Publications

Displaying 1 - 16 of 16
  • Hoeksema, N., Villanueva, S., Mengede, J., Salazar-Casals, A., Rubio-García, A., Curcic-Blake, B., Vernes, S. C., & Ravignani, A. (2020). Neuroanatomy of the grey seal brain: Bringing pinnipeds into the neurobiological study of vocal learning. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 162-164). Nijmegen: The Evolution of Language Conferences.
  • Hoeksema, N., Wiesmann, M., Kiliaan, A., Hagoort, P., & Vernes, S. C. (2020). Bats and the comparative neurobiology of vocal learning. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 165-167). Nijmegen: The Evolution of Language Conferences.
  • Levshina, N. (2020). How tight is your language? A semantic typology based on Mutual Information. In K. Evang, L. Kallmeyer, R. Ehren, S. Petitjean, E. Seyffarth, & D. Seddah (Eds.), Proceedings of the 19th International Workshop on Treebanks and Linguistic Theories (pp. 70-78). Düsseldorf, Germany: Association for Computational Linguistics. doi:10.18653/v1/2020.tlt-1.7.

    Abstract

    Languages differ in the degree of semantic flexibility of their syntactic roles. For example, Eng-
    lish and Indonesian are considered more flexible with regard to the semantics of subjects,
    whereas German and Japanese are less flexible. In Hawkins’ classification, more flexible lan-
    guages are said to have a loose fit, and less flexible ones are those that have a tight fit. This
    classification has been based on manual inspection of example sentences. The present paper
    proposes a new, quantitative approach to deriving the measures of looseness and tightness from
    corpora. We use corpora of online news from the Leipzig Corpora Collection in thirty typolog-
    ically and genealogically diverse languages and parse them syntactically with the help of the
    Universal Dependencies annotation software. Next, we compute Mutual Information scores for
    each language using the matrices of lexical lemmas and four syntactic dependencies (intransi-
    tive subjects, transitive subject, objects and obliques). The new approach allows us not only to
    reproduce the results of previous investigations, but also to extend the typology to new lan-
    guages. We also demonstrate that verb-final languages tend to have a tighter relationship be-
    tween lexemes and syntactic roles, which helps language users to recognize thematic roles early
    during comprehension.

    Additional information

    full text via ACL website
  • Ter Bekke, M., Drijvers, L., & Holler, J. (2020). The predictive potential of hand gestures during conversation: An investigation of the timing of gestures in relation to speech. In Proceedings of the 7th GESPIN - Gesture and Speech in Interaction Conference. Stockholm: KTH Royal Institute of Technology.

    Abstract

    In face-to-face conversation, recipients might use the bodily movements of the speaker (e.g. gestures) to facilitate language processing. It has been suggested that one way through which this facilitation may happen is prediction. However, for this to be possible, gestures would need to precede speech, and it is unclear whether this is true during natural conversation.
    In a corpus of Dutch conversations, we annotated hand gestures that represent semantic information and occurred during questions, and the word(s) which corresponded most closely to the gesturally depicted meaning. Thus, we tested whether representational gestures temporally precede their lexical affiliates. Further, to see whether preceding gestures may indeed facilitate language processing, we asked whether the gesture-speech asynchrony predicts the response time to the question the gesture is part of.
    Gestures and their strokes (most meaningful movement component) indeed preceded the corresponding lexical information, thus demonstrating their predictive potential. However, while questions with gestures got faster responses than questions without, there was no evidence that questions with larger gesture-speech asynchronies get faster responses. These results suggest that gestures indeed have the potential to facilitate predictive language processing, but further analyses on larger datasets are needed to test for links between asynchrony and processing advantages.
  • Bottini, R., & Casasanto, D. (2011). Space and time in the child’s mind: Further evidence for a cross-dimensional asymmetry [Abstract]. In L. Carlson, C. Hölscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 3010). Austin, TX: Cognitive Science Society.

    Abstract

    Space and time appear to be related asymmetrically in the child’s mind: temporal representations depend on spatial representations more than vice versa, as predicted by space-time metaphors in language. In a study supporting this conclusion, spatial information interfered with children’s temporal judgments more than vice versa (Casasanto, Fotakopoulou, & Boroditsky, 2010, Cognitive Science). In this earlier study, however, spatial information was available to participants for more time than temporal information was (as is often the case when people observe natural events), suggesting a skeptical explanation for the observed effect. Here we conducted a stronger test of the hypothesized space-time asymmetry, controlling spatial and temporal aspects of the stimuli even more stringently than they are generally ’controlled’ in the natural world. Results replicated Casasanto and colleagues’, validating their finding of a robust representational asymmetry between space and time, and extending it to children (4-10 y.o.) who speak Dutch and Brazilian Portuguese.
  • Brookshire, G., & Casasanto, D. (2011). Motivation and motor action: Hemispheric specialization for motivation reverses with handedness. In L. Carlson, C. Holscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Meeting of the Cognitive Science Society (pp. 2610-2615). Austin, TX: Cognitive Science Society.
  • Casasanto, D. (2011). Bodily relativity: The body-specificity of language and thought. In L. Carlson, C. Holscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Meeting of the Cognitive Science Society (pp. 1258-1259). Austin, TX: Cognitive Science Society.
  • Casasanto, D., & Lupyan, G. (2011). Ad hoc cognition [Abstract]. In L. Carlson, C. Hölscher, & T. F. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 826). Austin, TX: Cognitive Science Society.

    Abstract

    If concepts, categories, and word meanings are stable, how can people use them so flexibly? Here we explore a possible answer: maybe this stability is an illusion. Perhaps all concepts, categories, and word meanings (CC&Ms) are constructed ad hoc, each time we use them. On this proposal, all words are infinitely polysemous, all communication is ’good enough’, and no idea is ever the same twice. The details of people’s ad hoc CC&Ms are determined by the way retrieval cues interact with the physical, social, and linguistic context. We argue that even the most stable-seeming CC&Ms are instantiated via the same processes as those that are more obviously ad hoc, and vary (a) from one microsecond to the next within a given instantiation, (b) from one instantiation to the next within an individual, and (c) from person to person and group to group as a function of people’s experiential history. 826
  • Casasanto, D., & De Bruin, A. (2011). Word Up! Directed motor action improves word learning [Abstract]. In L. Carlson, C. Hölscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 1902). Austin, TX: Cognitive Science Society.

    Abstract

    Can simple motor actions help people expand their vocabulary? Here we show that word learning depends on where students place their flash cards after studying them. In Experiment 1, participants learned the definitions of ”alien words” with positive or negative emotional valence. After studying each card, they placed it in one of two boxes (top or bottom), according to its valence. Participants who were instructed to place positive cards in the top box, consistent with Good is Up metaphors, scored about 10.
  • Dolscheid, S., Shayan, S., Majid, A., & Casasanto, D. (2011). The thickness of musical pitch: Psychophysical evidence for the Whorfian hypothesis. In L. Carlson, C. Hölscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 537-542). Austin, TX: Cognitive Science Society.
  • De La Fuente, J., Casasanto, D., Román, A., & Santiago, J. (2011). Searching for cultural influences on the body-specific association of preferred hand and emotional valence. In L. Carlson, C. Holscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Meeting of the Cognitive Science Society (pp. 2616-2620). Austin, TX: Cognitive Science Society.
  • Holler, J., Tutton, M., & Wilkin, K. (2011). Co-speech gestures in the process of meaning coordination. In Proceedings of the 2nd GESPIN - Gesture & Speech in Interaction Conference, Bielefeld, 5-7 Sep 2011.

    Abstract

    This study uses a classical referential communication task to
    investigate the role of co-speech gestures in the process of
    coordination. The study manipulates both the common ground between the interlocutors, as well as the visibility of the gestures they use. The findings show that co-speech gestures are an integral part of the referential utterances speakers
    produced with regard to both initial references as well as repeated references, and that the availability of gestures appears to impact on interlocutors’ referential oordination. The results are discussed with regard to past research on
    common ground as well as theories of gesture production.
  • Jasmin, K., & Casasanto, D. (2011). The QWERTY effect: How stereo-typing shapes the mental lexicon. In L. Carlson, C. Holscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive Science Society.
  • Lai, V. T., Hagoort, P., & Casasanto, D. (2011). Affective and non-affective meaning in words and pictures. In L. Carlson, C. Holscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Meeting of the Cognitive Science Society (pp. 390-395). Austin, TX: Cognitive Science Society.
  • Perniss, P. M., Zwitserlood, I., & Ozyurek, A. (2011). Does space structure spatial language? Linguistic encoding of space in sign languages. In L. Carlson, C. Holscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Meeting of the Cognitive Science Society (pp. 1595-1600). Austin, TX: Cognitive Science Society.
  • Staum Casasanto, L., Gijssels, T., & Casasanto, D. (2011). The Reverse-Chameleon Effect: Negative social consequences of anatomical mimicry.[Abstract]. In L. Carlson, C. Hölscher, & T. F. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 1103). Austin, TX: Cognitive Science Society.

    Abstract

    Mirror mimicry has well-known consequences for the person being mimicked: it increases how positively they feel about the mimicker (the Chameleon Effect). Here we show that anatomical mimicry has the opposite social consequences: a Reverse-Chameleon Effect. To equate mirror and anatomical mimicry, we asked participants to have a face-to-face conversation with a digital human (VIRTUO), in a fully-immersive virtual environment. Participants’ spontaneous head movements were tracked, and VIRTUO mimicked them at a 2-second delay, either mirror-wise, anatomically, or not at all (instead enacting another participant’s movements). Participants who were mimicked mirror-wise rated their social interaction with VIRTUO to be significantly more positive than those who were mimicked anatomically. Participants who were not mimicked gave intermediate ratings. Beyond its practical implications, the Reverse-Chameleon Effect constrains theoretical accounts of how mimicry affects social perception

Share this page