Publications

Displaying 1 - 87 of 87
  • Armeni, K., Willems, R. M., Van den Bosch, A., & Schoffelen, J.-M. (2019). Frequency-specific brain dynamics related to prediction during language comprehension. NeuroImage, 198, 283-295. doi:10.1016/j.neuroimage.2019.04.083.

    Abstract

    The brain's remarkable capacity to process spoken language virtually in real time requires fast and efficient information processing machinery. In this study, we investigated how frequency-specific brain dynamics relate to models of probabilistic language prediction during auditory narrative comprehension. We recorded MEG activity while participants were listening to auditory stories in Dutch. Using trigram statistical language models, we estimated for every word in a story its conditional probability of occurrence. On the basis of word probabilities, we computed how unexpected the current word is given its context (word perplexity) and how (un)predictable the current linguistic context is (word entropy). We then evaluated whether source-reconstructed MEG oscillations at different frequency bands are modulated as a function of these language processing metrics. We show that theta-band source dynamics are increased in high relative to low entropy states, likely reflecting lexical computations. Beta-band dynamics are increased in situations of low word entropy and perplexity possibly reflecting maintenance of ongoing cognitive context. These findings lend support to the idea that the brain engages in the active generation and evaluation of predicted language based on the statistical properties of the input signal.

    Additional information

    Supplementary data
  • Bocanegra, B. R., Poletiek, F. H., Ftitache, B., & Clark, A. (2019). Intelligent problem-solvers externalize cognitive operations. Nature Human Behaviour, 3, 136-142. doi:10.1038/s41562-018-0509-y.

    Abstract

    Humans are nature’s most intelligent and prolific users of external props and aids (such as written texts, slide-rules and software packages). Here we introduce a method for investigating how people make active use of their task environment during problem-solving and apply this approach to the non-verbal Raven Advanced Progressive Matrices test for fluid intelligence. We designed a click-and-drag version of the Raven test in which participants could create different external spatial configurations while solving the puzzles. In our first study, we observed that the click-and-drag test was better than the conventional static test at predicting academic achievement of university students. This pattern of results was partially replicated in a novel sample. Importantly, environment-altering actions were clustered in between periods of apparent inactivity, suggesting that problem-solvers were delicately balancing the execution of internal and external cognitive operations. We observed a systematic relationship between this critical phasic temporal signature and improved test performance. Our approach is widely applicable and offers an opportunity to quantitatively assess a powerful, although understudied, feature of human intelligence: our ability to use external objects, props and aids to solve complex problems.
  • Bosker, H. R., Van Os, M., Does, R., & Van Bergen, G. (2019). Counting 'uhm's: how tracking the distribution of native and non-native disfluencies influences online language comprehension. Journal of Memory and Language, 106, 189-202. doi:10.1016/j.jml.2019.02.006.

    Abstract

    Disfluencies, like 'uh', have been shown to help listeners anticipate reference to low-frequency words. The associative account of this 'disfluency bias' proposes that listeners learn to associate disfluency with low-frequency referents based on prior exposure to non-arbitrary disfluency distributions (i.e., greater probability of low-frequency words after disfluencies). However, there is limited evidence for listeners actually tracking disfluency distributions online. The present experiments are the first to show that adult listeners, exposed to a typical or more atypical disfluency distribution (i.e., hearing a talker unexpectedly say uh before high-frequency words), flexibly adjust their predictive strategies to the disfluency distribution at hand (e.g., learn to predict high-frequency referents after disfluency). However, when listeners were presented with the same atypical disfluency distribution but produced by a non-native speaker, no adjustment was observed. This suggests pragmatic inferences can modulate distributional learning, revealing the flexibility of, and constraints on, distributional learning in incremental language comprehension.
  • Fields, E. C., Weber, K., Stillerman, B., Delaney-Busch, N., & Kuperberg, G. (2019). Functional MRI reveals evidence of a self-positivity bias in the medial prefrontal cortex during the comprehension of social vignettes. Social Cognitive and Affective Neuroscience, 14(6), 613-621. doi:10.1093/scan/nsz035.

    Abstract

    A large literature in social neuroscience has associated the medial prefrontal cortex (mPFC) with the processing of self-related information. However, only recently have social neuroscience studies begun to consider the large behavioral literature showing a strong self-positivity bias, and these studies have mostly focused on its correlates during self-related judgments and decision making. We carried out a functional MRI (fMRI) study to ask whether the mPFC would show effects of the self-positivity bias in a paradigm that probed participants’ self-concept without any requirement of explicit self-judgment. We presented social vignettes that were either self-relevant or non-self-relevant with a neutral, positive, or negative outcome described in the second sentence. In previous work using event-related potentials, this paradigm has shown evidence of a self-positivity bias that influences early stages of semantically processing incoming stimuli. In the present fMRI study, we found evidence for this bias within the mPFC: an interaction between self-relevance and valence, with only positive scenarios showing a self vs other effect within the mPFC. We suggest that the mPFC may play a role in maintaining a positively-biased self-concept and discuss the implications of these findings for the social neuroscience of the self and the role of the mPFC.

    Additional information

    Supplementary data
  • Fitz, H., & Chang, F. (2019). Language ERPs reflect learning through prediction error propagation. Cognitive Psychology, 111, 15-52. doi:10.1016/j.cogpsych.2019.03.002.

    Abstract

    Event-related potentials (ERPs) provide a window into how the brain is processing language. Here, we propose a theory that argues that ERPs such as the N400 and P600 arise as side effects of an error-based learning mechanism that explains linguistic adaptation and language learning. We instantiated this theory in a connectionist model that can simulate data from three studies on the N400 (amplitude modulation by expectancy, contextual constraint, and sentence position), five studies on the P600 (agreement, tense, word category, subcategorization and garden-path sentences), and a study on the semantic P600 in role reversal anomalies. Since ERPs are learning signals, this account explains adaptation of ERP amplitude to within-experiment frequency manipulations and the way ERP effects are shaped by word predictability in earlier sentences. Moreover, it predicts that ERPs can change over language development. The model provides an account of the sensitivity of ERPs to expectation mismatch, the relative timing of the N400 and P600, the semantic nature of the N400, the syntactic nature of the P600, and the fact that ERPs can change with experience. This approach suggests that comprehension ERPs are related to sentence production and language acquisition mechanisms
  • Franken, M. K., Acheson, D. J., McQueen, J. M., Hagoort, P., & Eisner, F. (2019). Consistency influences altered auditory feedback processing. Quarterly Journal of Experimental Psychology, 72(10), 2371-2379. doi:10.1177/1747021819838939.

    Abstract

    Previous research on the effect of perturbed auditory feedback in speech production has focused on two types of responses. In the short term, speakers generate compensatory motor commands in response to unexpected perturbations. In the longer term, speakers adapt feedforward motor programmes in response to feedback perturbations, to avoid future errors. The current study investigated the relation between these two types of responses to altered auditory feedback. Specifically, it was hypothesised that consistency in previous feedback perturbations would influence whether speakers adapt their feedforward motor programmes. In an altered auditory feedback paradigm, formant perturbations were applied either across all trials (the consistent condition) or only to some trials, whereas the others remained unperturbed (the inconsistent condition). The results showed that speakers’ responses were affected by feedback consistency, with stronger speech changes in the consistent condition compared with the inconsistent condition. Current models of speech-motor control can explain this consistency effect. However, the data also suggest that compensation and adaptation are distinct processes, which are not in line with all current models.
  • Gao, Y., Zheng, L., Liu, X., Nichols, E. S., Zhang, M., Shang, L., Ding, G., Meng, Z., & Liu, L. (2019). First and second language reading difficulty among Chinese–English bilingual children: The prevalence and influences from demographic characteristics. Frontiers in Psychology, 10: 2544. doi:10.3389/fpsyg.2019.02544.

    Abstract

    Learning to read a second language (L2) can pose a great challenge for children who have already been struggling to read in their first language (L1). Moreover, it is not clear whether, to what extent, and under what circumstances L1 reading difficulty increases the risk of L2 reading difficulty. This study investigated Chinese (L1) and English (L2) reading skills in a large representative sample of 1,824 Chinese–English bilingual children in Grades 4 and 5 from both urban and rural schools in Beijing. We examined the prevalence of reading difficulty in Chinese only (poor Chinese readers, PC), English only (poor English readers, PE), and both Chinese and English (poor bilingual readers, PB) and calculated the co-occurrence, that is, the chances of becoming a poor reader in English given that the child was already a poor reader in Chinese. We then conducted a multinomial logistic regression analysis and compared the prevalence of PC, PE, and PB between children in Grade 4 versus Grade 5, in urban versus rural areas, and in boys versus girls. Results showed that compared to girls, boys demonstrated significantly higher risk of PC, PE, and PB. Meanwhile, compared to the 5th graders, the 4th graders demonstrated significantly higher risk of PC and PB. In addition, children enrolled in the urban schools were more likely to become better second language readers, thus leading to a concerning rural–urban gap in the prevalence of L2 reading difficulty. Finally, among these Chinese–English bilingual children, regardless of sex and school location, poor reading skill in Chinese significantly increased the risk of also being a poor English reader, with a considerable and stable co-occurrence of approximately 36%. In sum, this study suggests that despite striking differences between alphabetic and logographic writing systems, L1 reading difficulty still significantly increases the risk of L2 reading difficulty. This indicates the shared meta-linguistic skills in reading different writing systems and the importance of understanding the universality and the interdependent relationship of reading between different writing systems. Furthermore, the male disadvantage (in both L1 and L2) and the urban–rural gap (in L2) found in the prevalence of reading difficulty calls for special attention to disadvantaged populations in educational practice.
  • Gao, X., Dera, J., Nijhoff, A. D., & Willems, R. M. (2019). Is less readable liked better? The case of font readability in poetry appreciation. PLoS One, 14(12): e0225757. doi:10.1371/journal.pone.0225757.

    Abstract

    Previous research shows conflicting findings for the effect of font readability on comprehension and memory for language. It has been found that—perhaps counterintuitively–a hard to read font can be beneficial for language comprehension, especially for difficult language. Here we test how font readability influences the subjective experience of poetry reading. In three experiments we tested the influence of poem difficulty and font readability on the subjective experience of poems. We specifically predicted that font readability would have opposite effects on the subjective experience of easy versus difficult poems. Participants read poems which could be more or less difficult in terms of conceptual or structural aspects, and which were presented in a font that was either easy or more difficult to read. Participants read existing poems and subsequently rated their subjective experience (measured through four dependent variables: overall liking, perceived flow of the poem, perceived topic clarity, and perceived structure). In line with previous literature we observed a Poem Difficulty x Font Readability interaction effect for subjective measures of poetry reading. We found that participants rated easy poems as nicer when presented in an easy to read font, as compared to when presented in a hard to read font. Despite the presence of the interaction effect, we did not observe the predicted opposite effect for more difficult poems. We conclude that font readability can influence reading of easy and more difficult poems differentially, with strongest effects for easy poems.

    Additional information

    https://osf.io/jwcqt/
  • Gehrig, J., Michalareas, G., Forster, M.-T., Lei, J., Hok, P., Laufs, H., Senft, C., Seifert, V., Schoffelen, J.-M., Hanslmayr, H., & Kell, C. A. (2019). Low-frequency oscillations code speech during verbal working memory. The Journal of Neuroscience, 39(33), 6498-6512. doi:10.1523/JNEUROSCI.0018-19.2019.

    Abstract

    The way the human brain represents speech in memory is still unknown. An obvious characteristic of speech is its evolvement over time.
    During speech processing, neural oscillations are modulated by the temporal properties of the acoustic speech signal, but also acquired
    knowledge on the temporal structure of language influences speech perception-related brain activity. This suggests that speech could be
    represented in the temporal domain, a form of representation that the brain also uses to encode autobiographic memories. Empirical
    evidence for such a memory code is lacking. We investigated the nature of speech memory representations using direct cortical recordings
    in the left perisylvian cortex during delayed sentence reproduction in female and male patients undergoing awake tumor surgery.
    Our results reveal that the brain endogenously represents speech in the temporal domain. Temporal pattern similarity analyses revealed
    that the phase of frontotemporal low-frequency oscillations, primarily in the beta range, represents sentence identity in working memory.
    The positive relationship between beta power during working memory and task performance suggests that working memory
    representations benefit from increased phase separation.
  • Hagoort, P. (2019). The meaning making mechanism(s) behind the eyes and between the ears. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 375: 20190301. doi:10.1098/rstb.2019.0301.

    Abstract

    In this contribution, the following four questions are discussed: (i) where is meaning?; (ii) what is meaning?; (iii) what is the meaning of mechanism?; (iv) what are the mechanisms of meaning? I will argue that meanings are in the head. Meanings have multiple facets, but minimally one needs to make a distinction between single word meanings (lexical meaning) and the meanings of multi-word utterances. The latter ones cannot be retrieved from memory, but need to be constructed on the fly. A mechanistic account of the meaning-making mind requires an analysis at both a functional and a neural level, the reason being that these levels are causally interdependent. I will show that an analysis exclusively focusing on patterns of brain activation lacks explanatory power. Finally, I shall present an initial sketch of how the dynamic interaction between temporo-parietal areas and inferior frontal cortex might instantiate the interpretation of linguistic utterances in the context of a multimodal setting and ongoing discourse information.
  • Hagoort, P. (2019). The neurobiology of language beyond single word processing. Science, 366(6461), 55-58. doi:10.1126/science.aax0289.

    Abstract

    In this Review, I propose a multiple-network view for the neurobiological basis of distinctly human language skills. A much more complex picture of interacting brain areas emerges than in the classical neurobiological model of language. This is because using language is more than single-word processing, and much goes on beyond the information given in the acoustic or orthographic tokens that enter primary sensory cortices. This requires the involvement of multiple networks with functionally nonoverlapping contributions

    Files private

    Request files
  • Hervais-Adelman, A., Kumar, U., Mishra, R. K., Tripathi, V. N., Guleria, A., Singh, J. P., Eisner, F., & Huettig, F. (2019). Learning to read recycles visual cortical networks without destruction. Science Advances, 5(9): eaax0262. doi:10.1126/sciadv.aax0262.

    Abstract

    Learning to read is associated with the appearance of an orthographically sensitive brain region known as the visual word form area. It has been claimed that development of this area proceeds by impinging upon territory otherwise available for the processing of culturally relevant stimuli such as faces and houses. In a large-scale functional magnetic resonance imaging study of a group of individuals of varying degrees of literacy (from completely illiterate to highly literate), we examined cortical responses to orthographic and nonorthographic visual stimuli. We found that literacy enhances responses to other visual input in early visual areas and enhances representational similarity between text and faces, without reducing the extent of response to nonorthographic input. Thus, acquisition of literacy in childhood recycles existing object representation mechanisms but without destructive competition.

    Additional information

    aax0262_SM.pdf
  • Heyselaar, E., & Segaert, K. (2019). Memory encoding of syntactic information involves domain-general attentional resources. Evidence from dual-task studies. Quarterly Journal of Experimental Psychology, 72(6), 1285-1296. doi:10.1177/1747021818801249.

    Abstract

    We investigate the type of attention (domain-general or language-specific) used during
    syntactic processing. We focus on syntactic priming: In this task, participants listen to a
    sentence that describes a picture (prime sentence), followed by a picture the participants need
    to describe (target sentence). We measure the proportion of times participants use the
    syntactic structure they heard in the prime sentence to describe the current target sentence as a
    measure of syntactic processing. Participants simultaneously conducted a motion-object
    tracking (MOT) task, a task commonly used to tax domain-general attentional resources. We
    manipulated the number of objects the participant had to track; we thus measured
    participants’ ability to process syntax while their attention is not-, slightly-, or overly-taxed.
    Performance in the MOT task was significantly worse when conducted as a dual-task
    compared to as a single task. We observed an inverted U-shaped curve on priming magnitude
    when conducting the MOT task concurrently with prime sentences (i.e., memory encoding),
    but no effect when conducted with target sentences (i.e., memory retrieval). Our results
    illustrate how, during the encoding of syntactic information, domain-general attention
    differentially affects syntactic processing, whereas during the retrieval of syntactic
    information domain-general attention does not influence syntactic processing
  • Hubbard, R. J., Rommers, J., Jacobs, C. L., & Federmeier, K. D. (2019). Downstream behavioral and electrophysiological consequences of word prediction on recognition memory. Frontiers in Human Neuroscience, 13: 291. doi:10.3389/fnhum.2019.00291.

    Abstract

    When people process language, they can use context to predict upcoming information,
    influencing processing and comprehension as seen in both behavioral and neural
    measures. Although numerous studies have shown immediate facilitative effects
    of confirmed predictions, the downstream consequences of prediction have been
    less explored. In the current study, we examined those consequences by probing
    participants’ recognition memory for words after they read sets of sentences.
    Participants read strongly and weakly constraining sentences with expected or
    unexpected endings (“I added my name to the list/basket”), and later were tested on
    their memory for the sentence endings while EEG was recorded. Critically, the memory
    test contained words that were predictable (“list”) but were never read (participants
    saw “basket”). Behaviorally, participants showed successful discrimination between old
    and new items, but false alarmed to the expected-item lures more often than to new
    items, showing that predicted words or concepts can linger, even when predictions
    are disconfirmed. Although false alarm rates did not differ by constraint, event-related
    potentials (ERPs) differed between false alarms to strongly and weakly predictable words.
    Additionally, previously unexpected (compared to previously expected) endings that
    appeared on the memory test elicited larger N1 and LPC amplitudes, suggesting greater
    attention and episodic recollection. In contrast, highly predictable sentence endings that
    had been read elicited reduced LPC amplitudes during the memory test. Thus, prediction
    can facilitate processing in the moment, but can also lead to false memory and reduced
    recollection for predictable information.
  • Hulten, A., Schoffelen, J.-M., Udden, J., Lam, N. H. L., & Hagoort, P. (2019). How the brain makes sense beyond the processing of single words – An MEG study. NeuroImage, 186, 586-594. doi:10.1016/j.neuroimage.2018.11.035.

    Abstract

    Human language processing involves combinatorial operations that make human communication stand out in the animal kingdom. These operations rely on a dynamic interplay between the inferior frontal and the posterior temporal cortices. Using source reconstructed magnetoencephalography, we tracked language processing in the brain, in order to investigate how individual words are interpreted when part of sentence context. The large sample size in this study (n = 68) allowed us to assess how event-related activity is associated across distinct cortical areas, by means of inter-areal co-modulation within an individual. We showed that, within 500 ms of seeing a word, the word's lexical information has been retrieved and unified with the sentence context. This does not happen in a strictly feed-forward manner, but by means of co-modulation between the left posterior temporal cortex (LPTC) and left inferior frontal cortex (LIFC), for each individual word. The co-modulation of LIFC and LPTC occurs around 400 ms after the onset of each word, across the progression of a sentence. Moreover, these core language areas are supported early on by the attentional network. The results provide a detailed description of the temporal orchestration related to single word processing in the context of ongoing language.

    Additional information

    1-s2.0-S1053811918321165-mmc1.pdf
  • De Kleijn, R., Wijnen, M., & Poletiek, F. H. (2019). The effect of context-dependent information and sentence constructions on perceived humanness of an agent in a Turing test. Knowledge-Based Systems, 163, 794-799. doi:10.1016/j.knosys.2018.10.006.

    Abstract

    In a Turing test, a judge decides whether their conversation partner is either a machine or human. What cues does the judge use to determine this? In particular, are presumably unique features of human language actually perceived as humanlike? Participants rated the humanness of a set of sentences that were manipulated for grammatical construction: linear right-branching or hierarchical center-embedded and their plausibility with regard to world knowledge.

    We found that center-embedded sentences are perceived as less humanlike than right-branching sentences and more plausible sentences are regarded as more humanlike. However, the effect of plausibility of the sentence on perceived humanness is smaller for center-embedded sentences than for right-branching sentences.

    Participants also rated a conversation with either correct or incorrect use of the context by the agent. No effect of context use was found. Also, participants rated a full transcript of either a real human or a real chatbot, and we found that chatbots were reliably perceived as less humanlike than real humans, in line with our expectation. We did, however, find individual differences between chatbots and humans.
  • Kochari, A., & Flecken, M. (2019). Lexical prediction in language comprehension: A replication study of grammatical gender effects in Dutch. Language, Cognition and Neuroscience, 34(2), 239-253. doi:10.1080/23273798.2018.1524500.

    Abstract

    An important question in predictive language processing is the extent to which prediction effects can reliably be measured on pre-nominal material (e.g. articles before nouns). Here, we present a large sample (N = 58) close replication of a study by Otten and van Berkum (2009). They report ERP modulations in relation to the predictability of nouns in sentences, measured on gender-marked Dutch articles. We used nearly identical materials, procedures, and data analysis steps. We fail to replicate the original effect, but do observe a pattern consistent with the original data. Methodological differences between our replication and the original study that could potentially have contributed to the diverging results are discussed. In addition, we discuss the suitability of Dutch gender-marked determiners as a test-case for future studies of pre-activation of lexical items.
  • Kuperberg, G., Weber, K., Delaney-Busch, N., Ustine, C., Stillerman, B., Hämäläinen, M., & Lau, E. (2019). Multimodal neuroimaging evidence for looser lexico-semantic connections in schizophrenia. Neuropsychologia, 124, 337-349. doi:10.1016/j.neuropsychologia.2018.10.024.

    Abstract

    It has been hypothesized that schizophrenia is characterized by overly broad automatic activity within lexico-semantic networks. We used two complementary neuroimaging techniques, Magnetoencephalography (MEG) and functional Magnetic Resonance Imaging (fMRI), in combination with a highly automatic indirect semantic priming paradigm, to spatiotemporally localize this abnormality in the brain.

    Eighteen people with schizophrenia and 20 demographically-matched control participants viewed target words (“bell”) preceded by directly related (“church”), indirectly related (“priest”), or unrelated (“pants”) prime words in MEG and fMRI sessions. To minimize top-down processing, the prime was masked, the target appeared only 140ms after prime onset, and participants simply monitored for words within a particular semantic category that appeared in filler trials.

    Both techniques revealed a significantly larger automatic indirect priming effect in people with schizophrenia than in control participants. MEG temporally localized this enhanced effect to the N400 time window (300-500ms) — the critical stage of accessing meaning from words. fMRI spatially localized the effect to the left temporal fusiform cortex, which plays a role in mapping of orthographic word-form on to meaning. There was no evidence of an enhanced automatic direct semantic priming effect in the schizophrenia group.

    These findings provide converging neural evidence for abnormally broad highly automatic lexico-semantic activity in schizophrenia. We argue that, rather than arising from an unconstrained spread of automatic activation across semantic memory, this broader automatic lexico-semantic activity stems from looser connections between the form and meaning of words.

    Additional information

    1-s2.0-S0028393218307310-mmc1.docx
  • Mak, M., & Willems, R. M. (2019). Mental simulation during literary reading: Individual differences revealed with eye-tracking. Language, Cognition and Neuroscience, 34(4), 511-535. doi:10.1080/23273798.2018.1552007.

    Abstract

    People engage in simulation when reading literary narratives. In this study, we tried to pinpoint how different kinds of simulation (perceptual and motor simulation, mentalising) affect reading behaviour. Eye-tracking (gaze durations, regression probability) and questionnaire data were collected from 102 participants, who read three literary short stories. In a pre-test, 90 additional participants indicated which parts of the stories were high in one of the three kinds of simulation-eliciting content. The results show that motor simulation reduces gaze duration (faster reading), whereas perceptual simulation and mentalising increase gaze duration (slower reading). Individual differences in the effect of simulation on gaze duration were found, which were related to individual differences in aspects of story world absorption and story appreciation. These findings suggest fundamental differences between different kinds of simulation and confirm the role of simulation in absorption and appreciation.
  • Mantegna, F., Hintz, F., Ostarek, M., Alday, P. M., & Huettig, F. (2019). Distinguishing integration and prediction accounts of ERP N400 modulations in language processing through experimental design. Neuropsychologia, 134: 107199. doi:10.1016/j.neuropsychologia.2019.107199.

    Abstract

    Prediction of upcoming input is thought to be a main characteristic of language processing (e.g. Altmann & Mirkovic, 2009; Dell & Chang, 2014; Federmeier, 2007; Ferreira & Chantavarin, 2018; Pickering & Gambi, 2018; Hale, 2001; Hickok, 2012; Huettig 2015; Kuperberg & Jaeger, 2016; Levy, 2008; Norris, McQueen, & Cutler, 2016; Pickering & Garrod, 2013; Van Petten & Luka, 2012). One of the main pillars of experimental support for this notion comes from studies that have attempted to measure electrophysiological markers of prediction when participants read or listened to sentences ending in highly predictable words. The N400, a negative-going and centro-parietally distributed component of the ERP occurring approximately 400ms after (target) word onset, has been frequently interpreted as indexing prediction of the word (or the semantic representations and/or the phonological form of the predicted word, see Kutas & Federmeier, 2011; Nieuwland, 2019; Van Petten & Luka, 2012; for review). A major difficulty for interpreting N400 effects in language processing however is that it has been difficult to establish whether N400 target word modulations conclusively reflect prediction rather than (at least partly) ease of integration. In the present exploratory study, we attempted to distinguish lexical prediction (i.e. ‘top-down’ activation) from lexical integration (i.e. ‘bottom-up’ activation) accounts of ERP N400 modulations in language processing.
  • Martinez-Conde, S., Alexander, R. G., Blum, D., Britton, N., Lipska, B. K., Quirk, G. J., Swiss, J. I., Willems, R. M., & Macknik, S. L. (2019). The storytelling brain: How neuroscience stories help bridge the gap between research and society. The Journal of Neuroscience, 39(42), 8285-8290. doi:10.1523/JNEUROSCI.1180-19.2019.

    Abstract

    Active communication between researchers and society is necessary for the scientific community’s involvement in developing sciencebased
    policies. This need is recognized by governmental and funding agencies that compel scientists to increase their public engagement
    and disseminate research findings in an accessible fashion. Storytelling techniques can help convey science by engaging people’s imagination
    and emotions. Yet, many researchers are uncertain about how to approach scientific storytelling, or feel they lack the tools to
    undertake it. Here we explore some of the techniques intrinsic to crafting scientific narratives, as well as the reasons why scientific
    storytellingmaybe an optimal way of communicating research to nonspecialists.Wealso point out current communication gaps between
    science and society, particularly in the context of neurodiverse audiences and those that include neurological and psychiatric patients.
    Present shortcomings may turn into areas of synergy with the potential to link neuroscience education, research, and advocacy
  • Misersky, J., Majid, A., & Snijders, T. M. (2019). Grammatical gender in German influences how role-nouns are interpreted: Evidence from ERPs. Discourse Processes, 56(8), 643-654. doi:10.1080/0163853X.2018.1541382.

    Abstract

    Grammatically masculine role-nouns (e.g., Studenten-masc.‘students’) can refer to men and women, but may favor an interpretation where only men are considered the referent. If true, this has implications for a society aiming to achieve equal representation in the workplace since, for example, job adverts use such role descriptions. To investigate the interpretation of role-nouns, the present ERP study assessed grammatical gender processing in German. Twenty participants read sentences where a role-noun (masculine or feminine) introduced a group of people, followed by a congruent (masculine–men, feminine–women) or incongruent (masculine–women, feminine–men) continuation. Both for feminine-men and masculine-women continuations a P600 (500 to 800 ms) was observed; another positivity was already present from 300 to 500 ms for feminine-men continuations, but critically not for masculine-women continuations. The results imply a male-biased rather than gender-neutral interpretation of the masculine—despite widespread usage of the masculine as a gender-neutral form—suggesting masculine forms are inadequate for representing genders equally.
  • Mongelli, V., Meijs, E. L., Van Gaal, S., & Hagoort, P. (2019). No language unification without neural feedback: How awareness affects sentence processing. Neuroimage, 202: 116063. doi:10.1016/j.neuroimage.2019.116063.

    Abstract

    How does the human brain combine a finite number of words to form an infinite variety of sentences? According to the Memory, Unification and Control (MUC) model, sentence processing requires long-range feedback from the left inferior frontal cortex (LIFC) to left posterior temporal cortex (LPTC). Single word processing however may only require feedforward propagation of semantic information from sensory regions to LPTC. Here we tested the claim that long-range feedback is required for sentence processing by reducing visual awareness of words using a masking technique. Masking disrupts feedback processing while leaving feedforward processing relatively intact. Previous studies have shown that masked single words still elicit an N400 ERP effect, a neural signature of semantic incongruency. However, whether multiple words can be combined to form a sentence under reduced levels of awareness is controversial. To investigate this issue, we performed two experiments in which we measured electroencephalography (EEG) while 40 subjects performed a masked priming task. Words were presented either successively or simultaneously, thereby forming a short sentence that could be congruent or incongruent with a target picture. This sentence condition was compared with a typical single word condition. In the masked condition we only found an N400 effect for single words, whereas in the unmasked condition we observed an N400 effect for both unmasked sentences and single words. Our findings suggest that long-range feedback processing is required for sentence processing, but not for single word processing.
  • Nieuwland, M. S., Coopmans, C. W., & Sommers, R. P. (2019). Distinguishing old from new referents during discourse comprehension: Evidence from ERPs and oscillations. Frontiers in Human Neuroscience, 13: 398. doi:10.3389/fnhum.2019.00398.

    Abstract

    In this EEG study, we used pre-registered and exploratory ERP and time-frequency analyses to investigate the resolution of anaphoric and non-anaphoric noun phrases during discourse comprehension. Participants listened to story contexts that described two antecedents, and subsequently read a target sentence with a critical noun phrase that lexically matched one antecedent (‘old’), matched two antecedents (‘ambiguous’), partially matched one antecedent in terms of semantic features (‘partial-match’), or introduced another referent (non-anaphoric, ‘new’). After each target sentence, participants judged whether the noun referred back to an antecedent (i.e., an ‘old/new’ judgment), which was easiest for ambiguous nouns and hardest for partially matching nouns. The noun-elicited N400 ERP component demonstrated initial sensitivity to repetition and semantic overlap, corresponding to repetition and semantic priming effects, respectively. New and partially matching nouns both elicited a subsequent frontal positivity, which suggested that partially matching anaphors may have been processed as new nouns temporarily. ERPs in an even later time window and ERPs time-locked to sentence-final words suggested that new and partially matching nouns had different effects on comprehension, with partially matching nouns incurring additional processing costs up to the end of the sentence. In contrast to the ERP results, the time-frequency results primarily demonstrated sensitivity to noun repetition, and did not differentiate partially matching anaphors from new nouns. In sum, our results show the ERP and time-frequency effects of referent repetition during discourse comprehension, and demonstrate the potentially demanding nature of establishing the anaphoric meaning of a novel noun.
  • Nieuwland, M. S. (2019). Do ‘early’ brain responses reveal word form prediction during language comprehension? A critical review. Neuroscience and Biobehavioral Reviews, 96, 367-400. doi:10.1016/j.neubiorev.2018.11.019.

    Abstract

    Current theories of language comprehension posit that readers and listeners routinely try to predict the meaning but also the visual or sound form of upcoming words. Whereas
    most neuroimaging studies on word rediction focus on the N400 ERP or its magnetic equivalent, various studies claim that word form prediction manifests itself in ‘early’, pre
    N400 brain responses (e.g., ELAN, M100, P130, N1, P2, N200/PMN, N250). Modulations of these components are often taken as evidence that word form prediction impacts early sensory processes (the sensory hypothesis) or, alternatively, the initial stages of word recognition before word meaning is integrated with sentence context (the recognition hypothesis). Here, I
    comprehensively review studies on sentence- or discourse-level language comprehension that report such effects of prediction on early brain responses. I conclude that the reported evidence for the sensory hypothesis or word recognition hypothesis is weak and inconsistent,
    and highlight the urgent need for replication of previous findings. I discuss the implications and challenges to current theories of linguistic prediction and suggest avenues for future research.
  • Ostarek, M., Van Paridon, J., & Montero-Melis, G. (2019). Sighted people’s language is not helpful for blind individuals’ acquisition of typical animal colors. Proceedings of the National Academy of Sciences of the United States of America, 116(44), 21972-21973. doi:10.1073/pnas.1912302116.
  • Peeters, D., Vanlangendonck, F., Rüschemeyer, S.-A., & Dijkstra, T. (2019). Activation of the language control network in bilingual visual word recognition. Cortex, 111, 63-73. doi:10.1016/j.cortex.2018.10.012.

    Abstract

    Research into bilingual language production has identified a language control network that subserves control operations when bilinguals produce speech. Here we explore which brain areas are recruited for control purposes in bilingual language comprehension. In two experimental fMRI sessions, Dutch-English unbalanced bilinguals read words that differed in cross-linguistic form and meaning overlap across their two languages. The need for control operations was further manipulated by varying stimulus list composition across the two experimental sessions. We observed activation of the language control network in bilingual language comprehension as a function of both cross-linguistic form and meaning overlap and stimulus list composition. These findings suggest that the language control network is shared across bilingual language production and comprehension. We argue that activation of the language control network in language comprehension allows bilinguals to quickly and efficiently grasp the context-relevant meaning of words.

    Additional information

    1-s2.0-S0010945218303459-mmc1.docx
  • Peeters, D. (2019). Virtual reality: A game-changing method for the language sciences. Psychonomic Bulletin & Review, 26(3), 894-900. doi:10.3758/s13423-019-01571-3.

    Abstract

    This paper introduces virtual reality as an experimental method for the language sciences and provides a review of recent studies using the method to answer fundamental, psycholinguistic research questions. It is argued that virtual reality demonstrates that ecological validity and
    experimental control should not be conceived of as two extremes on a continuum, but rather as two orthogonal factors. Benefits of using virtual reality as an experimental method include that in a virtual environment, as in the real world, there is no artificial spatial divide between participant and stimulus. Moreover, virtual reality experiments do not necessarily have to include a repetitive trial structure or an unnatural experimental task. Virtual agents outperform experimental confederates in terms of the consistency and replicability of their behaviour, allowing for reproducible science across participants and research labs. The main promise of virtual reality as a tool for the experimental language sciences, however, is that it shifts theoretical focus towards the interplay between different modalities (e.g., speech, gesture, eye gaze, facial expressions) in dynamic and communicative real-world environments, complementing studies that focus on one modality (e.g. speech) in isolation.
  • Preisig, B., Sjerps, M. J., Kösem, A., & Riecke, L. (2019). Dual-site high-density 4Hz transcranial alternating current stimulation applied over auditory and motor cortical speech areas does not influence auditory-motor mapping. Brain Stimulation, 12(3), 775-777. doi:10.1016/j.brs.2019.01.007.
  • Preisig, B., & Sjerps, M. J. (2019). Hemispheric specializations affect interhemispheric speech sound integration during duplex perception. The Journal of the Acoustical Society of America, 145, EL190-EL196. doi:10.1121/1.5092829.

    Abstract

    The present study investigated whether speech-related spectral information benefits from initially predominant right or left hemisphere processing. Normal hearing individuals categorized speech sounds composed of an ambiguous base (perceptually intermediate between /ga/ and /da/), presented to one ear, and a disambiguating low or high F3 chirp presented to the other ear. Shorter response times were found when the chirp was presented to the left ear than to the right ear (inducing initially right-hemisphere chirp processing), but no between-ear differences in strength of overall integration. The results are in line with the assumptions of a right hemispheric dominance for spectral processing.

    Additional information

    Supplementary material
  • Sakarias, M., & Flecken, M. (2019). Keeping the result in sight and mind: General cognitive principles and language-specific influences in the perception and memory of resultative events. Cognitive Science, 43(1), 1-30. doi:10.1111/cogs.12708.

    Abstract

    We study how people attend to and memorize endings of events that differ in the degree to which objects in them are affected by an action: Resultative events show objects that undergo a visually salient change in state during the course of the event (peeling a potato), and non‐resultative events involve objects that undergo no, or only partial state change (stirring in a pan). We investigate general cognitive principles, and potential language‐specific influences, in verbal and nonverbal event encoding and memory, across two experiments with Dutch and Estonian participants. Estonian marks a viewer's perspective on an event's result obligatorily via grammatical case on direct object nouns: Objects undergoing a partial/full change in state in an event are marked with partitive/accusative case, respectively. Therefore, we hypothesized increased saliency of object states and event results in Estonian speakers, as compared to speakers of Dutch. Findings show (a) a general cognitive principle of attending carefully to endings of resultative events, implying cognitive saliency of object states in event processing; (b) a language‐specific boost on attention and memory of event results under verbal task demands in Estonian speakers. Results are discussed in relation to theories of event cognition, linguistic relativity, and thinking for speaking.
  • Schoffelen, J.-M., Oostenveld, R., Lam, N. H. L., Udden, J., Hulten, A., & Hagoort, P. (2019). A 204-subject multimodal neuroimaging dataset to study language processing. Scientific Data, 6(1): 17. doi:10.1038/s41597-019-0020-y.

    Abstract

    This dataset, colloquially known as the Mother Of Unification Studies (MOUS) dataset, contains multimodal neuroimaging data that has been acquired from 204 healthy human subjects. The neuroimaging protocol consisted of magnetic resonance imaging (MRI) to derive information at high spatial resolution about brain anatomy and structural connections, and functional data during task, and at rest. In addition, magnetoencephalography (MEG) was used to obtain high temporal resolution electrophysiological measurements during task, and at rest. All subjects performed a language task, during which they processed linguistic utterances that either consisted of normal or scrambled sentences. Half of the subjects were reading the stimuli, the other half listened to the stimuli. The resting state measurements consisted of 5 minutes eyes-open for the MEG and 7 minutes eyes-closed for fMRI. The neuroimaging data, as well as the information about the experimental events are shared according to the Brain Imaging Data Structure (BIDS) format. This unprecedented neuroimaging language data collection allows for the investigation of various aspects of the neurobiological correlates of language.
  • Schoot, L., Hagoort, P., & Segaert, K. (2019). Stronger syntactic alignment in the presence of an interlocutor. Frontiers in Psychology, 10: 685. doi:10.3389/fpsyg.2019.00685.

    Abstract

    Speakers are influenced by the linguistic context: hearing one syntactic alternative leads to an increased chance that the speaker will repeat this structure in the subsequent utterance (i.e., syntactic priming, or structural persistence). Top-down influences, such as whether a conversation partner (or, interlocutor) is present, may modulate the degree to which syntactic priming occurs. In the current study, we indeed show that the magnitude of syntactic alignment increases when speakers are interacting with an interlocutor as opposed to doing the experiment alone. The structural persistence effect for passive sentences is stronger in the presence of an interlocutor than when no interlocutor is present (i.e., when the participant is primed by a recording). We did not find evidence, however, that a speaker’s syntactic priming magnitude is influenced by the degree of their conversation partner’s priming magnitude. Together, these results support a mediated account of syntactic priming, in which syntactic choices are not only affected by preceding linguistic input, but also by top-down influences, such as the speakers’ communicative intent.
  • Schubotz, L., Ozyurek, A., & Holler, J. (2019). Age-related differences in multimodal recipient design: Younger, but not older adults, adapt speech and co-speech gestures to common ground. Language, Cognition and Neuroscience, 34(2), 254-271. doi:10.1080/23273798.2018.1527377.

    Abstract

    Speakers can adapt their speech and co-speech gestures based on knowledge shared with an addressee (common ground-based recipient design). Here, we investigate whether these adaptations are modulated by the speaker’s age and cognitive abilities. Younger and older participants narrated six short comic stories to a same-aged addressee. Half of each story was known to both participants, the other half only to the speaker. The two age groups did not differ in terms of the number of words and narrative events mentioned per narration, or in terms of gesture frequency, gesture rate, or percentage of events expressed multimodally. However, only the younger participants reduced the amount of verbal and gestural information when narrating mutually known as opposed to novel story content. Age-related differences in cognitive abilities did not predict these differences in common ground-based recipient design. The older participants’ communicative behaviour may therefore also reflect differences in social or pragmatic goals.

    Additional information

    plcp_a_1527377_sm4510.pdf
  • Seymour, R. A., Rippon, G., Goordin-Williams, G., Schoffelen, J.-M., & Kessler, K. (2019). Dysregulated oscillatory connectivity in thevisual system in autism spectrum disorder. Brain, 142(10), 3294-3305. doi:10.1093/brain/awz214.

    Abstract

    Autism spectrum disorder is increasingly associated with atypical perceptual and sensory symptoms. Here we explore the hypothesis
    that aberrant sensory processing in autism spectrum disorder could be linked to atypical intra- (local) and interregional (global)
    brain connectivity. To elucidate oscillatory dynamics and connectivity in the visual domain we used magnetoencephalography and
    a simple visual grating paradigm with a group of 18 adolescent autistic participants and 18 typically developing control subjects.
    Both groups showed similar increases in gamma (40–80 Hz) and decreases in alpha (8–13 Hz) frequency power in occipital cortex.
    However, systematic group differences emerged when analysing intra- and interregional connectivity in detail. First, directed
    connectivity was estimated using non-parametric Granger causality between visual areas V1 and V4. Feedforward V1-to-V4
    connectivity, mediated by gamma oscillations, was equivalent between autism spectrum disorder and control groups, but importantly,
    feedback V4-to-V1 connectivity, mediated by alpha (8–13 Hz) oscillations, was significantly reduced in the autism spectrum
    disorder group. This reduction was positively correlated with autistic quotient scores, consistent with an atypical visual hierarchy
    in autism, characterized by reduced top-down modulation of visual input via alpha-band oscillations. Second, at the local level in
    V1, coupling of alpha-phase to gamma amplitude (alpha-gamma phase amplitude coupling) was reduced in the autism spectrum
    disorder group. This implies dysregulated local visual processing, with gamma oscillations decoupled from patterns of wider alphaband
    phase synchrony (i.e. reduced phase amplitude coupling), possibly due to an excitation-inhibition imbalance. More generally,
    these results are in agreement with predictive coding accounts of neurotypical perception and indicate that visual processes in
    autism are less modulated by contextual feedback information.
  • Sharoh, D., Van Mourik, T., Bains, L. J., Segaert, K., Weber, K., Hagoort, P., & Norris, D. (2019). Laminar specific fMRI reveals directed interactions in distributed networks during language processing. Proceedings of the National Academy of Sciences of the United States of America, 116(42), 21185-21190. doi:10.1073/pnas.1907858116.

    Abstract

    Interactions between top-down and bottom-up information streams are integral to brain function but challenging to measure noninvasively. Laminar resolution, functional MRI (lfMRI) is sensitive to depth-dependent properties of the blood oxygen level-dependent (BOLD) response, which can be potentially related to top-down and bottom-up signal contributions. In this work, we used lfMRI to dissociate the top-down and bottom-up signal contributions to the left occipitotemporal sulcus (LOTS) during word reading. We further demonstrate that laminar resolution measurements could be used to identify condition-specific distributed networks on the basis of whole-brain connectivity patterns specific to the depth-dependent BOLD signal. The networks corresponded to top-down and bottom-up signal pathways targeting the LOTS during word reading. We show that reading increased the top-down BOLD signal observed in the deep layers of the LOTS and that this signal uniquely related to the BOLD response in other language-critical regions. These results demonstrate that lfMRI can reveal important patterns of activation that are obscured at standard resolution. In addition to differences in activation strength as a function of depth, we also show meaningful differences in the interaction between signals originating from different depths both within a region and with the rest of the brain. We thus show that lfMRI allows the noninvasive measurement of directed interaction between brain regions and is capable of resolving different connectivity patterns at submillimeter resolution, something previously considered to be exclusively in the domain of invasive recordings.
  • Sjerps, M. J., Fox, N. P., Johnson, K., & Chang, E. F. (2019). Speaker-normalized sound representations in the human auditory cortex. Nature Communications, 10: 2465. doi:10.1038/s41467-019-10365-z.

    Abstract

    The acoustic dimensions that distinguish speech sounds (like the vowel differences in “boot” and “boat”) also differentiate speakers’ voices. Therefore, listeners must normalize across speakers without losing linguistic information. Past behavioral work suggests an important role for auditory contrast enhancement in normalization: preceding context affects listeners’ perception of subsequent speech sounds. Here, using intracranial electrocorticography in humans, we investigate whether and how such context effects arise in auditory cortex. Participants identified speech sounds that were preceded by phrases from two different speakers whose voices differed along the same acoustic dimension as target words (the lowest resonance of the vocal tract). In every participant, target vowels evoke a speaker-dependent neural response that is consistent with the listener’s perception, and which follows from a contrast enhancement model. Auditory cortex processing thus displays a critical feature of normalization, allowing listeners to extract meaningful content from the voices of diverse speakers.

    Additional information

    41467_2019_10365_MOESM1_ESM.pdf
  • De Swart, P., & Van Bergen, G. (2019). How animacy and verbal information influence V2 sentence processing: Evidence from eye movements. Open Linguistics, 5(1), 630-649. doi:10.1515/opli-2019-0035.

    Abstract

    There exists a clear association between animacy and the grammatical function of transitive subject. The grammar of some languages require the transitive subject to be high in animacy, or at least higher than the object. A similar animacy preference has been observed in processing studies in languages without such a categorical animacy effect. This animacy preference has been mainly established in structures in which either one or both arguments are provided before the verb. Our goal was to establish (i) whether this preference can already be observed before any argument is provided, and (ii) whether this preference is mediated by verbal information. To this end we exploited the V2 property of Dutch which allows the verb to precede its arguments. Using a visual-world eye-tracking paradigm we presented participants with V2 structures with either an auxiliary (e.g. Gisteren heeft X … ‘Yesterday, X has …’) or a lexical main verb (e.g. Gisteren motiveerde X … ‘Yesterday, X motivated …’) and we measured looks to the animate referent. The results indicate that the animacy preference can already be observed before arguments are presented and that the selectional restrictions of the verb mediate this bias, but do not override it completely.
  • Takashima, A., Bakker-Marshall, I., Van Hell, J. G., McQueen, J. M., & Janzen, G. (2019). Neural correlates of word learning in children. Developmental Cognitive Neuroscience, 37: 100647. doi:10.1016/j.dcn.2019.100649.

    Abstract

    Memory representations of words are thought to undergo changes with consolidation: Episodic memories of novel words are transformed into lexical representations that interact with other words in the mental dictionary. Behavioral studies have shown that this lexical integration process is enhanced when there is more time for consolidation. Neuroimaging studies have further revealed that novel word representations are initially represented in a hippocampally-centered system, whereas left posterior middle temporal cortex activation increases with lexicalization. In this study, we measured behavioral and brain responses to newly-learned words in children. Two groups of Dutch children, aged between 8-10 and 14-16 years, were trained on 30 novel Japanese words depicting novel concepts. Children were tested on word-forms, word-meanings, and the novel words’ influence on existing word processing immediately after training, and again after a week. In line with the adult findings, hippocampal involvement decreased with time. Lexical integration, however, was not observed immediately or after a week, neither behaviorally nor neurally. It appears that time alone is not always sufficient for lexical integration to occur. We suggest that other factors (e.g., the novelty of the concepts and familiarity with the language the words are derived from) might also influence the integration process.

    Additional information

    Supplementary data
  • Takashima, A., & Verhoeven, L. (2019). Radical repetition effects in beginning learners of Chinese as a foreign language reading. Journal of Neurolinguistics, 50, 71-81. doi:10.1016/j.jneuroling.2018.03.001.

    Abstract

    The aim of the present study was to examine whether repetition of radicals during training of Chinese characters leads to better word acquisition performance in beginning learners of Chinese as a foreign language. Thirty Dutch university students were trained on 36 Chinese one-character words for their pronunciations and meanings. They were also exposed to the specifics of the radicals, that is, for phonetic radicals, the associated pronunciation was explained, and for semantic radicals the associated categorical meanings were explained. Results showed that repeated exposure to phonetic and semantic radicals through character pronunciation and meaning trainings indeed induced better understanding of those radicals that were shared among different characters. Furthermore, characters in the training set that shared phonetic radicals were pronounced better than those that did not. Repetition of semantic radicals across different characters, however, hindered the learning of exact meanings. Students generally confused the meanings of other characters that shared the semantic radical. The study shows that in the initial stage of learning, overlapping information of the shared radicals are effectively learned. Acquisition of the specifics of individual characters, however, requires more training.

    Additional information

    Supplementary data
  • Udden, J., Hulten, A., Bendt, K., Mineroff, Z., Kucera, K. S., Vino, A., Fedorenko, E., Hagoort, P., & Fisher, S. E. (2019). Towards robust functional neuroimaging genetics of cognition. Journal of Neuroscience, 39(44), 8778-8787. doi:10.1523/JNEUROSCI.0888-19.2019.

    Abstract

    A commonly held assumption in cognitive neuroscience is that, because measures of human brain function are closer to underlying biology than distal indices of behavior/cognition, they hold more promise for uncovering genetic pathways. Supporting this view is an influential fMRI-based study of sentence reading/listening by Pinel et al. (2012), who reported that common DNA variants in specific candidate genes were associated with altered neural activation in language-related regions of healthy individuals that carried them. In particular, different single-nucleotide polymorphisms (SNPs) of FOXP2 correlated with variation in task-based activation in left inferior frontal and precentral gyri, whereas a SNP at the KIAA0319/TTRAP/THEM2 locus was associated with variable functional asymmetry of the superior temporal sulcus. Here, we directly test each claim using a closely matched neuroimaging genetics approach in independent cohorts comprising 427 participants, four times larger than the original study of 94 participants. Despite demonstrating power to detect associations with substantially smaller effect sizes than those of the original report, we do not replicate any of the reported associations. Moreover, formal Bayesian analyses reveal substantial to strong evidence in support of the null hypothesis (no effect). We highlight key aspects of the original investigation, common to functional neuroimaging genetics studies, which could have yielded elevated false-positive rates. Genetic accounts of individual differences in cognitive functional neuroimaging are likely to be as complex as behavioral/cognitive tests, involving many common genetic variants, each of tiny effect. Reliable identification of true biological signals requires large sample sizes, power calculations, and validation in independent cohorts with equivalent paradigms.

    SIGNIFICANCE STATEMENT A pervasive idea in neuroscience is that neuroimaging-based measures of brain function, being closer to underlying neurobiology, are more amenable for uncovering links to genetics. This is a core assumption of prominent studies that associate common DNA variants with altered activations in task-based fMRI, despite using samples (10–100 people) that lack power for detecting the tiny effect sizes typical of genetically complex traits. Here, we test central findings from one of the most influential prior studies. Using matching paradigms and substantially larger samples, coupled to power calculations and formal Bayesian statistics, our data strongly refute the original findings. We demonstrate that neuroimaging genetics with task-based fMRI should be subject to the same rigorous standards as studies of other complex traits.
  • Van den Broek, G. S. E., Segers, E., Van Rijn, H., Takashima, A., & Verhoeven, L. (2019). Effects of elaborate feedback during practice tests: Costs and benefits of retrieval prompts. Journal of Experimental Psychology: Applied, 25(4), 588-601. doi:10.1037/xap0000212.

    Abstract

    This study explores the effect of feedback with hints on students’ recall of words. In three classroom experiments, high school students individually practiced vocabulary words through computerized retrieval practice with either standard show-answer feedback (display of answer) or hints feedback after incorrect responses. Hints feedback gave students a second chance to find the correct response using orthographic (Experiment 1), mnemonic (Experiment 2), or cross-language hints (Experiment 3). During practice, hints led to a shift of practice time from further repetitions to longer feedback processing but did not reduce (repeated) errors. There was no effect of feedback on later recall except when the hints from practice were also available on the test, indicating limited transfer of practice with hints to later recall without hints (in Experiments 1 and 2). Overall, hints feedback was not preferable over show-answer feedback. The common notion that hints are beneficial may not hold when the total practice time is limited.
  • Van Bergen, G., Flecken, M., & Wu, R. (2019). Rapid target selection of object categories based on verbs: Implications for language-categorization interactions. Psychophysiology, 56(9): e13395. doi:10.1111/psyp.13395.

    Abstract

    Although much is known about how nouns facilitate object categorization, very little is known about how verbs (e.g., posture verbs such as stand or lie) facilitate object categorization. Native Dutch speakers are a unique population to investigate this issue with because the configurational categories distinguished by staan (to stand) and liggen (to lie) are inherent in everyday Dutch language. Using an ERP component (N2pc), four experiments demonstrate that selection of posture verb categories is rapid (between 220–320 ms). The effect was attenuated, though present, when removing the perceptual distinction between categories. A similar attenuated effect was obtained in native English speakers, where the category distinction is less familiar, and when category labels were implicit for native Dutch speakers. Our results are among the first to demonstrate that category search based on verbs can be rapid, although extensive linguistic experience and explicit labels may not be necessary to facilitate categorization in this case.

    Additional information

    psyp13395-sup-0001-appendixs1.pdf
  • Van Es, M. W. J., & Schoffelen, J.-M. (2019). Stimulus-induced gamma power predicts the amplitude of the subsequent visual evoked response. NeuroImage, 186, 703-712. doi:10.1016/j.neuroimage.2018.11.029.

    Abstract

    The efficiency of neuronal information transfer in activated brain networks may affect behavioral performance.
    Gamma-band synchronization has been proposed to be a mechanism that facilitates neuronal processing of
    behaviorally relevant stimuli. In line with this, it has been shown that strong gamma-band activity in visual
    cortical areas leads to faster responses to a visual go cue. We investigated whether there are directly observable
    consequences of trial-by-trial fluctuations in non-invasively observed gamma-band activity on the neuronal
    response. Specifically, we hypothesized that the amplitude of the visual evoked response to a go cue can be
    predicted by gamma power in the visual system, in the window preceding the evoked response. Thirty-three
    human subjects (22 female) performed a visual speeded response task while their magnetoencephalogram
    (MEG) was recorded. The participants had to respond to a pattern reversal of a concentric moving grating. We
    estimated single trial stimulus-induced visual cortical gamma power, and correlated this with the estimated single
    trial amplitude of the most prominent event-related field (ERF) peak within the first 100 ms after the pattern
    reversal. In parieto-occipital cortical areas, the amplitude of the ERF correlated positively with gamma power, and
    correlated negatively with reaction times. No effects were observed for the alpha and beta frequency bands,
    despite clear stimulus onset induced modulation at those frequencies. These results support a mechanistic model,
    in which gamma-band synchronization enhances the neuronal gain to relevant visual input, thus leading to more
    efficient downstream processing and to faster responses.
  • Varma, S., Takashima, A., Fu, L., & Kessels, R. P. C. (2019). Mindwandering propensity modulates episodic memory consolidation. Aging Clinical and Experimental Research, 31(11), 1601-1607. doi:10.1007/s40520-019-01251-1.

    Abstract

    Research into strategies that can combat episodic memory decline in healthy older adults has gained widespread attention over the years. Evidence suggests that a short period of rest immediately after learning can enhance memory consolidation, as compared to engaging in cognitive tasks. However, a recent study in younger adults has shown that post-encoding engagement in a working memory task leads to the same degree of memory consolidation as from post-encoding rest. Here, we tested whether this finding can be extended to older adults. Using a delayed recognition test, we compared the memory consolidation of word–picture pairs learned prior to 9 min of rest or a 2-Back working memory task, and examined its relationship with executive functioning and mindwandering propensity. Our results show that (1) similar to younger adults, memory for the word–picture associations did not differ when encoding was followed by post-encoding rest or 2-Back task and (2) older adults with higher mindwandering propensity retained more word–picture associations encoded prior to rest relative to those encoded prior to the 2-Back task, whereas participants with lower mindwandering propensity had better memory performance for the pairs encoded prior to the 2-Back task. Overall, our results indicate that the degree of episodic memory consolidation during both active and passive post-encoding periods depends on individual mindwandering tendency.

    Additional information

    Supplementary material
  • Warren, C. M., Tona, K. D., Ouwekerk, L., Van Paridon, J., Poletiek, F. H., Bosch, J. A., & Nieuwenhuis, S. (2019). The neuromodulatory and hormonal effects of transcutaneous vagus nerve stimulation as evidenced by salivary alpha amylase, salivary cortisol, pupil diameter, and the P3 event-related potential. Brain Stimulation, 12(3), 635-642. doi:10.1016/j.brs.2018.12.224.

    Abstract

    Background

    Transcutaneous vagus nerve stimulation (tVNS) is a new, non-invasive technique being investigated as an intervention for a variety of clinical disorders, including epilepsy and depression. It is thought to exert its therapeutic effect by increasing central norepinephrine (NE) activity, but the evidence supporting this notion is limited.
    Objective

    In order to test for an impact of tVNS on psychophysiological and hormonal indices of noradrenergic function, we applied tVNS in concert with assessment of salivary alpha amylase (SAA) and cortisol, pupil size, and electroencephalograph (EEG) recordings.
    Methods

    Across three experiments, we applied real and sham tVNS to 61 healthy participants while they performed a set of simple stimulus-discrimination tasks. Before and after the task, as well as during one break, participants provided saliva samples and had their pupil size recorded. EEG was recorded throughout the task. The target for tVNS was the cymba conchae, which is heavily innervated by the auricular branch of the vagus nerve. Sham stimulation was applied to the ear lobe.
    Results

    P3 amplitude was not affected by tVNS (Experiment 1A: N=24; Experiment 1B: N=20; Bayes factor supporting null model=4.53), nor was pupil size (Experiment 2: N=16; interaction of treatment and time: p=0.79). However, tVNS increased SAA (Experiments 1A and 2: N=25) and attenuated the decline of salivary cortisol compared to sham (Experiment 2: N=17), as indicated by significant interactions involving treatment and time (p=.023 and p=.040, respectively).
    Conclusion

    These findings suggest that tVNS modulates hormonal indices but not psychophysiological indices of noradrenergic function.
  • Weber, K., Christiansen, M., Indefrey, P., & Hagoort, P. (2019). Primed from the start: Syntactic priming during the first days of language learning. Language Learning, 69(1), 198-221. doi:10.1111/lang.12327.

    Abstract

    New linguistic information must be integrated into our existing language system. Using a novel experimental task that incorporates a syntactic priming paradigm into artificial language learning, we investigated how new grammatical regularities and words are learned. This innovation allowed us to control the language input the learner received, while the syntactic priming paradigm provided insight into the nature of the underlying syntactic processing machinery. The results of the present study pointed to facilitatory syntactic processing effects within the first days of learning: Syntactic and lexical priming effects revealed participants’ sensitivity to both novel words and word orders. This suggested that novel syntactic structures and their meaning (form–function mapping) can be acquired rapidly through incidental learning. More generally, our study indicated similar mechanisms for learning and processing in both artificial and natural languages, with implications for the relationship between first and second language learning.
  • Weber, K., Micheli, C., Ruigendijk, E., & Rieger, J. (2019). Sentence processing is modulated by the current linguistic environment and a priori information: An fMRI study. Brain and Behavior, 9(7): e01308. doi:10.1002/brb3.1308.

    Abstract

    Introduction
    Words are not processed in isolation but in rich contexts that are used to modulate and facilitate language comprehension. Here, we investigate distinct neural networks underlying two types of contexts, the current linguistic environment and verb‐based syntactic preferences.

    Methods
    We had two main manipulations. The first was the current linguistic environment, where the relative frequencies of two syntactic structures (prepositional object [PO] and double‐object [DO]) would either follow everyday linguistic experience or not. The second concerned the preference toward one or the other structure depending on the verb; learned in everyday language use and stored in memory. German participants were reading PO and DO sentences in German while brain activity was measured with functional magnetic resonance imaging.

    Results
    First, the anterior cingulate cortex (ACC) showed a pattern of activation that integrated the current linguistic environment with everyday linguistic experience. When the input did not match everyday experience, the unexpected frequent structure showed higher activation in the ACC than the other conditions and more connectivity from the ACC to posterior parts of the language network. Second, verb‐based surprisal of seeing a structure given a verb (PO verb preference but DO structure presentation) resulted, within the language network (left inferior frontal and left middle/superior temporal gyrus) and the precuneus, in increased activation compared to a predictable verb‐structure pairing.

    Conclusion
    In conclusion, (1) beyond the canonical language network, brain areas engaged in prediction and error signaling, such as the ACC, might use the statistics of syntactic structures to modulate language processing, (2) the language network is directly engaged in processing verb preferences. These two networks show distinct influences on sentence processing.

    Additional information

    Supporting information
  • Zhu, Z., Bastiaansen, M. C. M., Hakun, J. G., Petersson, K. M., Wang, S., & Hagoort, P. (2019). Semantic unification modulates N400 and BOLD signal change in the brain: A simultaneous EEG-fMRI study. Journal of Neurolinguistics, 52: 100855. doi:10.1016/j.jneuroling.2019.100855.

    Abstract

    Semantic unification during sentence comprehension has been associated with amplitude change of the N400 in event-related potential (ERP) studies, and activation in the left inferior frontal gyrus (IFG) in functional magnetic resonance imaging (fMRI) studies. However, the specificity of this activation to semantic unification remains unknown. To more closely examine the brain processes involved in semantic unification, we employed simultaneous EEG-fMRI to time-lock the semantic unification related N400 change, and integrated trial-by-trial variation in both N400 and BOLD change beyond the condition-level BOLD change difference measured in traditional fMRI analyses. Participants read sentences in which semantic unification load was parametrically manipulated by varying cloze probability. Separately, ERP and fMRI results replicated previous findings, in that semantic unification load parametrically modulated the amplitude of N400 and cortical activation. Integrated EEG-fMRI analyses revealed a different pattern in which functional activity in the left IFG and bilateral supramarginal gyrus (SMG) was associated with N400 amplitude, with the left IFG activation and bilateral SMG activation being selective to the condition-level and trial-level of semantic unification load, respectively. By employing the EEG-fMRI integrated analyses, this study among the first sheds light on how to integrate trial-level variation in language comprehension.
  • Adank, P., Hagoort, P., & Bekkering, H. (2010). Imitation improves language comprehension. Psychological Science, 21, 1903-1909. doi:10.1177/0956797610389192.

    Abstract

    Humans imitate each other during social interaction. This imitative behavior streamlines social interaction and aids in learning to replicate actions. However, the effect of imitation on action comprehension is unclear. This study investigated whether vocal imitation of an unfamiliar accent improved spoken-language comprehension. Following a pretraining accent comprehension test, participants were assigned to one of six groups. The baseline group received no training, but participants in the other five groups listened to accented sentences, listened to and repeated accented sentences in their own accent, listened to and transcribed accented sentences, listened to and imitated accented sentences, or listened to and imitated accented sentences without being able to hear their own vocalizations. Posttraining measures showed that accent comprehension was most improved for participants who imitated the speaker’s accent. These results show that imitation may aid in streamlining interaction by improving spoken-language comprehension under adverse listening conditions.
  • Andics, A., McQueen, J. M., Petersson, K. M., Gál, V., Rudas, G., & Vidnyánszky, Z. (2010). Neural mechanisms for voice recognition. NeuroImage, 52, 1528-1540. doi:10.1016/j.neuroimage.2010.05.048.

    Abstract

    We investigated neural mechanisms that support voice recognition in a training paradigm with fMRI. The same listeners were trained on different weeks to categorize the mid-regions of voice-morph continua as an individual's voice. Stimuli implicitly defined a voice-acoustics space, and training explicitly defined a voice-identity space. The predefined centre of the voice category was shifted from the acoustic centre each week in opposite directions, so the same stimuli had different training histories on different tests. Cortical sensitivity to voice similarity appeared over different time-scales and at different representational stages. First, there were short-term adaptation effects: Increasing acoustic similarity to the directly preceding stimulus led to haemodynamic response reduction in the middle/posterior STS and in right ventrolateral prefrontal regions. Second, there were longer-term effects: Response reduction was found in the orbital/insular cortex for stimuli that were most versus least similar to the acoustic mean of all preceding stimuli, and, in the anterior temporal pole, the deep posterior STS and the amygdala, for stimuli that were most versus least similar to the trained voice-identity category mean. These findings are interpreted as effects of neural sharpening of long-term stored typical acoustic and category-internal values. The analyses also reveal anatomically separable voice representations: one in a voice-acoustics space and one in a voice-identity space. Voice-identity representations flexibly followed the trained identity shift, and listeners with a greater identity effect were more accurate at recognizing familiar voices. Voice recognition is thus supported by neural voice spaces that are organized around flexible ‘mean voice’ representations.
  • Araújo, S., Pacheco, A., Faísca, L., Petersson, K. M., & Reis, A. (2010). Visual rapid naming and phonological abilities: Different subtypes in dyslexic children. International Journal of Psychology, 45, 443-452. doi:10.1080/00207594.2010.499949.

    Abstract

    One implication of the double-deficit hypothesis for dyslexia is that there should be subtypes of dyslexic readers that exhibit rapid naming deficits with or without concomitant phonological processing problems. In the current study, we investigated the validity of this hypothesis for Portuguese orthography, which is more consistent than English orthography, by exploring different cognitive profiles in a sample of dyslexic children. In particular, we were interested in identifying readers characterized by a pure rapid automatized naming deficit. We also examined whether rapid naming and phonological awareness independently account for individual differences in reading performance. We characterized the performance of dyslexic readers and a control group of normal readers matched for age on reading, visual rapid naming and phonological processing tasks. Our results suggest that there is a subgroup of dyslexic readers with intact phonological processing capacity (in terms of both accuracy and speed measures) but poor rapid naming skills. We also provide evidence for an independent association between rapid naming and reading competence in the dyslexic sample, when the effect of phonological skills was controlled. Altogether, the results are more consistent with the view that rapid naming problems in dyslexia represent a second core deficit rather than an exclusive phonological explanation for the rapid naming deficits. Furthermore, additional non-phonological processes, which subserve rapid naming performance, contribute independently to reading development.
  • Baggio, G., Choma, T., Van Lambalgen, M., & Hagoort, P. (2010). Coercion and compositionality. Journal of Cognitive Neuroscience, 22, 2131-2140. doi:10.1162/jocn.2009.21303.

    Abstract

    Research in psycholinguistics and in the cognitive neuroscience of language has suggested that semantic and syntactic integration are associated with different neurophysiologic correlates, such as the N400 and the P600 in the ERPs. However, only a handful of studies have investigated the neural basis of the syntax–semantics interface, and even fewer experiments have dealt with the cases in which semantic composition can proceed independently of the syntax. Here we looked into one such case—complement coercion—using ERPs. We compared sentences such as, “The journalist wrote the article” with “The journalist began the article.” The second sentence seems to involve a silent semantic element, which is expressed in the first sentence by the head of the VP “wrote the article.” The second type of construction may therefore require the reader to infer or recover from memory a richer event sense of the VP “began the article,” such as began writing the article, and to integrate that into a semantic representation of the sentence. This operation is referred to as “complement coercion.” Consistently with earlier reading time, eye tracking, and MEG studies, we found traces of such additional computations in the ERPs: Coercion gives rise to a long-lasting negative shift, which differs at least in duration from a standard N400 effect. Issues regarding the nature of the computation involved are discussed in the light of a neurocognitive model of language processing and a formal semantic analysis of coercion.
  • Bastiaansen, M. C. M., Magyari, L., & Hagoort, P. (2010). Syntactic unification operations are reflected in oscillatory dynamics during on-line sentence comprehension. Journal of Cognitive Neuroscience, 22, 1333-1347. doi:10.1162/jocn.2009.21283.

    Abstract

    There is growing evidence suggesting that synchronization changes in the oscillatory neuronal dynamics in the EEG or MEG reflect the transient coupling and uncoupling of functional networks related to different aspects of language comprehension. In this work, we examine how sentence-level syntactic unification operations are reflected in the oscillatory dynamics of the MEG. Participants read sentences that were either correct, contained a word category violation, or were constituted of random word sequences devoid of syntactic structure. A time-frequency analysis of MEG power changes revealed three types of effects. The first type of effect was related to the detection of a (word category) violation in a syntactically structured sentence, and was found in the alpha and gamma frequency bands. A second type of effect was maximally sensitive to the syntactic manipulations: A linear increase in beta power across the sentence was present for correct sentences, was disrupted upon the occurrence of a word category violation, and was absent in syntactically unstructured random word sequences. We therefore relate this effect to syntactic unification operations. Thirdly, we observed a linear increase in theta power across the sentence for all syntactically structured sentences. The effects are tentatively related to the building of a working memory trace of the linguistic input. In conclusion, the data seem to suggest that syntactic unification is reflected by neuronal synchronization in the lower-beta frequency band.
  • Bramão, I., Faísca, L., Forkstam, C., Reis, A., & Petersson, K. M. (2010). Cortical brain regions associated with color processing: An FMRI study. The Open Neuroimaging Journal, 4, 164-173. doi:10.2174/1874440001004010164.

    Abstract

    To clarify whether the neural pathways concerning color processing are the same for natural objects, for artifacts objects and for non-sense objects we examined functional magnetic resonance imaging (FMRI) responses during a covert naming task including the factors color (color vs. black&white (B&W)) and stimulus type (natural vs. artifacts vs. non-sense objects). Our results indicate that the superior parietal lobule and precuneus (BA 7) bilaterally, the right hippocampus and the right fusifom gyrus (V4) make part of a network responsible for color processing both for natural and artifacts objects, but not for non-sense objects. The recognition of non-sense colored objects compared to the recognition of color objects activated the posterior cingulate/precuneus (BA 7/23/31), suggesting that color attribute induces the mental operation of trying to associate a non-sense composition with a familiar objects. When color objects (both natural and artifacts) were contrasted with color nonobjects we observed activations in the right parahippocampal gyrus (BA 35/36), the superior parietal lobule (BA 7) bilaterally, the left inferior middle temporal region (BA 20/21) and the inferior and superior frontal regions (BA 10/11/47). These additional activations suggest that colored objects recruit brain regions that are related to visual semantic information/retrieval and brain regions related to visuo-spatial processing. Overall, the results suggest that color information is an attribute that improve object recognition (based on behavioral results) and activate a specific neural network related to visual semantic information that is more extensive than for B&W objects during object recognition
  • Bramão, I., Faísca, L., Petersson, K. M., & Reis, A. (2010). The influence of surface color information and color knowledge information in object recognition. American Journal of Psychology, 123, 437-466. Retrieved from http://www.jstor.org/stable/10.5406/amerjpsyc.123.4.0437.

    Abstract

    In order to clarify whether the influence of color knowledge information in object recognition depends on the presence of the appropriate surface color, we designed a name—object verification task. The relationship between color and shape information provided by the name and by the object photo was manipulated in order to assess color interference independently of shape interference. We tested three different versions for each object: typically colored, black and white, and nontypically colored. The response times on the nonmatching trials were used to measure the interference between the name and the photo. We predicted that the more similar the name and the photo are, the longer it would take to respond. Overall, the color similarity effect disappeared in the black-and-white and nontypical color conditions, suggesting that the influence of color knowledge on object recognition depends on the presence of the appropriate surface color information.
  • Casasanto, D., & Dijkstra, K. (2010). Motor action and emotional memory. Cognition, 115, 179-185. doi:10.1016/j.cognition.2009.11.002.

    Abstract

    Can simple motor actions affect how efficiently people retrieve emotional memories, and influence what they choose to remember? In Experiment 1, participants were prompted to retell autobiographical memories with either positive or negative valence, while moving marbles either upward or downward. They retrieved memories faster when the direction of movement was congruent with the valence of the memory (upward for positive, downward for negative memories). Given neutral-valence prompts in Experiment 2, participants retrieved more positive memories when instructed to move marbles up, and more negative memories when instructed to move them down, demonstrating a causal link from motion to emotion. Results suggest that positive and negative life experiences are implicitly associated with schematic representations of upward and downward motion, consistent with theories of metaphorical mental representation. Beyond influencing the efficiency of memory retrieval, the direction of irrelevant, repetitive motor actions can also partly determine the emotional content of the memories people retrieve: moving marbles upward (an ostensibly meaningless action) can cause people to think more positive thoughts.
  • Casasanto, D., & Jasmin, K. (2010). Good and bad in the hands of politicians: Spontaneous gestures during positive and negative speech. PLoS ONE, 5(7), E11805. doi:10.1371/journal.pone.0011805.

    Abstract

    According to the body-specificity hypothesis, people with different bodily characteristics should form correspondingly different mental representations, even in highly abstract conceptual domains. In a previous test of this proposal, right- and left-handers were found to associate positive ideas like intelligence, attractiveness, and honesty with their dominant side and negative ideas with their non-dominant side. The goal of the present study was to determine whether ‘body-specific’ associations of space and valence can be observed beyond the laboratory in spontaneous behavior, and whether these implicit associations have visible consequences.
  • Casasanto, D., Fotakopoulou, O., & Boroditsky, L. (2010). Space and time in the child's mind: Evidence for a cross-dimensional asymmetry. Cognitive Science, 34, 387 -405. doi:10.1111/j.1551-6709.2010.01094.x.

    Abstract

    What is the relationship between space and time in the human mind? Studies in adults show an asymmetric relationship between mental representations of these basic dimensions of experience: Representations of time depend on space more than representations of space depend on time. Here we investigated the relationship between space and time in the developing mind. Native Greek-speaking children watched movies of two animals traveling along parallel paths for different distances or durations and judged the spatial and temporal aspects of these events (e.g., Which animal went for a longer distance, or a longer time?). Results showed a reliable cross-dimensional asymmetry. For the same stimuli, spatial information influenced temporal judgments more than temporal information influenced spatial judgments. This pattern was robust to variations in the age of the participants and the type of linguistic framing used to elicit responses. This finding demonstrates a continuity between space-time representations in children and adults, and informs theories of analog magnitude representation.
  • Folia, V., Uddén, J., De Vries, M., Forkstam, C., & Petersson, K. M. (2010). Artificial language learning in adults and children. Language learning, 60(s2), 188-220. doi:10.1111/j.1467-9922.2010.00606.x.

    Abstract

    This article briefly reviews some recent work on artificial language learning in children and adults. The final part of the article is devoted to a theoretical formulation of the language learning problem from a mechanistic neurobiological viewpoint and we show that it is logically possible to combine the notion of innate language constraints with, for example, the notion of domain general learning mechanisms. A growing body of empirical evidence suggests that the mechanisms involved in artificial language learning and in structured sequence processing are shared with those of natural language acquisition and natural language processing. Finally, by theoretically analyzing a formal learning model, we highlight Fodor’s insight that it is logically possible to combine innate, domain-specific constraints with domain-general learning mechanisms.
  • Fournier, R., Gussenhoven, C., Jensen, O., & Hagoort, P. (2010). Lateralization of tonal and intonational pitch processing: An MEG study. Brain Research, 1328, 79-88. doi:10.1016/j.brainres.2010.02.053.

    Abstract

    An MEG experiment was carried out in order to compare the processing of lexical-tonal and intonational contrasts, based on the tonal dialect of Roermond (the Netherlands). A set of words with identical phoneme sequences but distinct pitch contours, which represented different lexical meanings or discourse meanings (statement vs. question), were presented to native speakers as well as to a control group of speakers of Standard Dutch, a non-tone language. The stimuli were arranged in a mismatch paradigm, under three experimental conditions: in the first condition (lexical), the pitch contour differences between standard and deviant stimuli reflected differences between lexical meanings; in the second condition (intonational), the stimuli differed in their discourse meaning; in the third condition (combined), they differed both in their lexical and discourse meaning. In all three conditions, native as well as non-native responses showed a clear MMNm (magnetic mismatch negativity) in a time window from 150 to 250 ms after the divergence point of standard and deviant pitch contours. In the lexical condition, a stronger response was found over the left temporal cortex of native as well as non-native speakers. In the intonational condition, the same activation pattern was observed in the control group, but not in the group of native speakers, who showed a right-hemisphere dominance instead. Finally, in the combined (lexical and intonational) condition, brain reactions appeared to represent the summation of the patterns found in the other two conditions. In sum, the lateralization of pitch processing is condition-dependent in the native group only, which suggests that language experience determines how processes should be distributed over both temporal cortices, according to the functions available in the grammar.
  • Groen, W. B., Tesink, C. M. J. Y., Petersson, K. M., Van Berkum, J. J. A., Van der Gaag, R. J., Hagoort, P., & Buitelaar, J. K. (2010). Semantic, factual, and social language comprehension in adolescents with autism: An fMRI study. Cerebral Cortex, 20(8), 1937-1945. doi:10.1093/cercor/bhp264.

    Abstract

    Language in high-functioning autism is characterized by pragmatic and semantic deficits, and people with autism have a reduced tendency to integrate information. Because the left and right inferior frontal (LIF and RIF) regions are implicated with integration of speaker information, world knowledge, and semantic knowledge, we hypothesized that abnormal functioning of the LIF and RIF regions might contribute to pragmatic and semantic language deficits in autism. Brain activation of sixteen 12- to 18-year-old, high-functioning autistic participants was measured with functional magnetic resonance imaging during sentence comprehension and compared with that of twenty-six matched controls. The content of the pragmatic sentence was congruent or incongruent with respect to the speaker characteristics (male/female, child/adult, and upper class/lower class). The semantic- and world-knowledge sentences were congruent or incongruent with respect to semantic expectancies and factual expectancies about the world, respectively. In the semanticknowledge and world-knowledge condition, activation of the LIF region did not differ between groups. In sentences that required integration of speaker information, the autism group showed abnormally reduced activation of the LIF region. The results suggest that people with autism may recruit the LIF region in a different manner in tasks that demand integration of social information.
  • Kelly, S. D., Ozyurek, A., & Maris, E. (2010). Two sides of the same coin: Speech and gesture mutually interact to enhance comprehension. Psychological Science, 21, 260-267. doi:10.1177/0956797609357327.

    Abstract

    Gesture and speech are assumed to form an integrated system during language production. Based on this view, we propose the integrated‐systems hypothesis, which explains two ways in which gesture and speech are integrated—through mutual and obligatory interactions—in language comprehension. Experiment 1 presented participants with action primes (e.g., someone chopping vegetables) and bimodal speech and gesture targets. Participants related primes to targets more quickly and accurately when they contained congruent information (speech: “chop”; gesture: chop) than when they contained incongruent information (speech: “chop”; gesture: twist). Moreover, the strength of the incongruence affected processing, with fewer errors for weak incongruities (speech: “chop”; gesture: cut) than for strong incongruities (speech: “chop”; gesture: twist). Crucial for the integrated‐systems hypothesis, this influence was bidirectional. Experiment 2 demonstrated that gesture’s influence on speech was obligatory. The results confirm the integrated‐systems hypothesis and demonstrate that gesture and speech form an integrated system in language comprehension.
  • Kos, M., Vosse, T. G., Van den Brink, D., & Hagoort, P. (2010). About edible restaurants: Conflicts between syntax and semantics as revealed by ERPs. Frontiers in Psychology, 1, E222. doi:10.3389/fpsyg.2010.00222.

    Abstract

    In order to investigate conflicts between semantics and syntax, we recorded ERPs, while participants read Dutch sentences. Sentences containing conflicts between syntax and semantics (Fred eats in a sandwich…/ Fred eats a restaurant…) elicited an N400. These results show that conflicts between syntax and semantics not necessarily lead to P600 effects and are in line with the processing competition account. According to this parallel account the syntactic and semantic processing streams are fully interactive and information from one level can influence the processing at another level. The relative strength of the cues of the processing streams determines which level is affected most strongly by the conflict. The processing competition account maintains the distinction between the N400 as index for semantic processing and the P600 as index for structural processing.
  • Ladd, D. R., & Dediu, D. (2010). Reply to Järvikivi et al. (2010) [Web log message]. Plos One. Retrieved from http://www.plosone.org/article/comments/info%3Adoi%2F10.1371%2Fjournal.pone.0012603.
  • Maguire, W., McMahon, A., Heggarty, P., & Dediu, D. (2010). The past, present, and future of English dialects: Quantifying convergence, divergence, and dynamic equilibrium. Language Variation and Change, 22, 69-104. doi:10.1017/S0954394510000013.

    Abstract

    This article reports on research which seeks to compare and measure the similarities between phonetic transcriptions in the analysis of relationships between varieties of English. It addresses the question of whether these varieties have been converging, diverging, or maintaining equilibrium as a result of endogenous and exogenous phonetic and phonological changes. We argue that it is only possible to identify such patterns of change by the simultaneous comparison of a wide range of varieties of a language across a data set that has not been specifically selected to highlight those changes that are believed to be important. Our analysis suggests that although there has been an obvious reduction in regional variation with the loss of traditional dialects of English and Scots, there has not been any significant convergence (or divergence) of regional accents of English in recent decades, despite the rapid spread of a number of features such as TH-fronting.
  • Merritt, D. J., Casasanto, D., & Brannon, E. M. (2010). Do monkeys think in metaphors? Representations of space and time in monkeys and humans. Cognition, 117, 191-202. doi:10.1016/j.cognition.2010.08.011.

    Abstract

    Research on the relationship between the representation of space and time has produced two contrasting proposals. ATOM posits that space and time are represented via a common magnitude system, suggesting a symmetrical relationship between space and time. According to metaphor theory, however, representations of time depend on representations of space asymmetrically. Previous findings in humans have supported metaphor theory. Here, we investigate the relationship between time and space in a nonverbal species, by testing whether non-human primates show space–time interactions consistent with metaphor theory or with ATOM. We tested two rhesus monkeys and 16 adult humans in a nonverbal task that assessed the influence of an irrelevant dimension (time or space) on a relevant dimension (space or time). In humans, spatial extent had a large effect on time judgments whereas time had a small effect on spatial judgments. In monkeys, both spatial and temporal manipulations showed large bi-directional effects on judgments. In contrast to humans, spatial manipulations in monkeys did not produce a larger effect on temporal judgments than the reverse. Thus, consistent with previous findings, human adults showed asymmetrical space–time interactions that were predicted by metaphor theory. In contrast, monkeys showed patterns that were more consistent with ATOM.
  • Meulenbroek, O., Kessels, R. P. C., De Rover, M., Petersson, K. M., Olde Rikkert, M. G. M., Rijpkema, M., & Fernández, G. (2010). Age-effects on associative object-location memory. Brain Research, 1315, 100-110. doi:10.1016/j.brainres.2009.12.011.

    Abstract

    Aging is accompanied by an impairment of associative memory. The medial temporal lobe and fronto-striatal network, both involved in associative memory, are known to decline functionally and structurally with age, leading to the so-called associative binding deficit and the resource deficit. Because the MTL and fronto-striatal network interact, they might also be able to support each other. We therefore employed an episodic memory task probing memory for sequences of object–location associations, where the demand on self-initiated processing was manipulated during encoding: either all the objects were visible simultaneously (rich environmental support) or every object became visible transiently (poor environmental support). Following the concept of resource deficit, we hypothesised that the elderly probably have difficulty using their declarative memory system when demands on self-initiated processing are high (poor environmental support). Our behavioural study showed that only the young use the rich environmental support in a systematic way, by placing the objects next to each other. With the task adapted for fMRI, we found that elderly showed stronger activity than young subjects during retrieval of environmentally richly encoded information in the basal ganglia, thalamus, left middle temporal/fusiform gyrus and right medial temporal lobe (MTL). These results indicate that rich environmental support leads to recruitment of the declarative memory system in addition to the fronto-striatal network in elderly, while the young use more posterior brain regions likely related to imagery. We propose that elderly try to solve the task by additional recruitment of stimulus-response associations, which might partly compensate their limited attentional resources.
  • Noordzij, M. L., Newman-Norlund, S. E., De Ruiter, J. P., Hagoort, P., Levinson, S. C., & Toni, I. (2010). Neural correlates of intentional communication. Frontiers in Neuroscience, 4, E188. doi:10.3389/fnins.2010.00188.

    Abstract

    We know a great deal about the neurophysiological mechanisms supporting instrumental actions, i.e. actions designed to alter the physical state of the environment. In contrast, little is known about our ability to select communicative actions, i.e. actions directly designed to modify the mental state of another agent. We have recently provided novel empirical evidence for a mechanism in which a communicator selects his actions on the basis of a prediction of the communicative intentions that an addressee is most likely to attribute to those actions. The main novelty of those finding was that this prediction of intention recognition is cerebrally implemented within the intention recognition system of the communicator, is modulated by the ambiguity in meaning of the communicative acts, and not by their sensorimotor complexity. The characteristics of this predictive mechanism support the notion that human communicative abilities are distinct from both sensorimotor and linguistic processes.
  • Ozyurek, A., Zwitserlood, I., & Perniss, P. M. (2010). Locative expressions in signed languages: A view from Turkish Sign Language (TID). Linguistics, 48(5), 1111-1145. doi:10.1515/LING.2010.036.

    Abstract

    Locative expressions encode the spatial relationship between two (or more) entities. In this paper, we focus on locative expressions in signed language, which use the visual-spatial modality for linguistic expression, specifically in
    Turkish Sign Language ( Türk İşaret Dili, henceforth TİD). We show that TİD uses various strategies in discourse to encode the relation between a Ground entity (i.e., a bigger and/or backgrounded entity) and a Figure entity (i.e., a
    smaller entity, which is in the focus of attention). Some of these strategies exploit affordances of the visual modality for analogue representation and support evidence for modality-specific effects on locative expressions in sign languages.
    However, other modality-specific strategies, e.g., the simultaneous expression of Figure and Ground, which have been reported for many other sign languages, occurs only sparsely in TİD. Furthermore, TİD uses categorical as well as analogical structures in locative expressions. On the basis of
    these findings, we discuss differences and similarities between signed and spoken languages to broaden our understanding of the range of structures used in natural language (i.e., in both the visual-spatial or oral-aural modalities) to encode locative relations. A general linguistic theory of spatial relations, and specifically of locative expressions, must take all structures that
    might arise in both modalities into account before it can generalize over the human language faculty.
  • Petrovic, P., Kalso, E., Petersson, K. M., Andersson, J., Fransson, P., & Ingvar, M. (2010). A prefrontal non-opioid mechanism in placebo analgesia. Pain, 150, 59-65. doi:10.1016/j.pain.2010.03.011.

    Abstract

    ehavioral studies have suggested that placebo analgesia is partly mediated by the endogenous opioid system. Expanding on these results we have shown that the opioid-receptor-rich rostral anterior cingulate cortex (rACC) is activated in both placebo and opioid analgesia. However, there are also differences between the two treatments. While opioids have direct pharmacological effects, acting on the descending pain inhibitory system, placebo analgesia depends on neocortical top-down mechanisms. An important difference may be that expectations are met to a lesser extent in placebo treatment as compared with a specific treatment, yielding a larger error signal. As these processes previously have been shown to influence other types of perceptual experiences, we hypothesized that they also may drive placebo analgesia. Imaging studies suggest that lateral orbitofrontal cortex (lObfc) and ventrolateral prefrontal cortex (vlPFC) are involved in processing expectation and error signals. We re-analyzed two independent functional imaging experiments related to placebo analgesia and emotional placebo to probe for a differential processing in these regions during placebo treatment vs. opioid treatment and to test if this activity is associated with the placebo response. In the first dataset lObfc and vlPFC showed an enhanced activation in placebo analgesia vs. opioid analgesia. Furthermore, the rACC activity co-varied with the prefrontal regions in the placebo condition specifically. A similar correlation between rACC and vlPFC was reproduced in another dataset involving emotional placebo and correlated with the degree of the placebo effect. Our results thus support that placebo is different from specific treatment with a prefrontal top-down influence on rACC.
  • Pijnacker, J., Geurts, B., Van Lambalgen, M., Buitelaar, J., & Hagoort, P. (2010). Exceptions and anomalies: An ERP study on context sensitivity in autism. Neuropsychologia, 48, 2940-2951. doi:10.1016/j.neuropsychologia.2010.06.003.

    Abstract

    Several studies have demonstrated that people with ASD and intact language skills still have problems processing linguistic information in context. Given this evidence for reduced sensitivity to linguistic context, the question arises how contextual information is actually processed by people with ASD. In this study, we used event-related brain potentials (ERPs) to examine context sensitivity in high-functioning adults with autistic disorder (HFA) and Asperger syndrome at two levels: at the level of sentence processing and at the level of solving reasoning problems. We found that sentence context as well as reasoning context had an immediate ERP effect in adults with Asperger syndrome, as in matched controls. Both groups showed a typical N400 effect and a late positive component for the sentence conditions, and a sustained negativity for the reasoning conditions. In contrast, the HFA group demonstrated neither an N400 effect nor a sustained negativity. However, the HFA group showed a late positive component which was larger for semantically anomalous sentences than congruent sentences. Because sentence context had a modulating effect in a later phase, semantic integration is perhaps less automatic in HFA, and presumably more elaborate processes are needed to arrive at a sentence interpretation.
  • Ringersma, J., Kastens, K., Tschida, U., & Van Berkum, J. J. A. (2010). A principled approach to online publication listings and scientific resource sharing. The Code4Lib Journal, 2010(9), 2520.

    Abstract

    The Max Planck Institute (MPI) for Psycholinguistics has developed a service to manage and present the scholarly output of their researchers. The PubMan database manages publication metadata and full-texts of publications published by their scholars. All relevant information regarding a researcher’s work is brought together in this database, including supplementary materials and links to the MPI database for primary research data. The PubMan metadata is harvested into the MPI website CMS (Plone). The system developed for the creation of the publication lists, allows the researcher to create a selection of the harvested data in a variety of formats.
  • De Ruiter, J. P., Noordzij, M. L., Newman-Norlund, S., Hagoort, P., Levinson, S. C., & Toni, I. (2010). Exploring the cognitive infrastructure of communication. Interaction studies, 11, 51-77. doi:10.1075/is.11.1.05rui.

    Abstract

    Human communication is often thought about in terms of transmitted messages in a conventional code like a language. But communication requires a specialized interactive intelligence. Senders have to be able to perform recipient design, while receivers need to be able to do intention recognition, knowing that recipient design has taken place. To study this interactive intelligence in the lab, we developed a new task that taps directly into the underlying abilities to communicate in the absence of a conventional code. We show that subjects are remarkably successful communicators under these conditions, especially when senders get feedback from receivers. Signaling is accomplished by the manner in which an instrumental action is performed, such that instrumentally dysfunctional components of an action are used to convey communicative intentions. The findings have important implications for the nature of the human communicative infrastructure, and the task opens up a line of experimentation on human communication.
  • Simanova, I., Van Gerven, M., Oostenveld, R., & Hagoort, P. (2010). Identifying object categories from event-related EEG: Toward decoding of conceptual representations. Plos One, 5(12), E14465. doi:10.1371/journal.pone.0014465.

    Abstract

    Multivariate pattern analysis is a technique that allows the decoding of conceptual information such as the semantic category of a perceived object from neuroimaging data. Impressive single-trial classification results have been reported in studies that used fMRI. Here, we investigate the possibility to identify conceptual representations from event-related EEG based on the presentation of an object in different modalities: its spoken name, its visual representation and its written name. We used Bayesian logistic regression with a multivariate Laplace prior for classification. Marked differences in classification performance were observed for the tested modalities. Highest accuracies (89% correctly classified trials) were attained when classifying object drawings. In auditory and orthographical modalities, results were lower though still significant for some subjects. The employed classification method allowed for a precise temporal localization of the features that contributed to the performance of the classifier for three modalities. These findings could help to further understand the mechanisms underlying conceptual representations. The study also provides a first step towards the use of concept decoding in the context of real-time brain-computer interface applications.
  • Snijders, T. M., Petersson, K. M., & Hagoort, P. (2010). Effective connectivity of cortical and subcortical regions during unification of sentence structure. NeuroImage, 52, 1633-1644. doi:10.1016/j.neuroimage.2010.05.035.

    Abstract

    In a recent fMRI study we showed that left posterior middle temporal gyrus (LpMTG) subserves the retrieval of a word's lexical-syntactic properties from the mental lexicon (long-term memory), while left posterior inferior frontal gyrus (LpIFG) is involved in unifying (on-line integration of) this information into a sentence structure (Snijders et al., 2009). In addition, the right IFG, right MTG, and the right striatum were involved in the unification process. Here we report results from a psychophysical interactions (PPI) analysis in which we investigated the effective connectivity between LpIFG and LpMTG during unification, and how the right hemisphere areas and the striatum are functionally connected to the unification network. LpIFG and LpMTG both showed enhanced connectivity during the unification process with a region slightly superior to our previously reported LpMTG. Right IFG better predicted right temporal activity when unification processes were more strongly engaged, just as LpIFG better predicted left temporal activity. Furthermore, the striatum showed enhanced coupling to LpIFG and LpMTG during unification. We conclude that bilateral inferior frontal and posterior temporal regions are functionally connected during sentence-level unification. Cortico-subcortical connectivity patterns suggest cooperation between inferior frontal and striatal regions in performing unification operations on lexical-syntactic representations retrieved from LpMTG.
  • Uddén, J., Folia, V., & Petersson, K. M. (2010). The neuropharmacology of implicit learning. Current Neuropharmacology, 8, 367-381. doi:10.2174/157015910793358178.

    Abstract

    Two decades of pharmacologic research on the human capacity to implicitly acquire knowledge as well as cognitive skills and procedures have yielded surprisingly few conclusive insights. We review the empirical literature of the neuropharmacology of implicit learning. We evaluate the findings in the context of relevant computational models related to neurotransmittors such as dopamine, serotonin, acetylcholine and noradrenalin. These include models for reinforcement learning, sequence production, and categorization. We conclude, based on the reviewed literature, that one can predict improved implicit acquisition by moderately elevated dopamine levels and impaired implicit acquisition by moderately decreased dopamine levels. These effects are most prominent in the dorsal striatum. This is supported by a range of behavioral tasks in the empirical literature. Similar predictions can be made for serotonin, although there is yet a lack of support in the literature for serotonin involvement in classical implicit learning tasks. There is currently a lack of evidence for a role of the noradrenergic and cholinergic systems in implicit and related forms of learning. GABA modulators, including benzodiazepines, seem to affect implicit learning in a complex manner and further research is needed. Finally, we identify allosteric AMPA receptors modulators as a potentially interesting target for future investigation of the neuropharmacology of procedural and implicit learning.
  • Van Alphen, P. M., & Van Berkum, J. J. A. (2010). Is there pain in champagne? Semantic involvement of words within words during sense-making. Journal of Cognitive Neuroscience, 22, 2618-2626. doi:10.1162/jocn.2009.21336.

    Abstract

    In an ERP experiment, we examined whether listeners, when making sense of spoken utterances, take into account the meaning of spurious words that are embedded in longer words, either at their onsets (e. g., pie in pirate) or at their offsets (e. g., pain in champagne). In the experiment, Dutch listeners heard Dutch words with initial or final embeddings presented in a sentence context that did or did not support the meaning of the embedded word, while equally supporting the longer carrier word. The N400 at the carrier words was modulated by the semantic fit of the embedded words, indicating that listeners briefly relate the meaning of initial-and final-embedded words to the sentential context, even though these words were not intended by the speaker. These findings help us understand the dynamics of initial sense-making and its link to lexical activation. In addition, they shed new light on the role of lexical competition and the debate concerning the lexical activation of final-embedded words.
  • Van Berkum, J. J. A. (2010). The brain is a prediction machine that cares about good and bad - Any implications for neuropragmatics? Italian Journal of Linguistics, 22, 181-208.

    Abstract

    Experimental pragmatics asks how people construct contextualized meaning in communication. So what does it mean for this field to add neuroas a prefix to its name? After analyzing the options for any subfield of cognitive science, I argue that neuropragmatics can and occasionally should go beyond the instrumental use of EEG or fMRI and beyond mapping classic theoretical distinctions onto Brodmann areas. In particular, if experimental pragmatics ‘goes neuro’, it should take into account that the brain evolved as a control system that helps its bearer negotiate a highly complex, rapidly changing and often not so friendly environment. In this context, the ability to predict current unknowns, and to rapidly tell good from bad, are essential ingredients of processing. Using insights from non-linguistic areas of cognitive neuroscience as well as from EEG research on utterance comprehension, I argue that for a balanced development of experimental pragmatics, these two characteristics of the brain cannot be ignored.
  • Van Leeuwen, T. M., Petersson, K. M., & Hagoort, P. (2010). Synaesthetic colour in the brain: Beyond colour areas. A functional magnetic resonance imaging study of synaesthetes and matched controls. PLoS One, 5(8), E12074. doi:10.1371/journal.pone.0012074.

    Abstract

    Background: In synaesthesia, sensations in a particular modality cause additional experiences in a second, unstimulated modality (e.g., letters elicit colour). Understanding how synaesthesia is mediated in the brain can help to understand normal processes of perceptual awareness and multisensory integration. In several neuroimaging studies, enhanced brain activity for grapheme-colour synaesthesia has been found in ventral-occipital areas that are also involved in real colour processing. Our question was whether the neural correlates of synaesthetically induced colour and real colour experience are truly shared. Methodology/Principal Findings: First, in a free viewing functional magnetic resonance imaging (fMRI) experiment, we located main effects of synaesthesia in left superior parietal lobule and in colour related areas. In the left superior parietal lobe, individual differences between synaesthetes (projector-associator distinction) also influenced brain activity, confirming the importance of the left superior parietal lobe for synaesthesia. Next, we applied a repetition suppression paradigm in fMRI, in which a decrease in the BOLD (blood-oxygenated-level-dependent) response is generally observed for repeated stimuli. We hypothesized that synaesthetically induced colours would lead to a reduction in BOLD response for subsequently presented real colours, if the neural correlates were overlapping. We did find BOLD suppression effects induced by synaesthesia, but not within the colour areas. Conclusions/Significance: Because synaesthetically induced colours were not able to suppress BOLD effects for real colour, we conclude that the neural correlates of synaesthetic colour experience and real colour experience are not fully shared. We propose that synaesthetic colour experiences are mediated by higher-order visual pathways that lie beyond the scope of classical, ventral-occipital visual areas. Feedback from these areas, in which the left parietal cortex is likely to play an important role, may induce V4 activation and the percept of synaesthetic colour.
  • De Vries, M., Barth, A. C. R., Maiworm, S., Knecht, S., Zwitserlood, P., & Flöel, A. (2010). Electrical stimulation of Broca’s area enhances implicit learning of an artificial grammar. Journal of Cognitive Neuroscience, 22, 2427-2436. doi:10.1162/jocn.2009.21385.

    Abstract

    Artificial grammar learning constitutes a well-established model for the acquisition of grammatical knowledge in a natural setting. Previous neuroimaging studies demonstrated that Broca's area (left BA 44/45) is similarly activated by natural syntactic processing and artificial grammar learning. The current study was conducted to investigate the causal relationship between Broca's area and learning of an artificial grammar by means of transcranial direct current stimulation (tDCS). Thirty-eight healthy subjects participated in a between-subject design, with either anodal tDCS (20 min, 1 mA) or sham stimulation, over Broca's area during the acquisition of an artificial grammar. Performance during the acquisition phase, presented as a working memory task, was comparable between groups. In the subsequent classification task, detecting syntactic violations, and specifically, those where no cues to superficial similarity were available, improved significantly after anodal tDCS, resulting in an overall better performance. A control experiment where 10 subjects received anodal tDCS over an area unrelated to artificial grammar learning further supported the specificity of these effects to Broca's area. We conclude that Broca's area is specifically involved in rule-based knowledge, and here, in an improved ability to detect syntactic violations. The results cannot be explained by better tDCS-induced working memory performance during the acquisition phase. This is the first study that demonstrates that tDCS may facilitate acquisition of grammatical knowledge, a finding of potential interest for rehabilitation of aphasia.
  • De Vries, M., Ulte, C., Zwitserlood, P., Szymanski, B., & Knecht, S. (2010). Increasing dopamine levels in the brain improves feedback-based procedural learning in healthy participants: An artificial-grammar-learning experiment. Neuropsychologia, 48, 3193-3197. doi:10.1016/j.neuropsychologia.2010.06.024.

    Abstract

    Recently, an increasing number of studies have suggested a role for the basal ganglia and related dopamine inputs in procedural learning, specifically when learning occurs through trial-by-trial feedback (Shohamy, Myers, Kalanithi, & Gluck. (2008). Basal ganglia and dopamine contributions to probabilistic category learning. Neuroscience and Biobehavioral Reviews, 32, 219–236). A necessary relationship has however only been demonstrated in patient studies. In the present study, we show for the first time that increasing dopamine levels in the brain improves the gradual acquisition of complex information in healthy participants. We implemented two artificial-grammar-learning tasks, one with and one without performance feedback. Learning was improved after levodopa intake for the feedback-based learning task only, suggesting that dopamine plays a specific role in trial-by-trial feedback-based learning. This provides promising directions for future studies on dopaminergic modulation of cognitive functioning.
  • Willems, R. M., Hagoort, P., & Casasanto, D. (2010). Body-specific representations of action verbs: Neural evidence from right- and left-handers. Psychological Science, 21, 67-74. doi:10.1177/0956797609354072.

    Abstract

    According to theories of embodied cognition, understanding a verb like throw involves unconsciously simulating the action of throwing, using areas of the brain that support motor planning. If understanding action words involves mentally simulating one’s own actions, then the neurocognitive representation of word meanings should differ for people with different kinds of bodies, who perform actions in systematically different ways. In a test of the body-specificity hypothesis, we used functional magnetic resonance imaging to compare premotor activity correlated with action verb understanding in right- and left-handers. Righthanders preferentially activated the left premotor cortex during lexical decisions on manual-action verbs (compared with nonmanual-action verbs), whereas left-handers preferentially activated right premotor areas. This finding helps refine theories of embodied semantics, suggesting that implicit mental simulation during language processing is body specific: Right- and lefthanders, who perform actions differently, use correspondingly different areas of the brain for representing action verb meanings.
  • Willems, R. M., Peelen, M. V., & Hagoort, P. (2010). Cerebral lateralization of face-selective and body-selective visual areas depends on handedness. Cerebral Cortex, 20, 1719-1725. doi:10.1093/cercor/bhp234.

    Abstract

    The left-hemisphere dominance for language is a core example of the functional specialization of the cerebral hemispheres. The degree of left-hemisphere dominance for language depends on hand preference: Whereas the majority of right-handers show left-hemispheric language lateralization, this number is reduced in left-handers. Here, we assessed whether handedness analogously has an influence upon lateralization in the visual system. Using functional magnetic resonance imaging, we localized 4 more or less specialized extrastriate areas in left- and right-handers, namely fusiform face area (FFA), extrastriate body area (EBA), fusiform body area (FBA), and human motion area (human middle temporal [hMT]). We found that lateralization of FFA and EBA depends on handedness: These areas were right lateralized in right-handers but not in left-handers. A similar tendency was observed in FBA but not in hMT. We conclude that the relationship between handedness and hemispheric lateralization extends to functionally lateralized parts of visual cortex, indicating a general coupling between cerebral lateralization and handedness. Our findings indicate that hemispheric specialization is not fixed but can vary considerably across individuals even in areas engaged relatively early in the visual system.
  • Willems, R. M., De Boer, M., De Ruiter, J. P., Noordzij, M. L., Hagoort, P., & Toni, I. (2010). A dissociation between linguistic and communicative abilities in the human brain. Psychological Science, 21, 8-14. doi:10.1177/0956797609355563.

    Abstract

    Although language is an effective vehicle for communication, it is unclear how linguistic and communicative abilities relate to each other. Some researchers have argued that communicative message generation involves perspective taking (mentalizing), and—crucially—that mentalizing depends on language. We employed a verbal communication paradigm to directly test whether the generation of a communicative action relies on mentalizing and whether the cerebral bases of communicative message generation are distinct from parts of cortex sensitive to linguistic variables. We found that dorsomedial prefrontal cortex, a brain area consistently associated with mentalizing, was sensitive to the communicative intent of utterances, irrespective of linguistic difficulty. In contrast, left inferior frontal cortex, an area known to be involved in language, was sensitive to the linguistic demands of utterances, but not to communicative intent. These findings show that communicative and linguistic abilities rely on cerebrally (and computationally) distinct mechanisms
  • Willems, R. M., Toni, I., Hagoort, P., & Casasanto, D. (2010). Neural dissociations between action verb understanding and motor imagery. Journal of Cognitive Neuroscience, 22(10), 2387-2400. doi:10.1162/jocn.2009.21386.

    Abstract

    According to embodied theories of language, people understand a verb like throw, at least in part, by mentally simulating throwing. This implicit simulation is often assumed to be similar or identical to motor imagery. Here we used fMRI totest whether implicit simulations of actions during language understanding involve the same cortical motor regions as explicit motor imagery Healthy participants were presented with verbs related to hand actions (e.g., to throw) and nonmanual actions (e.g., to kneel). They either read these verbs (lexical decision task) or actively imagined performing the actions named by the verbs (imagery task). Primary motor cortex showd effector-specific activation during imagery, but not during lexical decision. Parts of premotor cortex distinguished manual from nonmanual actions during both lexical decision and imagery, but there was no overlap or correlation between regions activated during the two tasks. These dissociations suggest that implicit simulation and explicit imagery cued by action verbs may involve different types of motor representations and that the construct of “mental simulation” should be distinguished from “mental imagery” in embodied theories of language.
  • Xiang, H.-D., Fonteijn, H. M., Norris, D. G., & Hagoort, P. (2010). Topographical functional connectivity pattern in the perisylvian language networks. Cerebral Cortex, 20, 549-560. doi:10.1093/cercor/bhp119.

    Abstract

    We performed a resting-state functional connectivity study to investigate directly the functional correlations within the perisylvian language networks by seeding from 3 subregions of Broca's complex (pars opercularis, pars triangularis, and pars orbitalis) and their right hemisphere homologues. A clear topographical functional connectivity pattern in the left middle frontal, parietal, and temporal areas was revealed for the 3 left seeds. This is the first demonstration that a functional connectivity topology can be observed in the perisylvian language networks. The results support the assumption of the functional division for phonology, syntax, and semantics of Broca's complex as proposed by the memory, unification, and control (MUC) model and indicated a topographical functional organization in the perisylvian language networks, which suggests a possible division of labor for phonological, syntactic, and semantic function in the left frontal, parietal, and temporal areas.

Share this page