely to construct front-back representations of time when understanding front-back metaphors, and more likely to construct up-down representations of time when understanding up-down metaphors. These findings demonstrate that spatiotemporal metaphors can also have an immediate influence on temporal reasoning. Taken together, these findings demonstrate that the metaphors we use to talk about time have both immediate and long-term consequences for how we conceptualize and reason about this fundamental domain of experience.
  • Larson-Prior, L., Oostenveld, R., Della Penna, S., Michalareas, G., Prior, F., Babajani-Feremi, A., Schoffelen, J.-M., Marzetti, L., de Pasquale, F., Pompeo, F. D., Stout, J., Woolrich, M., Luo, Q., Bucholz, R., Fries, P., Pizzella, V., Romani, G., Corbetta, M., & Snyder, A. (2013). Adding dynamics to the Human Connectome Project with MEG. NeuroImage, 80, 190-201. doi:10.1016/j.neuroimage.2013.05.056.

    Abstract

    The Human Connectome Project (HCP) seeks to map the structural and functional connections between network elements in the human brain. Magnetoencephalography (MEG) provides a temporally rich source of information on brain network dynamics and represents one source of functional connectivity data to be provided by the HCP. High quality MEG data will be collected from 50 twin pairs both in the resting state and during performance of motor, working memory and language tasks. These data will be available to the general community. Additionally, using the cortical parcellation scheme common to all imaging modalities, the HCP will provide processing pipelines for calculating connection matrices as a function of time and frequency. Together with structural and functional data generated using magnetic resonance imaging methods, these data represent a unique opportunity to investigate brain network connectivity in a large cohort of normal adult human subjects. The analysis pipeline software and the dynamic connectivity matrices that it generates will all be made freely available to the research community.
  • Lüttjohann, A., Schoffelen, J.-M., & Van Luijtelaar, G. (2013). Peri-ictal network dynamics of spike-wave discharges: Phase and spectral characteristics. Experimental Neurology, 239, 235-247. doi:10.1016/j.expneurol.2012.10.021.

    Abstract

    Purpose The brain is a highly interconnected neuronal assembly in which network analyses can greatly enlarge our knowledge on seizure generation. The cortico-thalamo-cortical network is the brain-network of interest in absence epilepsy. Here, network synchronization is assessed in a genetic absence model during 5 second long pre-ictal- > ictal transition periods. Method 16 male WAG/Rij rats were equipped with multiple electrodes targeting layer 4 to 6 of the somatosensory-cortex, rostral and caudal RTN, VPM, anterior-(ATN) and posterior (Po) thalamic nucleus. Local Field Potentials measured during pre-ictal- > ictal transition and during control periods were subjected to time-frequency and pairwise phase consistency analysis. Results Pre-ictally, all channels showed Spike-Wave Discharge (SWD) precursor activity (increases in spectral power), which were earliest and most pronounced in the somatosensory cortex. The caudal RTN decoupled from VPM, Po and cortical layer 4. Strong increases in synchrony were found between cortex and thalamus during SWD. Although increases between cortex and VPM were seen in SWD frequencies and its harmonics, boarder spectral increases (6-48 Hz) were seen between cortex and Po. All thalamic nuclei showed increased phase synchronization with Po but not with VPM. Conclusion Absence seizures are not sudden and unpredictable phenomena: the somatosensory cortex shows highest and earliest precursor activity. The pre-ictal decoupling of the caudal RTN might be a prerequisite of SWD generation. Po nucleus might be the primary thalamic counterpart to the somatosensory-cortex in the generation of the cortico-thalamic-cortical oscillations referred to as SWD.
  • Mazzone, M., & Campisi, E. (2013). Distributed intentionality: A model of intentional behavior in humans. Philosophical Psychology, 26, 267-290. doi:10.1080/09515089.2011.641743.

    Abstract

    Is human behavior, and more specifically linguistic behavior, intentional? Some scholars have proposed that action is driven in a top-down manner by one single intention—i.e.,one single conscious goal. Others have argued that actions are mostly non-intentional,insofar as often the single goal driving an action is not consciously represented. We intend to claim that both alternatives are unsatisfactory; more specifically, we claim that actions are intentional, but intentionality is distributed across complex goal-directed representations of action, rather than concentrated in single intentions driving action in a top-down manner. These complex representations encompass a multiplicity of goals, together with other components which are not goals themselves, and are the result of a largely automatic dynamic of activation; such an automatic processing, however, does not preclude the involvement of conscious attention, shifting from one component to the other of the overall goal-directed representation.

    Files private

    Request files
  • Meyer, A. S., & Hagoort, P. (2013). What does it mean to predict one's own utterances? [Commentary on Pickering & Garrod]. Behavioral and Brain Sciences, 36, 367-368. doi:10.1017/S0140525X12002786.

    Abstract

    Many authors have recently highlighted the importance of prediction for language comprehension. Pickering & Garrod (P&G) are the first to propose a central role for prediction in language production. This is an intriguing idea, but it is not clear what it means for speakers to predict their own utterances, and how prediction during production can be empirically distinguished from production proper.
  • Minagawa-Kawai, Y., Cristia, A., Long, B., Vendelin, I., Hakuno, Y., Dutat, M., Filippin, L., Cabrol, D., & Dupoux, E. (2013). Insights on NIRS sensitivity from a cross-linguistic study on the emergence of phonological grammar. Frontiers in Psychology, 4: 170. doi:10.3389/fpsyg.2013.00170.

    Abstract

    Each language has a unique set of phonemic categories and phonotactic rules which determine permissible sound sequences in that language. Behavioral research demonstrates that one’s native language shapes the perception of both sound categories and sound sequences in adults, and neuroimaging results further indicate that the processing of native phonemes and phonotactics involves a left-dominant perisylvian brain network. Recent work using a novel technique, functional Near InfraRed Spectroscopy (NIRS), has suggested that a left-dominant network becomes evident toward the end of the first year of life as infants process phonemic contrasts. The present research project attempted to assess whether the same pattern would be seen for native phonotactics. We measured brain responses in Japanese- and French-learning infants to two contrasts: Abuna vs. Abna (a phonotactic contrast that is native in French, but not in Japanese) and Abuna vs. Abuuna (a vowel length contrast that is native in Japanese, but not in French). Results did not show a significant response to either contrast in either group, unlike both previous behavioral research on phonotactic processing and NIRS work on phonemic processing. To understand these null results, we performed similar NIRS experiments with Japanese adult participants. These data suggest that the infant null results arise from an interaction of multiple factors, involving the suitability of the experimental paradigm for NIRS measurements and stimulus perceptibility. We discuss the challenges facing this novel technique, particularly focusing on the optimal stimulus presentation which could yield strong enough hemodynamic responses when using the change detection paradigm.
  • Nieuwenhuis, I. L., Folia, V., Forkstam, C., Jensen, O., & Petersson, K. M. (2013). Sleep promotes the extraction of grammatical rules. PLoS One, 8(6): e65046. doi:10.1371/journal.pone.0065046.

    Abstract

    Grammar acquisition is a high level cognitive function that requires the extraction of complex rules. While it has been proposed that offline time might benefit this type of rule extraction, this remains to be tested. Here, we addressed this question using an artificial grammar learning paradigm. During a short-term memory cover task, eighty-one human participants were exposed to letter sequences generated according to an unknown artificial grammar. Following a time delay of 15 min, 12 h (wake or sleep) or 24 h, participants classified novel test sequences as Grammatical or Non-Grammatical. Previous behavioral and functional neuroimaging work has shown that classification can be guided by two distinct underlying processes: (1) the holistic abstraction of the underlying grammar rules and (2) the detection of sequence chunks that appear at varying frequencies during exposure. Here, we show that classification performance improved after sleep. Moreover, this improvement was due to an enhancement of rule abstraction, while the effect of chunk frequency was unaltered by sleep. These findings suggest that sleep plays a critical role in extracting complex structure from separate but related items during integrative memory processing. Our findings stress the importance of alternating periods of learning with sleep in settings in which complex information must be acquired.
  • Peeters, D., Dijkstra, T., & Grainger, J. (2013). The representation and processing of identical cognates by late bilinguals: RT and ERP effects. Journal of Memory and Language, 68, 315-332. doi:10.1016/j.jml.2012.12.003.

    Abstract

    Across the languages of a bilingual, translation equivalents can have the same orthographic form and shared meaning (e.g., TABLE in French and English). How such words, called orthographically identical cognates, are processed and represented in the bilingual brain is not well understood. In the present study, late French–English bilinguals processed such identical cognates and control words in an English lexical decision task. Both behavioral and electrophysiological data were collected. Reaction times to identical cognates were shorter than for non-cognate controls and depended on both English and French frequency. Cognates with a low English frequency showed a larger cognate advantage than those with a high English frequency. In addition, N400 amplitude was found to be sensitive to cognate status and both the English and French frequency of the cognate words. Theoretical consequences for the processing and representation of identical cognates are discussed.
  • Piai, V., Roelofs, A., Acheson, D. J., & Takashima, A. (2013). Attention for speaking: Neural substrates of general and specific mechanisms for monitoring and control. Frontiers in Human Neuroscience, 7: 832. doi:10.3389/fnhum.2013.00832.

    Abstract

    Accumulating evidence suggests that some degree of attentional control is required to regulate and monitor processes underlying speaking. Although progress has been made in delineating the neural substrates of the core language processes involved in speaking, substrates associated with regulatory and monitoring processes have remained relatively underspecified. We report the results of an fMRI study examining the neural substrates related to performance in three attention-demanding tasks varying in the amount of linguistic processing: vocal picture naming while ignoring distractors (picture-word interference, PWI); vocal color naming while ignoring distractors (Stroop); and manual object discrimination while ignoring spatial position (Simon task). All three tasks had congruent and incongruent stimuli, while PWI and Stroop also had neutral stimuli. Analyses focusing on common activation across tasks identified a portion of the dorsal anterior cingulate cortex (ACC) that was active in incongruent trials for all three tasks, suggesting that this region subserves a domain-general attentional control function. In the language tasks, this area showed increased activity for incongruent relative to congruent stimuli, consistent with the involvement of domain-general mechanisms of attentional control in word production. The two language tasks also showed activity in anterior-superior temporal gyrus (STG). Activity increased for neutral PWI stimuli (picture and word did not share the same semantic category) relative to incongruent (categorically related) and congruent stimuli. This finding is consistent with the involvement of language-specific areas in word production, possibly related to retrieval of lexical-semantic information from memory. The current results thus suggest that in addition to engaging language-specific areas for core linguistic processes, speaking also engages the ACC, a region that is likely implementing domain-general attentional control.
  • Piai, V., Meyer, L., Schreuder, R., & Bastiaansen, M. C. M. (2013). Sit down and read on: Working memory and long-term memory in particle-verb processing. Brain and Language, 127(2), 296-306. doi:10.1016/j.bandl.2013.09.015.

    Abstract

    Particle verbs (e.g., look up) are lexical items for which particle and verb share a single lexical entry. Using event-related brain potentials, we examined working memory and long-term memory involvement in particle-verb processing. Dutch participants read sentences with head verbs that allow zero, two, or more than five particles to occur downstream. Additionally, sentences were presented for which the encountered particle was semantically plausible, semantically implausible, or forming a non-existing particle verb. An anterior negativity was observed at the verbs that potentially allow for a particle downstream relative to verbs that do not, possibly indexing storage of the verb until the dependency with its particle can be closed. Moreover, a graded N400 was found at the particle (smallest amplitude for plausible particles and largest for particles forming non-existing particle verbs), suggesting that lexical access to a shared lexical entry occurred at two separate time points.
  • Rommers, J., Dijkstra, T., & Bastiaansen, M. C. M. (2013). Context-dependent semantic processing in the human brain: Evidence from idiom comprehension. Journal of Cognitive Neuroscience, 25(5), 762-776. doi:10.1162/jocn_a_00337.

    Abstract

    Language comprehension involves activating word meanings and integrating them with the sentence context. This study examined whether these routines are carried out even when they are theoretically unnecessary, namely in the case of opaque idiomatic expressions, for which the literal word meanings are unrelated to the overall meaning of the expression. Predictable words in sentences were replaced by a semantically related or unrelated word. In literal sentences, this yielded previously established behavioral and electrophysiological signatures of semantic processing: semantic facilitation in lexical decision, a reduced N400 for semantically related relative to unrelated words, and a power increase in the gamma frequency band that was disrupted by semantic violations. However, the same manipulations in idioms yielded none of these effects. Instead, semantic violations elicited a late positivity in idioms. Moreover, gamma band power was lower in correct idioms than in correct literal sentences. It is argued that the brain's semantic expectancy and literal word meaning integration operations can, to some extent, be “switched off” when the context renders them unnecessary. Furthermore, the results lend support to models of idiom comprehension that involve unitary idiom representations.
  • Segaert, K., Kempen, G., Petersson, K. M., & Hagoort, P. (2013). Syntactic priming and the lexical boost effect during sentence production and sentence comprehension: An fMRI study. Brain and Language, 124, 174-183. doi:10.1016/j.bandl.2012.12.003.

    Abstract

    Behavioral syntactic priming effects during sentence comprehension are typically observed only if both the syntactic structure and lexical head are repeated. In contrast, during production syntactic priming occurs with structure repetition alone, but the effect is boosted by repetition of the lexical head. We used fMRI to investigate the neuronal correlates of syntactic priming and lexical boost effects during sentence production and comprehension. The critical measure was the magnitude of fMRI adaptation to repetition of sentences in active or passive voice, with or without verb repetition. In conditions with repeated verbs, we observed adaptation to structure repetition in the left IFG and MTG, for active and passive voice. However, in the absence of repeated verbs, adaptation occurred only for passive sentences. None of the fMRI adaptation effects yielded differential effects for production versus comprehension, suggesting that sentence comprehension and production are subserved by the same neuronal infrastructure for syntactic processing.

    Additional information

    Segaert_Supplementary_data_2013.docx
  • Segaert, K., Weber, K., De Lange, F., Petersson, K. M., & Hagoort, P. (2013). The suppression of repetition enhancement: A review of fMRI studies. Neuropsychologia, 51, 59-66. doi:10.1016/j.neuropsychologia.2012.11.006.

    Abstract

    Repetition suppression in fMRI studies is generally thought to underlie behavioural facilitation effects (i.e., priming) and it is often used to identify the neuronal representations associated with a stimulus. However, this pays little heed to the large number of repetition enhancement effects observed under similar conditions. In this review, we identify several cognitive variables biasing repetition effects in the BOLD response towards enhancement instead of suppression. These variables are stimulus recognition, learning, attention, expectation and explicit memory. We also evaluate which models can account for these repetition effects and come to the conclusion that there is no one single model that is able to embrace all repetition enhancement effects. Accumulation, novel network formation as well as predictive coding models can all explain subsets of repetition enhancement effects.
  • Stolk, A., Verhagen, L., Schoffelen, J.-M., Oostenveld, R., Blokpoel, M., Hagoort, P., van Rooij, I., & Tonia, I. (2013). Neural mechanisms of communicative innovation. Proceedings of the National Academy of Sciences of the United States of America, 110(36), 14574-14579. doi:10.1073/pnas.1303170110.

    Abstract

    Human referential communication is often thought as coding-decoding a set of symbols, neglecting that establishing shared meanings requires a computational mechanism powerful enough to mutually negotiate them. Sharing the meaning of a novel symbol might rely on similar conceptual inferences across communicators or on statistical similarities in their sensorimotor behaviors. Using magnetoencephalography, we assess spectral, temporal, and spatial characteristics of neural activity evoked when people generate and understand novel shared symbols during live communicative interactions. Solving those communicative problems induced comparable changes in the spectral profile of neural activity of both communicators and addressees. This shared neuronal up-regulation was spatially localized to the right temporal lobe and the ventromedial prefrontal cortex and emerged already before the occurrence of a specific communicative problem. Communicative innovation relies on neuronal computations that are shared across generating and understanding novel shared symbols, operating over temporal scales independent from transient sensorimotor behavior.
  • Stolk, A., Todorovic, A., Schoffelen, J.-M., & Oostenveld, R. (2013). Online and offline tools for head movement compensation in MEG. NeuroImage, 68, 39-48. doi:10.1016/j.neuroimage.2012.11.047.

    Abstract

    Magnetoencephalography (MEG) is measured above the head, which makes it sensitive to variations of the head position with respect to the sensors. Head movements blur the topography of the neuronal sources of the MEG signal, increase localization errors, and reduce statistical sensitivity. Here we describe two novel and readily applicable methods that compensate for the detrimental effects of head motion on the statistical sensitivity of MEG experiments. First, we introduce an online procedure that continuously monitors head position. Second, we describe an offline analysis method that takes into account the head position time-series. We quantify the performance of these methods in the context of three different experimental settings, involving somatosensory, visual and auditory stimuli, assessing both individual and group-level statistics. The online head localization procedure allowed for optimal repositioning of the subjects over multiple sessions, resulting in a 28% reduction of the variance in dipole position and an improvement of up to 15% in statistical sensitivity. Offline incorporation of the head position time-series into the general linear model resulted in improvements of group-level statistical sensitivity between 15% and 29%. These tools can substantially reduce the influence of head movement within and between sessions, increasing the sensitivity of many cognitive neuroscience experiments.
  • Tsuji, S., & Cristia, A. (2013). Fifty years of infant vowel discrimination research: What have we learned? Journal of the Phonetic Society of Japan, 17(3), 1-11.
  • Van Berkum, J. J. A., De Goede, D., Van Alphen, P. M., Mulder, E. R., & Kerstholt, J. H. (2013). How robust is the language architecture? The case of mood. Frontiers in Psychology, 4: 505. doi:10.3389/fpsyg.2013.00505.

    Abstract

    In neurocognitive research on language, the processing principles of the system at hand are usually assumed to be relatively invariant. However, research on attention, memory, decision-making, and social judgment has shown that mood can substantially modulate how the brain processes information. For example, in a bad mood, people typically have a narrower focus of attention and rely less on heuristics. In the face of such pervasive mood effects elsewhere in the brain, it seems unlikely that language processing would remain untouched. In an EEG experiment, we manipulated the mood of participants just before they read texts that confirmed or disconfirmed verb-based expectations about who would be talked about next (e.g., that “David praised Linda because … ” would continue about Linda, not David), or that respected or violated a syntactic agreement rule (e.g., “The boys turns”). ERPs showed that mood had little effect on syntactic parsing, but did substantially affect referential anticipation: whereas readers anticipated information about a specific person when they were in a good mood, a bad mood completely abolished such anticipation. A behavioral follow-up experiment suggested that a bad mood did not interfere with verb-based expectations per se, but prevented readers from using that information rapidly enough to predict upcoming reference on the fly, as the sentence unfolds. In all, our results reveal that background mood, a rather unobtrusive affective state, selectively changes a crucial aspect of real-time language processing. This observation fits well with other observed interactions between language processing and affect (emotions, preferences, attitudes, mood), and more generally testifies to the importance of studying “cold” cognitive functions in relation to “hot” aspects of the brain.
  • Van Leeuwen, T. M., Hagoort, P., & Händel, B. F. (2013). Real color captures attention and overrides spatial cues in grapheme-color synesthetes but not in controls. Neuropsychologia, 51(10), 1802-1813. doi:10.1016/j.neuropsychologia.2013.06.024.

    Abstract

    Grapheme-color synesthetes perceive color when reading letters or digits. We investigated oscillatory brain signals of synesthetes vs. controls using magnetoencephalography. Brain oscillations specifically in the alpha band (∼10 Hz) have two interesting features: alpha has been linked to inhibitory processes and can act as a marker for attention. The possible role of reduced inhibition as an underlying cause of synesthesia, as well as the precise role of attention in synesthesia is widely discussed. To assess alpha power effects due to synesthesia, synesthetes as well as matched controls viewed synesthesia-inducing graphemes, colored control graphemes, and non-colored control graphemes while brain activity was recorded. Subjects had to report a color change at the end of each trial which allowed us to assess the strength of synesthesia in each synesthete. Since color (synesthetic or real) might allocate attention we also included an attentional cue in our paradigm which could direct covert attention. In controls the attentional cue always caused a lateralization of alpha power with a contralateral decrease and ipsilateral alpha increase over occipital sensors. In synesthetes, however, the influence of the cue was overruled by color: independent of the attentional cue, alpha power decreased contralateral to the color (synesthetic or real). This indicates that in synesthetes color guides attention. This was confirmed by reaction time effects due to color, i.e. faster RTs for the color side independent of the cue. Finally, the stronger the observed color dependent alpha lateralization, the stronger was the manifestation of synesthesia as measured by congruency effects of synesthetic colors on RTs. Behavioral and imaging results indicate that color induces a location-specific, automatic shift of attention towards color in synesthetes but not in controls. We hypothesize that this mechanism can facilitate coupling of grapheme and color during the development of synesthesia.
  • Wagensveld, B., Segers, E., Van Alphen, P. M., & Verhoeven, L. (2013). The role of lexical representations and phonological overlap in rhyme judgments of beginning, intermediate and advanced readers. Learning and Individual Differences, 23, 64-71. doi:10.1016/j.lindif.2012.09.007.

    Abstract

    Studies have shown that prereaders find globally similar non-rhyming pairs (i.e., bell–ball) difficult to judge. Although this effect has been explained as a result of ill-defined lexical representations, others have suggested that it is part of an innate tendency to respond to phonological overlap. In the present study we examined this effect over time. Beginning, intermediate and advanced readers were presented with a rhyme judgment task containing rhyming, phonologically similar, and unrelated non-rhyming pairs. To examine the role of lexical representations, participants were presented with both words and pseudowords. Outcomes showed that pseudoword processing was difficult for children but not for adults. The global similarity effect was present in both children and adults. The findings imply that holistic representations cannot explain the incapacity to ignore similarity relations during rhyming. Instead, the data provide more evidence for the idea that global similarity processing is part of a more fundamental innate phonological processing capacity.
  • Wagensveld, B., Van Alphen, P. M., Segers, E., Hagoort, P., & Verhoeven, L. (2013). The neural correlates of rhyme awareness in preliterate and literate children. Clinical Neurophysiology, 124, 1336-1345. doi:10.1016/j.clinph.2013.01.022.

    Abstract

    Objective Most rhyme awareness assessments do not encompass measures of the global similarity effect (i.e., children who are able to perform simple rhyme judgments get confused when presented with globally similar non-rhyming pairs). The present study examines the neural nature of this effect by studying the N450 rhyme effect. Methods Behavioral and electrophysiological responses of Dutch pre-literate kindergartners and literate second graders were recorded while they made rhyme judgments of word pairs in three conditions; phonologically rhyming (e.g., wijn-pijn), overlapping non-rhyming (e.g., pen-pijn) and unrelated non-rhyming pairs (e.g., boom-pijn). Results Behaviorally, both groups had difficulty judging overlapping but not rhyming and unrelated pairs. The neural data of second graders showed overlapping pairs were processed in a similar fashion as unrelated pairs; both showed a more negative deflection of the N450 component than rhyming items. Kindergartners did not show a typical N450 rhyme effect. However, some other interesting ERP differences were observed, indicating preliterates are sensitive to rhyme at a certain level. Significance Rhyme judgments of globally similar items rely on the same process as rhyme judgments of rhyming and unrelated items. Therefore, incorporating a globally similar condition in rhyme assessments may lead to a more in-depth measure of early phonological awareness skills. Highlights Behavioral and electrophysiological responses were recorded while (pre)literate children made rhyme judgments of rhyming, overlapping and unrelated words. Behaviorally both groups had difficulty judging overlapping pairs as non-rhyming while overlapping and unrelated neural patterns were similar in literates. Preliterates show a different pattern indicating a developing phonological system.
  • Wang, L., Bastiaansen, M. C. M., Yang, Y., & Hagoort, P. (2013). ERP evidence on the interaction between information structure and emotional salience of words. Cognitive, Affective and Behavioral Neuroscience, 13, 297-310. doi:10.3758/s13415-012-0146-2.

    Abstract

    Both emotional words and words focused by information structure can capture attention. This study examined the interplay between emotional salience and information structure in modulating attentional resources in the service of integrating emotional words into sentence context. Event-related potentials (ERPs) to affectively negative, neutral, and positive words, which were either focused or nonfocused in question–answer pairs, were evaluated during sentence comprehension. The results revealed an early negative effect (90–200 ms), a P2 effect, as well as an effect in the N400 time window, for both emotional salience and information structure. Moreover, an interaction between emotional salience and information structure occurred within the N400 time window over right posterior electrodes, showing that information structure influences the semantic integration only for neutral words, but not for emotional words. This might reflect the fact that the linguistic salience of emotional words can override the effect of information structure on the integration of words into context. The interaction provides evidence for attention–emotion interactions at a later stage of processing. In addition, the absence of interaction in the early time window suggests that the processing of emotional information is highly automatic and independent of context. The results suggest independent attention capture systems of emotional salience and information structure at the early stage but an interaction between them at a later stage, during the semantic integration of words.
  • Wang, L., Zhu, Z., Bastiaansen, M. C. M., Hagoort, P., & Yang, Y. (2013). Recognizing the emotional valence of names: An ERP study. Brain and Language, 125, 118-127. doi:10.1016/j.bandl.2013.01.006.

    Abstract

    Unlike common nouns, person names refer to unique entities and generally have a referring function. We used event-related potentials to investigate the time course of identifying the emotional meaning of nouns and names. The emotional valence of names and nouns were manipulated separately. The results show early N1 effects in response to emotional valence only for nouns. This might reflect automatic attention directed towards emotional stimuli. The absence of such an effect for names supports the notion that the emotional meaning carried by names is accessed after word recognition and person identification. In addition, both names with negative valence and emotional nouns elicited late positive effects, which have been associated with evaluation of emotional significance. This positive effect started earlier for nouns than for names, but with similar durations. Our results suggest that distinct neural systems are involved in the retrieval of names’ and nouns’ emotional meaning.
  • Wang, L., & Chu, M. (2013). The role of beat gesture and pitch accent in semantic processing: An ERP study. Neuropsychologia, 51(13), 2847-2855. doi:10.1016/j.neuropsychologia.2013.09.027.

    Abstract

    The present study investigated whether and how beat gesture (small baton-like hand movements used to emphasize information in speech) influences semantic processing as well as its interaction with pitch accent during speech comprehension. Event-related potentials were recorded as participants watched videos of a person gesturing and speaking simultaneously. The critical words in the spoken sentences were accompanied by a beat gesture, a control hand movement, or no hand movement, and were expressed either with or without pitch accent. We found that both beat gesture and control hand movement induced smaller negativities in the N400 time window than when no hand movement was presented. The reduced N400s indicate that both beat gesture and control movement facilitated the semantic integration of the critical word into the sentence context. In addition, the words accompanied by beat gesture elicited smaller negativities in the N400 time window than those accompanied by control hand movement over right posterior electrodes, suggesting that beat gesture has a unique role for enhancing semantic processing during speech comprehension. Finally, no interaction was observed between beat gesture and pitch accent, indicating that they affect semantic processing independently.
  • Whitmarsh, S., Udden, J., Barendregt, H., & Petersson, K. M. (2013). Mindfulness reduces habitual responding based on implicit knowledge: Evidence from artificial grammar learning. Consciousness and Cognition, (3), 833-845. doi:10.1016/j.concog.2013.05.007.

    Abstract

    Participants were unknowingly exposed to complex regularities in a working memory task. The existence of implicit knowledge was subsequently inferred from a preference for stimuli with similar grammatical regularities. Several affective traits have been shown to influence
    AGL performance positively, many of which are related to a tendency for automatic responding. We therefore tested whether the mindfulness trait predicted a reduction of grammatically congruent preferences, and used emotional primes to explore the influence of affect. Mindfulness was shown to correlate negatively with grammatically congruent responses. Negative primes were shown to result in faster and more negative evaluations.
    We conclude that grammatically congruent preference ratings rely on habitual responses, and that our findings provide empirical evidence for the non-reactive disposition of the mindfulness trait.

Share this page