Publications

Displaying 1 - 100 of 121
  • Armeni, K., Willems, R. M., Van den Bosch, A., & Schoffelen, J.-M. (2019). Frequency-specific brain dynamics related to prediction during language comprehension. NeuroImage, 198, 283-295. doi:10.1016/j.neuroimage.2019.04.083.

    Abstract

    The brain's remarkable capacity to process spoken language virtually in real time requires fast and efficient information processing machinery. In this study, we investigated how frequency-specific brain dynamics relate to models of probabilistic language prediction during auditory narrative comprehension. We recorded MEG activity while participants were listening to auditory stories in Dutch. Using trigram statistical language models, we estimated for every word in a story its conditional probability of occurrence. On the basis of word probabilities, we computed how unexpected the current word is given its context (word perplexity) and how (un)predictable the current linguistic context is (word entropy). We then evaluated whether source-reconstructed MEG oscillations at different frequency bands are modulated as a function of these language processing metrics. We show that theta-band source dynamics are increased in high relative to low entropy states, likely reflecting lexical computations. Beta-band dynamics are increased in situations of low word entropy and perplexity possibly reflecting maintenance of ongoing cognitive context. These findings lend support to the idea that the brain engages in the active generation and evaluation of predicted language based on the statistical properties of the input signal.

    Additional information

    Supplementary data
  • Basnakova, J. (2019). Beyond the language given: The neurobiological infrastructure for pragmatic inferencing. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Bocanegra, B. R., Poletiek, F. H., Ftitache, B., & Clark, A. (2019). Intelligent problem-solvers externalize cognitive operations. Nature Human Behaviour, 3, 136-142. doi:10.1038/s41562-018-0509-y.

    Abstract

    Humans are nature’s most intelligent and prolific users of external props and aids (such as written texts, slide-rules and software packages). Here we introduce a method for investigating how people make active use of their task environment during problem-solving and apply this approach to the non-verbal Raven Advanced Progressive Matrices test for fluid intelligence. We designed a click-and-drag version of the Raven test in which participants could create different external spatial configurations while solving the puzzles. In our first study, we observed that the click-and-drag test was better than the conventional static test at predicting academic achievement of university students. This pattern of results was partially replicated in a novel sample. Importantly, environment-altering actions were clustered in between periods of apparent inactivity, suggesting that problem-solvers were delicately balancing the execution of internal and external cognitive operations. We observed a systematic relationship between this critical phasic temporal signature and improved test performance. Our approach is widely applicable and offers an opportunity to quantitatively assess a powerful, although understudied, feature of human intelligence: our ability to use external objects, props and aids to solve complex problems.
  • Bosker, H. R., Van Os, M., Does, R., & Van Bergen, G. (2019). Counting 'uhm's: how tracking the distribution of native and non-native disfluencies influences online language comprehension. Journal of Memory and Language, 106, 189-202. doi:10.1016/j.jml.2019.02.006.

    Abstract

    Disfluencies, like 'uh', have been shown to help listeners anticipate reference to low-frequency words. The associative account of this 'disfluency bias' proposes that listeners learn to associate disfluency with low-frequency referents based on prior exposure to non-arbitrary disfluency distributions (i.e., greater probability of low-frequency words after disfluencies). However, there is limited evidence for listeners actually tracking disfluency distributions online. The present experiments are the first to show that adult listeners, exposed to a typical or more atypical disfluency distribution (i.e., hearing a talker unexpectedly say uh before high-frequency words), flexibly adjust their predictive strategies to the disfluency distribution at hand (e.g., learn to predict high-frequency referents after disfluency). However, when listeners were presented with the same atypical disfluency distribution but produced by a non-native speaker, no adjustment was observed. This suggests pragmatic inferences can modulate distributional learning, revealing the flexibility of, and constraints on, distributional learning in incremental language comprehension.
  • Burra, N., Hervais-Adelman, A., Celeghin, A., de Gelder, B., & Pegna, A. J. (2019). Affective blindsight relies on low spatial frequencies. Neuropsychologia, 128, 44-49. doi:10.1016/j.neuropsychologia.2017.10.009.

    Abstract

    The human brain can process facial expressions of emotions rapidly and without awareness. Several studies in patients with damage to their primary visual cortices have shown that they may be able to guess the emotional expression on a face despite their cortical blindness. This non-conscious processing, called affective blindsight, may arise through an intact subcortical visual route that leads from the superior colliculus to the pulvinar, and thence to the amygdala. This pathway is thought to process the crude visual information conveyed by the low spatial frequencies of the stimuli. In order to investigate whether this is the case, we studied a patient (TN) with bilateral cortical blindness and affective blindsight. An fMRI paradigm was performed in which fearful and neutral expressions were presented using faces that were either unfiltered, or filtered to remove high or low spatial frequencies. Unfiltered fearful faces produced right amygdala activation although the patient was unaware of the presence of the stimuli. More importantly, the low spatial frequency components of fearful faces continued to produce right amygdala activity while the high spatial frequency components did not. Our findings thus confirm that the visual information present in the low spatial frequencies is sufficient to produce affective blindsight, further suggesting that its existence could rely on the subcortical colliculo-pulvino-amygdalar pathway.
  • Fields, E. C., Weber, K., Stillerman, B., Delaney-Busch, N., & Kuperberg, G. (2019). Functional MRI reveals evidence of a self-positivity bias in the medial prefrontal cortex during the comprehension of social vignettes. Social Cognitive and Affective Neuroscience, 14(6), 613-621. doi:10.1093/scan/nsz035.

    Abstract

    A large literature in social neuroscience has associated the medial prefrontal cortex (mPFC) with the processing of self-related information. However, only recently have social neuroscience studies begun to consider the large behavioral literature showing a strong self-positivity bias, and these studies have mostly focused on its correlates during self-related judgments and decision making. We carried out a functional MRI (fMRI) study to ask whether the mPFC would show effects of the self-positivity bias in a paradigm that probed participants’ self-concept without any requirement of explicit self-judgment. We presented social vignettes that were either self-relevant or non-self-relevant with a neutral, positive, or negative outcome described in the second sentence. In previous work using event-related potentials, this paradigm has shown evidence of a self-positivity bias that influences early stages of semantically processing incoming stimuli. In the present fMRI study, we found evidence for this bias within the mPFC: an interaction between self-relevance and valence, with only positive scenarios showing a self vs other effect within the mPFC. We suggest that the mPFC may play a role in maintaining a positively-biased self-concept and discuss the implications of these findings for the social neuroscience of the self and the role of the mPFC.

    Additional information

    Supplementary data
  • Fitz, H., & Chang, F. (2019). Language ERPs reflect learning through prediction error propagation. Cognitive Psychology, 111, 15-52. doi:10.1016/j.cogpsych.2019.03.002.

    Abstract

    Event-related potentials (ERPs) provide a window into how the brain is processing language. Here, we propose a theory that argues that ERPs such as the N400 and P600 arise as side effects of an error-based learning mechanism that explains linguistic adaptation and language learning. We instantiated this theory in a connectionist model that can simulate data from three studies on the N400 (amplitude modulation by expectancy, contextual constraint, and sentence position), five studies on the P600 (agreement, tense, word category, subcategorization and garden-path sentences), and a study on the semantic P600 in role reversal anomalies. Since ERPs are learning signals, this account explains adaptation of ERP amplitude to within-experiment frequency manipulations and the way ERP effects are shaped by word predictability in earlier sentences. Moreover, it predicts that ERPs can change over language development. The model provides an account of the sensitivity of ERPs to expectation mismatch, the relative timing of the N400 and P600, the semantic nature of the N400, the syntactic nature of the P600, and the fact that ERPs can change with experience. This approach suggests that comprehension ERPs are related to sentence production and language acquisition mechanisms
  • Flecken, M., & Van Bergen, G. (2019). Can the English stand the bottle like the Dutch? Effects of relational categories on object perception. Cognitive Neuropsychology. Advance online publication. doi:10.1080/02643294.2019.1607272.

    Abstract

    Does language influence how we perceive the world? This study examines how linguistic encoding of relational information by means of verbs implicitly affects visual processing, by measuring perceptual judgements behaviourally, and visual perception and attention in EEG. Verbal systems can vary cross-linguistically: Dutch uses posture verbs to describe inanimate object configurations (the bottle stands/lies on the table). In English, however, such use of posture verbs is rare (the bottle is on the table). Using this test case, we ask (1) whether previously attested language-perception interactions extend to more complex domains, and (2) whether differences in linguistic usage probabilities affect perception. We report three nonverbal experiments in which Dutch and English participants performed a picture-matching task. Prime and target pictures contained object configurations (e.g., a bottle on a table); in the critical condition, prime and target showed a mismatch in object position (standing/lying). In both language groups, we found similar responses, suggesting that probabilistic differences in linguistic encoding of relational information do not affect perception.
  • Franken, M. K., Acheson, D. J., McQueen, J. M., Hagoort, P., & Eisner, F. (2019). Consistency influences altered auditory feedback processing. Quarterly Journal of Experimental Psychology, 72(10), 2371-2379. doi:10.1177/1747021819838939.

    Abstract

    Previous research on the effect of perturbed auditory feedback in speech production has focused on two types of responses. In the short term, speakers generate compensatory motor commands in response to unexpected perturbations. In the longer term, speakers adapt feedforward motor programmes in response to feedback perturbations, to avoid future errors. The current study investigated the relation between these two types of responses to altered auditory feedback. Specifically, it was hypothesised that consistency in previous feedback perturbations would influence whether speakers adapt their feedforward motor programmes. In an altered auditory feedback paradigm, formant perturbations were applied either across all trials (the consistent condition) or only to some trials, whereas the others remained unperturbed (the inconsistent condition). The results showed that speakers’ responses were affected by feedback consistency, with stronger speech changes in the consistent condition compared with the inconsistent condition. Current models of speech-motor control can explain this consistency effect. However, the data also suggest that compensation and adaptation are distinct processes, which are not in line with all current models.
  • Gao, Y., Zheng, L., Liu, X., Nichols, E. S., Zhang, M., Shang, L., Ding, G., Meng, Z., & Liu, L. (2019). First and second language reading difficulty among Chinese–English bilingual children: The prevalence and influences from demographic characteristics. Frontiers in Psychology, 10: 2544. doi:10.3389/fpsyg.2019.02544.

    Abstract

    Learning to read a second language (L2) can pose a great challenge for children who have already been struggling to read in their first language (L1). Moreover, it is not clear whether, to what extent, and under what circumstances L1 reading difficulty increases the risk of L2 reading difficulty. This study investigated Chinese (L1) and English (L2) reading skills in a large representative sample of 1,824 Chinese–English bilingual children in Grades 4 and 5 from both urban and rural schools in Beijing. We examined the prevalence of reading difficulty in Chinese only (poor Chinese readers, PC), English only (poor English readers, PE), and both Chinese and English (poor bilingual readers, PB) and calculated the co-occurrence, that is, the chances of becoming a poor reader in English given that the child was already a poor reader in Chinese. We then conducted a multinomial logistic regression analysis and compared the prevalence of PC, PE, and PB between children in Grade 4 versus Grade 5, in urban versus rural areas, and in boys versus girls. Results showed that compared to girls, boys demonstrated significantly higher risk of PC, PE, and PB. Meanwhile, compared to the 5th graders, the 4th graders demonstrated significantly higher risk of PC and PB. In addition, children enrolled in the urban schools were more likely to become better second language readers, thus leading to a concerning rural–urban gap in the prevalence of L2 reading difficulty. Finally, among these Chinese–English bilingual children, regardless of sex and school location, poor reading skill in Chinese significantly increased the risk of also being a poor English reader, with a considerable and stable co-occurrence of approximately 36%. In sum, this study suggests that despite striking differences between alphabetic and logographic writing systems, L1 reading difficulty still significantly increases the risk of L2 reading difficulty. This indicates the shared meta-linguistic skills in reading different writing systems and the importance of understanding the universality and the interdependent relationship of reading between different writing systems. Furthermore, the male disadvantage (in both L1 and L2) and the urban–rural gap (in L2) found in the prevalence of reading difficulty calls for special attention to disadvantaged populations in educational practice.
  • Gao, X., Dera, J., Nijhoff, A. D., & Willems, R. M. (2019). Is less readable liked better? The case of font readability in poetry appreciation. PLoS One, 14(12): e0225757. doi:10.1371/journal.pone.0225757.

    Abstract

    Previous research shows conflicting findings for the effect of font readability on comprehension and memory for language. It has been found that—perhaps counterintuitively–a hard to read font can be beneficial for language comprehension, especially for difficult language. Here we test how font readability influences the subjective experience of poetry reading. In three experiments we tested the influence of poem difficulty and font readability on the subjective experience of poems. We specifically predicted that font readability would have opposite effects on the subjective experience of easy versus difficult poems. Participants read poems which could be more or less difficult in terms of conceptual or structural aspects, and which were presented in a font that was either easy or more difficult to read. Participants read existing poems and subsequently rated their subjective experience (measured through four dependent variables: overall liking, perceived flow of the poem, perceived topic clarity, and perceived structure). In line with previous literature we observed a Poem Difficulty x Font Readability interaction effect for subjective measures of poetry reading. We found that participants rated easy poems as nicer when presented in an easy to read font, as compared to when presented in a hard to read font. Despite the presence of the interaction effect, we did not observe the predicted opposite effect for more difficult poems. We conclude that font readability can influence reading of easy and more difficult poems differentially, with strongest effects for easy poems.

    Additional information

    https://osf.io/jwcqt/
  • Gehrig, J., Michalareas, G., Forster, M.-T., Lei, J., Hok, P., Laufs, H., Senft, C., Seifert, V., Schoffelen, J.-M., Hanslmayr, H., & Kell, C. A. (2019). Low-frequency oscillations code speech during verbal working memory. The Journal of Neuroscience, 39(33), 6498-6512. doi:10.1523/JNEUROSCI.0018-19.2019.

    Abstract

    The way the human brain represents speech in memory is still unknown. An obvious characteristic of speech is its evolvement over time. During speech processing, neural oscillations are modulated by the temporal properties of the acoustic speech signal, but also acquired knowledge on the temporal structure of language influences speech perception-related brain activity. This suggests that speech could be represented in the temporal domain, a form of representation that the brain also uses to encode autobiographic memories. Empirical evidence for such a memory code is lacking. We investigated the nature of speech memory representations using direct cortical recordings in the left perisylvian cortex during delayed sentence reproduction in female and male patients undergoing awake tumor surgery. Our results reveal that the brain endogenously represents speech in the temporal domain. Temporal pattern similarity analyses revealed that the phase of frontotemporal low-frequency oscillations, primarily in the beta range, represents sentence identity in working memory. The positive relationship between beta power during working memory and task performance suggests that working memory representations benefit from increased phase separation.
  • Hagoort, P., & Beckmann, C. F. (2019). Key issues and future directions: The neural architecture for language. In P. Hagoort (Ed.), Human language: From genes and brains to behavior (pp. 527-532). Cambridge, MA: MIT Press.
  • Hagoort, P. (2019). Introduction. In P. Hagoort (Ed.), Human language: From genes and brains to behavior (pp. 1-6). Cambridge, MA: MIT Press.
  • Hagoort, P. (Ed.). (2019). Human language: From genes and brains to behavior. Cambridge, MA: MIT Press.
  • Hagoort, P. (2019). The neurobiology of language beyond single word processing. Science, 366(6461), 55-58. doi:10.1126/science.aax0289.

    Abstract

    In this Review, I propose a multiple-network view for the neurobiological basis of distinctly human language skills. A much more complex picture of interacting brain areas emerges than in the classical neurobiological model of language. This is because using language is more than single-word processing, and much goes on beyond the information given in the acoustic or orthographic tokens that enter primary sensory cortices. This requires the involvement of multiple networks with functionally nonoverlapping contributions

    Files private

    Request files
  • Hagoort, P. (2019). The meaning making mechanism(s) behind the eyes and between the ears. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 375: 20190301. doi:10.1098/rstb.2019.0301.

    Abstract

    In this contribution, the following four questions are discussed: (i) where is meaning?; (ii) what is meaning?; (iii) what is the meaning of mechanism?; (iv) what are the mechanisms of meaning? I will argue that meanings are in the head. Meanings have multiple facets, but minimally one needs to make a distinction between single word meanings (lexical meaning) and the meanings of multi-word utterances. The latter ones cannot be retrieved from memory, but need to be constructed on the fly. A mechanistic account of the meaning-making mind requires an analysis at both a functional and a neural level, the reason being that these levels are causally interdependent. I will show that an analysis exclusively focusing on patterns of brain activation lacks explanatory power. Finally, I shall present an initial sketch of how the dynamic interaction between temporo-parietal areas and inferior frontal cortex might instantiate the interpretation of linguistic utterances in the context of a multimodal setting and ongoing discourse information.
  • Heilbron, M., Ehinger, B., Hagoort, P., & De Lange, F. P. (2019). Tracking naturalistic linguistic predictions with deep neural language models. In Proceedings of the 2019 Conference on Cognitive Computational Neuroscience (pp. 424-427). doi:10.32470/CCN.2019.1096-0.

    Abstract

    Prediction in language has traditionally been studied using simple designs in which neural responses to expected and unexpected words are compared in a categorical fashion. However, these designs have been contested as being ‘prediction encouraging’, potentially exaggerating the importance of prediction in language understanding. A few recent studies have begun to address these worries by using model-based approaches to probe the effects of linguistic predictability in naturalistic stimuli (e.g. continuous narrative). However, these studies so far only looked at very local forms of prediction, using models that take no more than the prior two words into account when computing a word’s predictability. Here, we extend this approach using a state-of-the-art neural language model that can take roughly 500 times longer linguistic contexts into account. Predictability estimates fromthe neural network offer amuch better fit to EEG data from subjects listening to naturalistic narrative than simpler models, and reveal strong surprise responses akin to the P200 and N400. These results show that predictability effects in language are not a side-effect of simple designs, and demonstrate the practical use of recent advances in AI for the cognitive neuroscience of language.
  • Hervais-Adelman, A., Kumar, U., Mishra, R. K., Tripathi, V. N., Guleria, A., Singh, J. P., Eisner, F., & Huettig, F. (2019). Learning to read recycles visual cortical networks without destruction. Science Advances, 5(9): eaax0262. doi:10.1126/sciadv.aax0262.

    Abstract

    Learning to read is associated with the appearance of an orthographically sensitive brain region known as the visual word form area. It has been claimed that development of this area proceeds by impinging upon territory otherwise available for the processing of culturally relevant stimuli such as faces and houses. In a large-scale functional magnetic resonance imaging study of a group of individuals of varying degrees of literacy (from completely illiterate to highly literate), we examined cortical responses to orthographic and nonorthographic visual stimuli. We found that literacy enhances responses to other visual input in early visual areas and enhances representational similarity between text and faces, without reducing the extent of response to nonorthographic input. Thus, acquisition of literacy in childhood recycles existing object representation mechanisms but without destructive competition.

    Additional information

    aax0262_SM.pdf
  • Heyselaar, E., & Segaert, K. (2019). Memory encoding of syntactic information involves domain-general attentional resources. Evidence from dual-task studies. Quarterly Journal of Experimental Psychology, 72(6), 1285-1296. doi:10.1177/1747021818801249.

    Abstract

    We investigate the type of attention (domain-general or language-specific) used during syntactic processing. We focus on syntactic priming: In this task, participants listen to a sentence that describes a picture (prime sentence), followed by a picture the participants need to describe (target sentence). We measure the proportion of times participants use the syntactic structure they heard in the prime sentence to describe the current target sentence as a measure of syntactic processing. Participants simultaneously conducted a motion-object tracking (MOT) task, a task commonly used to tax domain-general attentional resources. We manipulated the number of objects the participant had to track; we thus measured participants’ ability to process syntax while their attention is not-, slightly-, or overly-taxed. Performance in the MOT task was significantly worse when conducted as a dual-task compared to as a single task. We observed an inverted U-shaped curve on priming magnitude when conducting the MOT task concurrently with prime sentences (i.e., memory encoding), but no effect when conducted with target sentences (i.e., memory retrieval). Our results illustrate how, during the encoding of syntactic information, domain-general attention differentially affects syntactic processing, whereas during the retrieval of syntactic information domain-general attention does not influence syntactic processing
  • Hubbard, R. J., Rommers, J., Jacobs, C. L., & Federmeier, K. D. (2019). Downstream behavioral and electrophysiological consequences of word prediction on recognition memory. Frontiers in Human Neuroscience, 13: 291. doi:10.3389/fnhum.2019.00291.

    Abstract

    When people process language, they can use context to predict upcoming information, influencing processing and comprehension as seen in both behavioral and neural measures. Although numerous studies have shown immediate facilitative effects of confirmed predictions, the downstream consequences of prediction have been less explored. In the current study, we examined those consequences by probing participants’ recognition memory for words after they read sets of sentences. Participants read strongly and weakly constraining sentences with expected or unexpected endings (“I added my name to the list/basket”), and later were tested on their memory for the sentence endings while EEG was recorded. Critically, the memory test contained words that were predictable (“list”) but were never read (participants saw “basket”). Behaviorally, participants showed successful discrimination between old and new items, but false alarmed to the expected-item lures more often than to new items, showing that predicted words or concepts can linger, even when predictions are disconfirmed. Although false alarm rates did not differ by constraint, event-related potentials (ERPs) differed between false alarms to strongly and weakly predictable words. Additionally, previously unexpected (compared to previously expected) endings that appeared on the memory test elicited larger N1 and LPC amplitudes, suggesting greater attention and episodic recollection. In contrast, highly predictable sentence endings that had been read elicited reduced LPC amplitudes during the memory test. Thus, prediction can facilitate processing in the moment, but can also lead to false memory and reduced recollection for predictable information.
  • Hulten, A., Schoffelen, J.-M., Udden, J., Lam, N. H. L., & Hagoort, P. (2019). How the brain makes sense beyond the processing of single words – An MEG study. NeuroImage, 186, 586-594. doi:10.1016/j.neuroimage.2018.11.035.

    Abstract

    Human language processing involves combinatorial operations that make human communication stand out in the animal kingdom. These operations rely on a dynamic interplay between the inferior frontal and the posterior temporal cortices. Using source reconstructed magnetoencephalography, we tracked language processing in the brain, in order to investigate how individual words are interpreted when part of sentence context. The large sample size in this study (n = 68) allowed us to assess how event-related activity is associated across distinct cortical areas, by means of inter-areal co-modulation within an individual. We showed that, within 500 ms of seeing a word, the word's lexical information has been retrieved and unified with the sentence context. This does not happen in a strictly feed-forward manner, but by means of co-modulation between the left posterior temporal cortex (LPTC) and left inferior frontal cortex (LIFC), for each individual word. The co-modulation of LIFC and LPTC occurs around 400 ms after the onset of each word, across the progression of a sentence. Moreover, these core language areas are supported early on by the attentional network. The results provide a detailed description of the temporal orchestration related to single word processing in the context of ongoing language.

    Additional information

    1-s2.0-S1053811918321165-mmc1.pdf
  • De Kleijn, R., Wijnen, M., & Poletiek, F. H. (2019). The effect of context-dependent information and sentence constructions on perceived humanness of an agent in a Turing test. Knowledge-Based Systems, 163, 794-799. doi:10.1016/j.knosys.2018.10.006.

    Abstract

    In a Turing test, a judge decides whether their conversation partner is either a machine or human. What cues does the judge use to determine this? In particular, are presumably unique features of human language actually perceived as humanlike? Participants rated the humanness of a set of sentences that were manipulated for grammatical construction: linear right-branching or hierarchical center-embedded and their plausibility with regard to world knowledge. We found that center-embedded sentences are perceived as less humanlike than right-branching sentences and more plausible sentences are regarded as more humanlike. However, the effect of plausibility of the sentence on perceived humanness is smaller for center-embedded sentences than for right-branching sentences. Participants also rated a conversation with either correct or incorrect use of the context by the agent. No effect of context use was found. Also, participants rated a full transcript of either a real human or a real chatbot, and we found that chatbots were reliably perceived as less humanlike than real humans, in line with our expectation. We did, however, find individual differences between chatbots and humans.
  • Kochari, A., & Flecken, M. (2019). Lexical prediction in language comprehension: A replication study of grammatical gender effects in Dutch. Language, Cognition and Neuroscience, 34(2), 239-253. doi:10.1080/23273798.2018.1524500.

    Abstract

    An important question in predictive language processing is the extent to which prediction effects can reliably be measured on pre-nominal material (e.g. articles before nouns). Here, we present a large sample (N = 58) close replication of a study by Otten and van Berkum (2009). They report ERP modulations in relation to the predictability of nouns in sentences, measured on gender-marked Dutch articles. We used nearly identical materials, procedures, and data analysis steps. We fail to replicate the original effect, but do observe a pattern consistent with the original data. Methodological differences between our replication and the original study that could potentially have contributed to the diverging results are discussed. In addition, we discuss the suitability of Dutch gender-marked determiners as a test-case for future studies of pre-activation of lexical items.
  • Kuperberg, G., Weber, K., Delaney-Busch, N., Ustine, C., Stillerman, B., Hämäläinen, M., & Lau, E. (2019). Multimodal neuroimaging evidence for looser lexico-semantic connections in schizophrenia. Neuropsychologia, 124, 337-349. doi:10.1016/j.neuropsychologia.2018.10.024.

    Abstract

    It has been hypothesized that schizophrenia is characterized by overly broad automatic activity within lexico-semantic networks. We used two complementary neuroimaging techniques, Magnetoencephalography (MEG) and functional Magnetic Resonance Imaging (fMRI), in combination with a highly automatic indirect semantic priming paradigm, to spatiotemporally localize this abnormality in the brain. Eighteen people with schizophrenia and 20 demographically-matched control participants viewed target words (“bell”) preceded by directly related (“church”), indirectly related (“priest”), or unrelated (“pants”) prime words in MEG and fMRI sessions. To minimize top-down processing, the prime was masked, the target appeared only 140ms after prime onset, and participants simply monitored for words within a particular semantic category that appeared in filler trials. Both techniques revealed a significantly larger automatic indirect priming effect in people with schizophrenia than in control participants. MEG temporally localized this enhanced effect to the N400 time window (300-500ms) — the critical stage of accessing meaning from words. fMRI spatially localized the effect to the left temporal fusiform cortex, which plays a role in mapping of orthographic word-form on to meaning. There was no evidence of an enhanced automatic direct semantic priming effect in the schizophrenia group. These findings provide converging neural evidence for abnormally broad highly automatic lexico-semantic activity in schizophrenia. We argue that, rather than arising from an unconstrained spread of automatic activation across semantic memory, this broader automatic lexico-semantic activity stems from looser connections between the form and meaning of words.

    Additional information

    1-s2.0-S0028393218307310-mmc1.docx
  • Mak, M., & Willems, R. M. (2019). Mental simulation during literary reading: Individual differences revealed with eye-tracking. Language, Cognition and Neuroscience, 34(4), 511-535. doi:10.1080/23273798.2018.1552007.

    Abstract

    People engage in simulation when reading literary narratives. In this study, we tried to pinpoint how different kinds of simulation (perceptual and motor simulation, mentalising) affect reading behaviour. Eye-tracking (gaze durations, regression probability) and questionnaire data were collected from 102 participants, who read three literary short stories. In a pre-test, 90 additional participants indicated which parts of the stories were high in one of the three kinds of simulation-eliciting content. The results show that motor simulation reduces gaze duration (faster reading), whereas perceptual simulation and mentalising increase gaze duration (slower reading). Individual differences in the effect of simulation on gaze duration were found, which were related to individual differences in aspects of story world absorption and story appreciation. These findings suggest fundamental differences between different kinds of simulation and confirm the role of simulation in absorption and appreciation.
  • Mantegna, F., Hintz, F., Ostarek, M., Alday, P. M., & Huettig, F. (2019). Distinguishing integration and prediction accounts of ERP N400 modulations in language processing through experimental design. Neuropsychologia, 134: 107199. doi:10.1016/j.neuropsychologia.2019.107199.

    Abstract

    Prediction of upcoming input is thought to be a main characteristic of language processing (e.g. Altmann & Mirkovic, 2009; Dell & Chang, 2014; Federmeier, 2007; Ferreira & Chantavarin, 2018; Pickering & Gambi, 2018; Hale, 2001; Hickok, 2012; Huettig 2015; Kuperberg & Jaeger, 2016; Levy, 2008; Norris, McQueen, & Cutler, 2016; Pickering & Garrod, 2013; Van Petten & Luka, 2012). One of the main pillars of experimental support for this notion comes from studies that have attempted to measure electrophysiological markers of prediction when participants read or listened to sentences ending in highly predictable words. The N400, a negative-going and centro-parietally distributed component of the ERP occurring approximately 400ms after (target) word onset, has been frequently interpreted as indexing prediction of the word (or the semantic representations and/or the phonological form of the predicted word, see Kutas & Federmeier, 2011; Nieuwland, 2019; Van Petten & Luka, 2012; for review). A major difficulty for interpreting N400 effects in language processing however is that it has been difficult to establish whether N400 target word modulations conclusively reflect prediction rather than (at least partly) ease of integration. In the present exploratory study, we attempted to distinguish lexical prediction (i.e. ‘top-down’ activation) from lexical integration (i.e. ‘bottom-up’ activation) accounts of ERP N400 modulations in language processing.
  • Martinez-Conde, S., Alexander, R. G., Blum, D., Britton, N., Lipska, B. K., Quirk, G. J., Swiss, J. I., Willems, R. M., & Macknik, S. L. (2019). The storytelling brain: How neuroscience stories help bridge the gap between research and society. The Journal of Neuroscience, 39(42), 8285-8290. doi:10.1523/JNEUROSCI.1180-19.2019.

    Abstract

    Active communication between researchers and society is necessary for the scientific community’s involvement in developing sciencebased policies. This need is recognized by governmental and funding agencies that compel scientists to increase their public engagement and disseminate research findings in an accessible fashion. Storytelling techniques can help convey science by engaging people’s imagination and emotions. Yet, many researchers are uncertain about how to approach scientific storytelling, or feel they lack the tools to undertake it. Here we explore some of the techniques intrinsic to crafting scientific narratives, as well as the reasons why scientific storytellingmaybe an optimal way of communicating research to nonspecialists.Wealso point out current communication gaps between science and society, particularly in the context of neurodiverse audiences and those that include neurological and psychiatric patients. Present shortcomings may turn into areas of synergy with the potential to link neuroscience education, research, and advocacy
  • Misersky, J., Majid, A., & Snijders, T. M. (2019). Grammatical gender in German influences how role-nouns are interpreted: Evidence from ERPs. Discourse Processes, 56(8), 643-654. doi:10.1080/0163853X.2018.1541382.

    Abstract

    Grammatically masculine role-nouns (e.g., Studenten-masc.‘students’) can refer to men and women, but may favor an interpretation where only men are considered the referent. If true, this has implications for a society aiming to achieve equal representation in the workplace since, for example, job adverts use such role descriptions. To investigate the interpretation of role-nouns, the present ERP study assessed grammatical gender processing in German. Twenty participants read sentences where a role-noun (masculine or feminine) introduced a group of people, followed by a congruent (masculine–men, feminine–women) or incongruent (masculine–women, feminine–men) continuation. Both for feminine-men and masculine-women continuations a P600 (500 to 800 ms) was observed; another positivity was already present from 300 to 500 ms for feminine-men continuations, but critically not for masculine-women continuations. The results imply a male-biased rather than gender-neutral interpretation of the masculine—despite widespread usage of the masculine as a gender-neutral form—suggesting masculine forms are inadequate for representing genders equally.
  • Mongelli, V., Meijs, E. L., Van Gaal, S., & Hagoort, P. (2019). No language unification without neural feedback: How awareness affects sentence processing. Neuroimage, 202: 116063. doi:10.1016/j.neuroimage.2019.116063.

    Abstract

    How does the human brain combine a finite number of words to form an infinite variety of sentences? According to the Memory, Unification and Control (MUC) model, sentence processing requires long-range feedback from the left inferior frontal cortex (LIFC) to left posterior temporal cortex (LPTC). Single word processing however may only require feedforward propagation of semantic information from sensory regions to LPTC. Here we tested the claim that long-range feedback is required for sentence processing by reducing visual awareness of words using a masking technique. Masking disrupts feedback processing while leaving feedforward processing relatively intact. Previous studies have shown that masked single words still elicit an N400 ERP effect, a neural signature of semantic incongruency. However, whether multiple words can be combined to form a sentence under reduced levels of awareness is controversial. To investigate this issue, we performed two experiments in which we measured electroencephalography (EEG) while 40 subjects performed a masked priming task. Words were presented either successively or simultaneously, thereby forming a short sentence that could be congruent or incongruent with a target picture. This sentence condition was compared with a typical single word condition. In the masked condition we only found an N400 effect for single words, whereas in the unmasked condition we observed an N400 effect for both unmasked sentences and single words. Our findings suggest that long-range feedback processing is required for sentence processing, but not for single word processing.
  • Nieuwland, M. S., Coopmans, C. W., & Sommers, R. P. (2019). Distinguishing old from new referents during discourse comprehension: Evidence from ERPs and oscillations. Frontiers in Human Neuroscience, 13: 398. doi:10.3389/fnhum.2019.00398.

    Abstract

    In this EEG study, we used pre-registered and exploratory ERP and time-frequency analyses to investigate the resolution of anaphoric and non-anaphoric noun phrases during discourse comprehension. Participants listened to story contexts that described two antecedents, and subsequently read a target sentence with a critical noun phrase that lexically matched one antecedent (‘old’), matched two antecedents (‘ambiguous’), partially matched one antecedent in terms of semantic features (‘partial-match’), or introduced another referent (non-anaphoric, ‘new’). After each target sentence, participants judged whether the noun referred back to an antecedent (i.e., an ‘old/new’ judgment), which was easiest for ambiguous nouns and hardest for partially matching nouns. The noun-elicited N400 ERP component demonstrated initial sensitivity to repetition and semantic overlap, corresponding to repetition and semantic priming effects, respectively. New and partially matching nouns both elicited a subsequent frontal positivity, which suggested that partially matching anaphors may have been processed as new nouns temporarily. ERPs in an even later time window and ERPs time-locked to sentence-final words suggested that new and partially matching nouns had different effects on comprehension, with partially matching nouns incurring additional processing costs up to the end of the sentence. In contrast to the ERP results, the time-frequency results primarily demonstrated sensitivity to noun repetition, and did not differentiate partially matching anaphors from new nouns. In sum, our results show the ERP and time-frequency effects of referent repetition during discourse comprehension, and demonstrate the potentially demanding nature of establishing the anaphoric meaning of a novel noun.
  • Nieuwland, M. S. (2019). Do ‘early’ brain responses reveal word form prediction during language comprehension? A critical review. Neuroscience and Biobehavioral Reviews, 96, 367-400. doi:10.1016/j.neubiorev.2018.11.019.

    Abstract

    Current theories of language comprehension posit that readers and listeners routinely try to predict the meaning but also the visual or sound form of upcoming words. Whereas most neuroimaging studies on word rediction focus on the N400 ERP or its magnetic equivalent, various studies claim that word form prediction manifests itself in ‘early’, pre N400 brain responses (e.g., ELAN, M100, P130, N1, P2, N200/PMN, N250). Modulations of these components are often taken as evidence that word form prediction impacts early sensory processes (the sensory hypothesis) or, alternatively, the initial stages of word recognition before word meaning is integrated with sentence context (the recognition hypothesis). Here, I comprehensively review studies on sentence- or discourse-level language comprehension that report such effects of prediction on early brain responses. I conclude that the reported evidence for the sensory hypothesis or word recognition hypothesis is weak and inconsistent, and highlight the urgent need for replication of previous findings. I discuss the implications and challenges to current theories of linguistic prediction and suggest avenues for future research.
  • Ostarek, M., Van Paridon, J., & Montero-Melis, G. (2019). Sighted people’s language is not helpful for blind individuals’ acquisition of typical animal colors. Proceedings of the National Academy of Sciences of the United States of America, 116(44), 21972-21973. doi:10.1073/pnas.1912302116.
  • Peeters, D., Vanlangendonck, F., Rüschemeyer, S.-A., & Dijkstra, T. (2019). Activation of the language control network in bilingual visual word recognition. Cortex, 111, 63-73. doi:10.1016/j.cortex.2018.10.012.

    Abstract

    Research into bilingual language production has identified a language control network that subserves control operations when bilinguals produce speech. Here we explore which brain areas are recruited for control purposes in bilingual language comprehension. In two experimental fMRI sessions, Dutch-English unbalanced bilinguals read words that differed in cross-linguistic form and meaning overlap across their two languages. The need for control operations was further manipulated by varying stimulus list composition across the two experimental sessions. We observed activation of the language control network in bilingual language comprehension as a function of both cross-linguistic form and meaning overlap and stimulus list composition. These findings suggest that the language control network is shared across bilingual language production and comprehension. We argue that activation of the language control network in language comprehension allows bilinguals to quickly and efficiently grasp the context-relevant meaning of words.

    Additional information

    1-s2.0-S0010945218303459-mmc1.docx
  • Peeters, D. (2019). Virtual reality: A game-changing method for the language sciences. Psychonomic Bulletin & Review, 26(3), 894-900. doi:10.3758/s13423-019-01571-3.

    Abstract

    This paper introduces virtual reality as an experimental method for the language sciences and provides a review of recent studies using the method to answer fundamental, psycholinguistic research questions. It is argued that virtual reality demonstrates that ecological validity and experimental control should not be conceived of as two extremes on a continuum, but rather as two orthogonal factors. Benefits of using virtual reality as an experimental method include that in a virtual environment, as in the real world, there is no artificial spatial divide between participant and stimulus. Moreover, virtual reality experiments do not necessarily have to include a repetitive trial structure or an unnatural experimental task. Virtual agents outperform experimental confederates in terms of the consistency and replicability of their behaviour, allowing for reproducible science across participants and research labs. The main promise of virtual reality as a tool for the experimental language sciences, however, is that it shifts theoretical focus towards the interplay between different modalities (e.g., speech, gesture, eye gaze, facial expressions) in dynamic and communicative real-world environments, complementing studies that focus on one modality (e.g. speech) in isolation.
  • Preisig, B., Sjerps, M. J., Kösem, A., & Riecke, L. (2019). Dual-site high-density 4Hz transcranial alternating current stimulation applied over auditory and motor cortical speech areas does not influence auditory-motor mapping. Brain Stimulation, 12(3), 775-777. doi:10.1016/j.brs.2019.01.007.

    Additional information

    Supplementary data
  • Preisig, B., & Sjerps, M. J. (2019). Hemispheric specializations affect interhemispheric speech sound integration during duplex perception. The Journal of the Acoustical Society of America, 145, EL190-EL196. doi:10.1121/1.5092829.

    Abstract

    The present study investigated whether speech-related spectral information benefits from initially predominant right or left hemisphere processing. Normal hearing individuals categorized speech sounds composed of an ambiguous base (perceptually intermediate between /ga/ and /da/), presented to one ear, and a disambiguating low or high F3 chirp presented to the other ear. Shorter response times were found when the chirp was presented to the left ear than to the right ear (inducing initially right-hemisphere chirp processing), but no between-ear differences in strength of overall integration. The results are in line with the assumptions of a right hemispheric dominance for spectral processing.

    Additional information

    Supplementary material
  • Sakarias, M., & Flecken, M. (2019). Keeping the result in sight and mind: General cognitive principles and language-specific influences in the perception and memory of resultative events. Cognitive Science, 43(1), 1-30. doi:10.1111/cogs.12708.

    Abstract

    We study how people attend to and memorize endings of events that differ in the degree to which objects in them are affected by an action: Resultative events show objects that undergo a visually salient change in state during the course of the event (peeling a potato), and non‐resultative events involve objects that undergo no, or only partial state change (stirring in a pan). We investigate general cognitive principles, and potential language‐specific influences, in verbal and nonverbal event encoding and memory, across two experiments with Dutch and Estonian participants. Estonian marks a viewer's perspective on an event's result obligatorily via grammatical case on direct object nouns: Objects undergoing a partial/full change in state in an event are marked with partitive/accusative case, respectively. Therefore, we hypothesized increased saliency of object states and event results in Estonian speakers, as compared to speakers of Dutch. Findings show (a) a general cognitive principle of attending carefully to endings of resultative events, implying cognitive saliency of object states in event processing; (b) a language‐specific boost on attention and memory of event results under verbal task demands in Estonian speakers. Results are discussed in relation to theories of event cognition, linguistic relativity, and thinking for speaking.
  • Schoffelen, J.-M., Oostenveld, R., Lam, N. H. L., Udden, J., Hulten, A., & Hagoort, P. (2019). A 204-subject multimodal neuroimaging dataset to study language processing. Scientific Data, 6(1): 17. doi:10.1038/s41597-019-0020-y.

    Abstract

    This dataset, colloquially known as the Mother Of Unification Studies (MOUS) dataset, contains multimodal neuroimaging data that has been acquired from 204 healthy human subjects. The neuroimaging protocol consisted of magnetic resonance imaging (MRI) to derive information at high spatial resolution about brain anatomy and structural connections, and functional data during task, and at rest. In addition, magnetoencephalography (MEG) was used to obtain high temporal resolution electrophysiological measurements during task, and at rest. All subjects performed a language task, during which they processed linguistic utterances that either consisted of normal or scrambled sentences. Half of the subjects were reading the stimuli, the other half listened to the stimuli. The resting state measurements consisted of 5 minutes eyes-open for the MEG and 7 minutes eyes-closed for fMRI. The neuroimaging data, as well as the information about the experimental events are shared according to the Brain Imaging Data Structure (BIDS) format. This unprecedented neuroimaging language data collection allows for the investigation of various aspects of the neurobiological correlates of language.
  • Schoot, L., Hagoort, P., & Segaert, K. (2019). Stronger syntactic alignment in the presence of an interlocutor. Frontiers in Psychology, 10: 685. doi:10.3389/fpsyg.2019.00685.

    Abstract

    Speakers are influenced by the linguistic context: hearing one syntactic alternative leads to an increased chance that the speaker will repeat this structure in the subsequent utterance (i.e., syntactic priming, or structural persistence). Top-down influences, such as whether a conversation partner (or, interlocutor) is present, may modulate the degree to which syntactic priming occurs. In the current study, we indeed show that the magnitude of syntactic alignment increases when speakers are interacting with an interlocutor as opposed to doing the experiment alone. The structural persistence effect for passive sentences is stronger in the presence of an interlocutor than when no interlocutor is present (i.e., when the participant is primed by a recording). We did not find evidence, however, that a speaker’s syntactic priming magnitude is influenced by the degree of their conversation partner’s priming magnitude. Together, these results support a mediated account of syntactic priming, in which syntactic choices are not only affected by preceding linguistic input, but also by top-down influences, such as the speakers’ communicative intent.
  • Schubotz, L., Ozyurek, A., & Holler, J. (2019). Age-related differences in multimodal recipient design: Younger, but not older adults, adapt speech and co-speech gestures to common ground. Language, Cognition and Neuroscience, 34(2), 254-271. doi:10.1080/23273798.2018.1527377.

    Abstract

    Speakers can adapt their speech and co-speech gestures based on knowledge shared with an addressee (common ground-based recipient design). Here, we investigate whether these adaptations are modulated by the speaker’s age and cognitive abilities. Younger and older participants narrated six short comic stories to a same-aged addressee. Half of each story was known to both participants, the other half only to the speaker. The two age groups did not differ in terms of the number of words and narrative events mentioned per narration, or in terms of gesture frequency, gesture rate, or percentage of events expressed multimodally. However, only the younger participants reduced the amount of verbal and gestural information when narrating mutually known as opposed to novel story content. Age-related differences in cognitive abilities did not predict these differences in common ground-based recipient design. The older participants’ communicative behaviour may therefore also reflect differences in social or pragmatic goals.

    Additional information

    plcp_a_1527377_sm4510.pdf
  • Seymour, R. A., Rippon, G., Goordin-Williams, G., Schoffelen, J.-M., & Kessler, K. (2019). Dysregulated oscillatory connectivity in thevisual system in autism spectrum disorder. Brain, 142(10), 3294-3305. doi:10.1093/brain/awz214.

    Abstract

    Autism spectrum disorder is increasingly associated with atypical perceptual and sensory symptoms. Here we explore the hypothesis that aberrant sensory processing in autism spectrum disorder could be linked to atypical intra- (local) and interregional (global) brain connectivity. To elucidate oscillatory dynamics and connectivity in the visual domain we used magnetoencephalography and a simple visual grating paradigm with a group of 18 adolescent autistic participants and 18 typically developing control subjects. Both groups showed similar increases in gamma (40–80 Hz) and decreases in alpha (8–13 Hz) frequency power in occipital cortex. However, systematic group differences emerged when analysing intra- and interregional connectivity in detail. First, directed connectivity was estimated using non-parametric Granger causality between visual areas V1 and V4. Feedforward V1-to-V4 connectivity, mediated by gamma oscillations, was equivalent between autism spectrum disorder and control groups, but importantly, feedback V4-to-V1 connectivity, mediated by alpha (8–13 Hz) oscillations, was significantly reduced in the autism spectrum disorder group. This reduction was positively correlated with autistic quotient scores, consistent with an atypical visual hierarchy in autism, characterized by reduced top-down modulation of visual input via alpha-band oscillations. Second, at the local level in V1, coupling of alpha-phase to gamma amplitude (alpha-gamma phase amplitude coupling) was reduced in the autism spectrum disorder group. This implies dysregulated local visual processing, with gamma oscillations decoupled from patterns of wider alphaband phase synchrony (i.e. reduced phase amplitude coupling), possibly due to an excitation-inhibition imbalance. More generally, these results are in agreement with predictive coding accounts of neurotypical perception and indicate that visual processes in autism are less modulated by contextual feedback information.
  • Sharoh, D., Van Mourik, T., Bains, L. J., Segaert, K., Weber, K., Hagoort, P., & Norris, D. (2019). Laminar specific fMRI reveals directed interactions in distributed networks during language processing. Proceedings of the National Academy of Sciences of the United States of America, 116(42), 21185-21190. doi:10.1073/pnas.1907858116.

    Abstract

    Interactions between top-down and bottom-up information streams are integral to brain function but challenging to measure noninvasively. Laminar resolution, functional MRI (lfMRI) is sensitive to depth-dependent properties of the blood oxygen level-dependent (BOLD) response, which can be potentially related to top-down and bottom-up signal contributions. In this work, we used lfMRI to dissociate the top-down and bottom-up signal contributions to the left occipitotemporal sulcus (LOTS) during word reading. We further demonstrate that laminar resolution measurements could be used to identify condition-specific distributed networks on the basis of whole-brain connectivity patterns specific to the depth-dependent BOLD signal. The networks corresponded to top-down and bottom-up signal pathways targeting the LOTS during word reading. We show that reading increased the top-down BOLD signal observed in the deep layers of the LOTS and that this signal uniquely related to the BOLD response in other language-critical regions. These results demonstrate that lfMRI can reveal important patterns of activation that are obscured at standard resolution. In addition to differences in activation strength as a function of depth, we also show meaningful differences in the interaction between signals originating from different depths both within a region and with the rest of the brain. We thus show that lfMRI allows the noninvasive measurement of directed interaction between brain regions and is capable of resolving different connectivity patterns at submillimeter resolution, something previously considered to be exclusively in the domain of invasive recordings.
  • Sjerps, M. J., Fox, N. P., Johnson, K., & Chang, E. F. (2019). Speaker-normalized sound representations in the human auditory cortex. Nature Communications, 10: 2465. doi:10.1038/s41467-019-10365-z.

    Abstract

    The acoustic dimensions that distinguish speech sounds (like the vowel differences in “boot” and “boat”) also differentiate speakers’ voices. Therefore, listeners must normalize across speakers without losing linguistic information. Past behavioral work suggests an important role for auditory contrast enhancement in normalization: preceding context affects listeners’ perception of subsequent speech sounds. Here, using intracranial electrocorticography in humans, we investigate whether and how such context effects arise in auditory cortex. Participants identified speech sounds that were preceded by phrases from two different speakers whose voices differed along the same acoustic dimension as target words (the lowest resonance of the vocal tract). In every participant, target vowels evoke a speaker-dependent neural response that is consistent with the listener’s perception, and which follows from a contrast enhancement model. Auditory cortex processing thus displays a critical feature of normalization, allowing listeners to extract meaningful content from the voices of diverse speakers.

    Additional information

    41467_2019_10365_MOESM1_ESM.pdf
  • Sjerps, M. J., & Chang, E. F. (2019). The cortical processing of speech sounds in the temporal lobe. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 361-379). Cambridge, MA: MIT Press.
  • De Swart, P., & Van Bergen, G. (2019). How animacy and verbal information influence V2 sentence processing: Evidence from eye movements. Open Linguistics, 5(1), 630-649. doi:10.1515/opli-2019-0035.

    Abstract

    There exists a clear association between animacy and the grammatical function of transitive subject. The grammar of some languages require the transitive subject to be high in animacy, or at least higher than the object. A similar animacy preference has been observed in processing studies in languages without such a categorical animacy effect. This animacy preference has been mainly established in structures in which either one or both arguments are provided before the verb. Our goal was to establish (i) whether this preference can already be observed before any argument is provided, and (ii) whether this preference is mediated by verbal information. To this end we exploited the V2 property of Dutch which allows the verb to precede its arguments. Using a visual-world eye-tracking paradigm we presented participants with V2 structures with either an auxiliary (e.g. Gisteren heeft X … ‘Yesterday, X has …’) or a lexical main verb (e.g. Gisteren motiveerde X … ‘Yesterday, X motivated …’) and we measured looks to the animate referent. The results indicate that the animacy preference can already be observed before arguments are presented and that the selectional restrictions of the verb mediate this bias, but do not override it completely.
  • Takashima, A., Bakker-Marshall, I., Van Hell, J. G., McQueen, J. M., & Janzen, G. (2019). Neural correlates of word learning in children. Developmental Cognitive Neuroscience, 37: 100647. doi:10.1016/j.dcn.2019.100649.

    Abstract

    Memory representations of words are thought to undergo changes with consolidation: Episodic memories of novel words are transformed into lexical representations that interact with other words in the mental dictionary. Behavioral studies have shown that this lexical integration process is enhanced when there is more time for consolidation. Neuroimaging studies have further revealed that novel word representations are initially represented in a hippocampally-centered system, whereas left posterior middle temporal cortex activation increases with lexicalization. In this study, we measured behavioral and brain responses to newly-learned words in children. Two groups of Dutch children, aged between 8-10 and 14-16 years, were trained on 30 novel Japanese words depicting novel concepts. Children were tested on word-forms, word-meanings, and the novel words’ influence on existing word processing immediately after training, and again after a week. In line with the adult findings, hippocampal involvement decreased with time. Lexical integration, however, was not observed immediately or after a week, neither behaviorally nor neurally. It appears that time alone is not always sufficient for lexical integration to occur. We suggest that other factors (e.g., the novelty of the concepts and familiarity with the language the words are derived from) might also influence the integration process.

    Additional information

    Supplementary data
  • Takashima, A., & Verhoeven, L. (2019). Radical repetition effects in beginning learners of Chinese as a foreign language reading. Journal of Neurolinguistics, 50, 71-81. doi:10.1016/j.jneuroling.2018.03.001.

    Abstract

    The aim of the present study was to examine whether repetition of radicals during training of Chinese characters leads to better word acquisition performance in beginning learners of Chinese as a foreign language. Thirty Dutch university students were trained on 36 Chinese one-character words for their pronunciations and meanings. They were also exposed to the specifics of the radicals, that is, for phonetic radicals, the associated pronunciation was explained, and for semantic radicals the associated categorical meanings were explained. Results showed that repeated exposure to phonetic and semantic radicals through character pronunciation and meaning trainings indeed induced better understanding of those radicals that were shared among different characters. Furthermore, characters in the training set that shared phonetic radicals were pronounced better than those that did not. Repetition of semantic radicals across different characters, however, hindered the learning of exact meanings. Students generally confused the meanings of other characters that shared the semantic radical. The study shows that in the initial stage of learning, overlapping information of the shared radicals are effectively learned. Acquisition of the specifics of individual characters, however, requires more training.

    Additional information

    Supplementary data
  • Udden, J., Hulten, A., Bendt, K., Mineroff, Z., Kucera, K. S., Vino, A., Fedorenko, E., Hagoort, P., & Fisher, S. E. (2019). Towards robust functional neuroimaging genetics of cognition. Journal of Neuroscience, 39(44), 8778-8787. doi:10.1523/JNEUROSCI.0888-19.2019.

    Abstract

    A commonly held assumption in cognitive neuroscience is that, because measures of human brain function are closer to underlying biology than distal indices of behavior/cognition, they hold more promise for uncovering genetic pathways. Supporting this view is an influential fMRI-based study of sentence reading/listening by Pinel et al. (2012), who reported that common DNA variants in specific candidate genes were associated with altered neural activation in language-related regions of healthy individuals that carried them. In particular, different single-nucleotide polymorphisms (SNPs) of FOXP2 correlated with variation in task-based activation in left inferior frontal and precentral gyri, whereas a SNP at the KIAA0319/TTRAP/THEM2 locus was associated with variable functional asymmetry of the superior temporal sulcus. Here, we directly test each claim using a closely matched neuroimaging genetics approach in independent cohorts comprising 427 participants, four times larger than the original study of 94 participants. Despite demonstrating power to detect associations with substantially smaller effect sizes than those of the original report, we do not replicate any of the reported associations. Moreover, formal Bayesian analyses reveal substantial to strong evidence in support of the null hypothesis (no effect). We highlight key aspects of the original investigation, common to functional neuroimaging genetics studies, which could have yielded elevated false-positive rates. Genetic accounts of individual differences in cognitive functional neuroimaging are likely to be as complex as behavioral/cognitive tests, involving many common genetic variants, each of tiny effect. Reliable identification of true biological signals requires large sample sizes, power calculations, and validation in independent cohorts with equivalent paradigms. SIGNIFICANCE STATEMENT A pervasive idea in neuroscience is that neuroimaging-based measures of brain function, being closer to underlying neurobiology, are more amenable for uncovering links to genetics. This is a core assumption of prominent studies that associate common DNA variants with altered activations in task-based fMRI, despite using samples (10–100 people) that lack power for detecting the tiny effect sizes typical of genetically complex traits. Here, we test central findings from one of the most influential prior studies. Using matching paradigms and substantially larger samples, coupled to power calculations and formal Bayesian statistics, our data strongly refute the original findings. We demonstrate that neuroimaging genetics with task-based fMRI should be subject to the same rigorous standards as studies of other complex traits.
  • Van Berkum, J. J. A., & Nieuwland, M. S. (2019). A cognitive neuroscience perspective on language comprehension in context. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 429-442). Cambridge, MA: MIT Press.
  • Van den Broek, G. S. E., Segers, E., Van Rijn, H., Takashima, A., & Verhoeven, L. (2019). Effects of elaborate feedback during practice tests: Costs and benefits of retrieval prompts. Journal of Experimental Psychology: Applied, 25(4), 588-601. doi:10.1037/xap0000212.

    Abstract

    This study explores the effect of feedback with hints on students’ recall of words. In three classroom experiments, high school students individually practiced vocabulary words through computerized retrieval practice with either standard show-answer feedback (display of answer) or hints feedback after incorrect responses. Hints feedback gave students a second chance to find the correct response using orthographic (Experiment 1), mnemonic (Experiment 2), or cross-language hints (Experiment 3). During practice, hints led to a shift of practice time from further repetitions to longer feedback processing but did not reduce (repeated) errors. There was no effect of feedback on later recall except when the hints from practice were also available on the test, indicating limited transfer of practice with hints to later recall without hints (in Experiments 1 and 2). Overall, hints feedback was not preferable over show-answer feedback. The common notion that hints are beneficial may not hold when the total practice time is limited.
  • Van Bergen, G., Flecken, M., & Wu, R. (2019). Rapid target selection of object categories based on verbs: Implications for language-categorization interactions. Psychophysiology, 56(9): e13395. doi:10.1111/psyp.13395.

    Abstract

    Although much is known about how nouns facilitate object categorization, very little is known about how verbs (e.g., posture verbs such as stand or lie) facilitate object categorization. Native Dutch speakers are a unique population to investigate this issue with because the configurational categories distinguished by staan (to stand) and liggen (to lie) are inherent in everyday Dutch language. Using an ERP component (N2pc), four experiments demonstrate that selection of posture verb categories is rapid (between 220–320 ms). The effect was attenuated, though present, when removing the perceptual distinction between categories. A similar attenuated effect was obtained in native English speakers, where the category distinction is less familiar, and when category labels were implicit for native Dutch speakers. Our results are among the first to demonstrate that category search based on verbs can be rapid, although extensive linguistic experience and explicit labels may not be necessary to facilitate categorization in this case.

    Additional information

    psyp13395-sup-0001-appendixs1.pdf
  • Van Es, M. W. J., & Schoffelen, J.-M. (2019). Stimulus-induced gamma power predicts the amplitude of the subsequent visual evoked response. NeuroImage, 186, 703-712. doi:10.1016/j.neuroimage.2018.11.029.

    Abstract

    The efficiency of neuronal information transfer in activated brain networks may affect behavioral performance. Gamma-band synchronization has been proposed to be a mechanism that facilitates neuronal processing of behaviorally relevant stimuli. In line with this, it has been shown that strong gamma-band activity in visual cortical areas leads to faster responses to a visual go cue. We investigated whether there are directly observable consequences of trial-by-trial fluctuations in non-invasively observed gamma-band activity on the neuronal response. Specifically, we hypothesized that the amplitude of the visual evoked response to a go cue can be predicted by gamma power in the visual system, in the window preceding the evoked response. Thirty-three human subjects (22 female) performed a visual speeded response task while their magnetoencephalogram (MEG) was recorded. The participants had to respond to a pattern reversal of a concentric moving grating. We estimated single trial stimulus-induced visual cortical gamma power, and correlated this with the estimated single trial amplitude of the most prominent event-related field (ERF) peak within the first 100 ms after the pattern reversal. In parieto-occipital cortical areas, the amplitude of the ERF correlated positively with gamma power, and correlated negatively with reaction times. No effects were observed for the alpha and beta frequency bands, despite clear stimulus onset induced modulation at those frequencies. These results support a mechanistic model, in which gamma-band synchronization enhances the neuronal gain to relevant visual input, thus leading to more efficient downstream processing and to faster responses.
  • Varma, S., Takashima, A., Fu, L., & Kessels, R. P. C. (2019). Mindwandering propensity modulates episodic memory consolidation. Aging Clinical and Experimental Research, 31(11), 1601-1607. doi:10.1007/s40520-019-01251-1.

    Abstract

    Research into strategies that can combat episodic memory decline in healthy older adults has gained widespread attention over the years. Evidence suggests that a short period of rest immediately after learning can enhance memory consolidation, as compared to engaging in cognitive tasks. However, a recent study in younger adults has shown that post-encoding engagement in a working memory task leads to the same degree of memory consolidation as from post-encoding rest. Here, we tested whether this finding can be extended to older adults. Using a delayed recognition test, we compared the memory consolidation of word–picture pairs learned prior to 9 min of rest or a 2-Back working memory task, and examined its relationship with executive functioning and mindwandering propensity. Our results show that (1) similar to younger adults, memory for the word–picture associations did not differ when encoding was followed by post-encoding rest or 2-Back task and (2) older adults with higher mindwandering propensity retained more word–picture associations encoded prior to rest relative to those encoded prior to the 2-Back task, whereas participants with lower mindwandering propensity had better memory performance for the pairs encoded prior to the 2-Back task. Overall, our results indicate that the degree of episodic memory consolidation during both active and passive post-encoding periods depends on individual mindwandering tendency.

    Additional information

    Supplementary material
  • Warren, C. M., Tona, K. D., Ouwekerk, L., Van Paridon, J., Poletiek, F. H., Bosch, J. A., & Nieuwenhuis, S. (2019). The neuromodulatory and hormonal effects of transcutaneous vagus nerve stimulation as evidenced by salivary alpha amylase, salivary cortisol, pupil diameter, and the P3 event-related potential. Brain Stimulation, 12(3), 635-642. doi:10.1016/j.brs.2018.12.224.

    Abstract

    Background Transcutaneous vagus nerve stimulation (tVNS) is a new, non-invasive technique being investigated as an intervention for a variety of clinical disorders, including epilepsy and depression. It is thought to exert its therapeutic effect by increasing central norepinephrine (NE) activity, but the evidence supporting this notion is limited. Objective In order to test for an impact of tVNS on psychophysiological and hormonal indices of noradrenergic function, we applied tVNS in concert with assessment of salivary alpha amylase (SAA) and cortisol, pupil size, and electroencephalograph (EEG) recordings. Methods Across three experiments, we applied real and sham tVNS to 61 healthy participants while they performed a set of simple stimulus-discrimination tasks. Before and after the task, as well as during one break, participants provided saliva samples and had their pupil size recorded. EEG was recorded throughout the task. The target for tVNS was the cymba conchae, which is heavily innervated by the auricular branch of the vagus nerve. Sham stimulation was applied to the ear lobe. Results P3 amplitude was not affected by tVNS (Experiment 1A: N=24; Experiment 1B: N=20; Bayes factor supporting null model=4.53), nor was pupil size (Experiment 2: N=16; interaction of treatment and time: p=0.79). However, tVNS increased SAA (Experiments 1A and 2: N=25) and attenuated the decline of salivary cortisol compared to sham (Experiment 2: N=17), as indicated by significant interactions involving treatment and time (p=.023 and p=.040, respectively). Conclusion These findings suggest that tVNS modulates hormonal indices but not psychophysiological indices of noradrenergic function.
  • Weber, K., Christiansen, M., Indefrey, P., & Hagoort, P. (2019). Primed from the start: Syntactic priming during the first days of language learning. Language Learning, 69(1), 198-221. doi:10.1111/lang.12327.

    Abstract

    New linguistic information must be integrated into our existing language system. Using a novel experimental task that incorporates a syntactic priming paradigm into artificial language learning, we investigated how new grammatical regularities and words are learned. This innovation allowed us to control the language input the learner received, while the syntactic priming paradigm provided insight into the nature of the underlying syntactic processing machinery. The results of the present study pointed to facilitatory syntactic processing effects within the first days of learning: Syntactic and lexical priming effects revealed participants’ sensitivity to both novel words and word orders. This suggested that novel syntactic structures and their meaning (form–function mapping) can be acquired rapidly through incidental learning. More generally, our study indicated similar mechanisms for learning and processing in both artificial and natural languages, with implications for the relationship between first and second language learning.
  • Weber, K., Micheli, C., Ruigendijk, E., & Rieger, J. (2019). Sentence processing is modulated by the current linguistic environment and a priori information: An fMRI study. Brain and Behavior, 9(7): e01308. doi:10.1002/brb3.1308.

    Abstract

    Introduction Words are not processed in isolation but in rich contexts that are used to modulate and facilitate language comprehension. Here, we investigate distinct neural networks underlying two types of contexts, the current linguistic environment and verb‐based syntactic preferences. Methods We had two main manipulations. The first was the current linguistic environment, where the relative frequencies of two syntactic structures (prepositional object [PO] and double‐object [DO]) would either follow everyday linguistic experience or not. The second concerned the preference toward one or the other structure depending on the verb; learned in everyday language use and stored in memory. German participants were reading PO and DO sentences in German while brain activity was measured with functional magnetic resonance imaging. Results First, the anterior cingulate cortex (ACC) showed a pattern of activation that integrated the current linguistic environment with everyday linguistic experience. When the input did not match everyday experience, the unexpected frequent structure showed higher activation in the ACC than the other conditions and more connectivity from the ACC to posterior parts of the language network. Second, verb‐based surprisal of seeing a structure given a verb (PO verb preference but DO structure presentation) resulted, within the language network (left inferior frontal and left middle/superior temporal gyrus) and the precuneus, in increased activation compared to a predictable verb‐structure pairing. Conclusion In conclusion, (1) beyond the canonical language network, brain areas engaged in prediction and error signaling, such as the ACC, might use the statistics of syntactic structures to modulate language processing, (2) the language network is directly engaged in processing verb preferences. These two networks show distinct influences on sentence processing.

    Additional information

    Supporting information
  • Zhu, Z., Bastiaansen, M. C. M., Hakun, J. G., Petersson, K. M., Wang, S., & Hagoort, P. (2019). Semantic unification modulates N400 and BOLD signal change in the brain: A simultaneous EEG-fMRI study. Journal of Neurolinguistics, 52: 100855. doi:10.1016/j.jneuroling.2019.100855.

    Abstract

    Semantic unification during sentence comprehension has been associated with amplitude change of the N400 in event-related potential (ERP) studies, and activation in the left inferior frontal gyrus (IFG) in functional magnetic resonance imaging (fMRI) studies. However, the specificity of this activation to semantic unification remains unknown. To more closely examine the brain processes involved in semantic unification, we employed simultaneous EEG-fMRI to time-lock the semantic unification related N400 change, and integrated trial-by-trial variation in both N400 and BOLD change beyond the condition-level BOLD change difference measured in traditional fMRI analyses. Participants read sentences in which semantic unification load was parametrically manipulated by varying cloze probability. Separately, ERP and fMRI results replicated previous findings, in that semantic unification load parametrically modulated the amplitude of N400 and cortical activation. Integrated EEG-fMRI analyses revealed a different pattern in which functional activity in the left IFG and bilateral supramarginal gyrus (SMG) was associated with N400 amplitude, with the left IFG activation and bilateral SMG activation being selective to the condition-level and trial-level of semantic unification load, respectively. By employing the EEG-fMRI integrated analyses, this study among the first sheds light on how to integrate trial-level variation in language comprehension.
  • Zuidema, W., & Fitz, H. (2019). Key issues and future directions: Models of human language and speech processing. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 353-358). Cambridge, MA: MIT Press.
  • Acheson, D. J., & Hagoort, P. (2014). Twisting tongues to test for conflict monitoring in speech production. Frontiers in Human Neuroscience, 8: 206. doi:10.3389/fnhum.2014.00206.

    Abstract

    A number of recent studies have hypothesized that monitoring in speech production may occur via domain-general mechanisms responsible for the detection of response conflict. Outside of language, two ERP components have consistently been elicited in conflict-inducing tasks (e.g., the flanker task): the stimulus-locked N2 on correct trials, and the response-locked error-related negativity (ERN). The present investigation used these electrophysiological markers to test whether a common response conflict monitor is responsible for monitoring in speech and non-speech tasks. Electroencephalography (EEG) was recorded while participants performed a tongue twister (TT) task and a manual version of the flanker task. In the TT task, people rapidly read sequences of four nonwords arranged in TT and non-TT patterns three times. In the flanker task, people responded with a left/right button press to a center-facing arrow, and conflict was manipulated by the congruency of the flanking arrows. Behavioral results showed typical effects of both tasks, with increased error rates and slower speech onset times for TT relative to non-TT trials and for incongruent relative to congruent flanker trials. In the flanker task, stimulus-locked EEG analyses replicated previous results, with a larger N2 for incongruent relative to congruent trials, and a response-locked ERN. In the TT task, stimulus-locked analyses revealed broad, frontally-distributed differences beginning around 50 ms and lasting until just before speech initiation, with TT trials more negative than non-TT trials; response-locked analyses revealed an ERN. Correlation across these measures showed some correlations within a task, but little evidence of systematic cross-task correlation. Although the present results do not speak against conflict signals from the production system serving as cues to self-monitoring, they are not consistent with signatures of response conflict being mediated by a single, domain-general conflict monitor
  • Araújo, S., Faísca, L., Bramão, I., Petersson, K. M., & Reis, A. (2014). Lexical and phonological processes in dyslexic readers: Evidences from a visual lexical decision task. Dyslexia, 20, 38-53. doi:10.1002/dys.1461.

    Abstract

    The aim of the present study was to investigate whether reading failure in the context of an orthography of intermediate consistency is linked to inefficient use of the lexical orthographic reading procedure. The performance of typically developing and dyslexic Portuguese-speaking children was examined in a lexical decision task, where the stimulus lexicality, word frequency and length were manipulated. Both lexicality and length effects were larger in the dyslexic group than in controls, although the interaction between group and frequency disappeared when the data were transformed to control for general performance factors. Children with dyslexia were influenced in lexical decision making by the stimulus length of words and pseudowords, whereas age-matched controls were influenced by the length of pseudowords only. These findings suggest that non-impaired readers rely mainly on lexical orthographic information, but children with dyslexia preferentially use the phonological decoding procedure—albeit poorly—most likely because they struggle to process orthographic inputs as a whole such as controls do. Accordingly, dyslexic children showed significantly poorer performance than controls for all types of stimuli, including words that could be considered over-learned, such as high-frequency words. This suggests that their orthographic lexical entries are less established in the orthographic lexicon
  • Basnakova, J., Weber, K., Petersson, K. M., Van Berkum, J. J. A., & Hagoort, P. (2014). Beyond the language given: The neural correlates of inferring speaker meaning. Cerebral Cortex, 24(10), 2572-2578. doi:10.1093/cercor/bht112.

    Abstract

    Even though language allows us to say exactly what we mean, we often use language to say things indirectly, in a way that depends on the specific communicative context. For example, we can use an apparently straightforward sentence like "It is hard to give a good presentation" to convey deeper meanings, like "Your talk was a mess!" One of the big puzzles in language science is how listeners work out what speakers really mean, which is a skill absolutely central to communication. However, most neuroimaging studies of language comprehension have focused on the arguably much simpler, context-independent process of understanding direct utterances. To examine the neural systems involved in getting at contextually constrained indirect meaning, we used functional magnetic resonance imaging as people listened to indirect replies in spoken dialog. Relative to direct control utterances, indirect replies engaged dorsomedial prefrontal cortex, right temporo-parietal junction and insula, as well as bilateral inferior frontal gyrus and right medial temporal gyrus. This suggests that listeners take the speaker's perspective on both cognitive (theory of mind) and affective (empathy-like) levels. In line with classic pragmatic theories, our results also indicate that currently popular "simulationist" accounts of language comprehension fail to explain how listeners understand the speaker's intended message.
  • Cai, D., Fonteijn, H. M., Guadalupe, T., Zwiers, M., Wittfeld, K., Teumer, A., Hoogman, M., Arias Vásquez, A., Yang, Y., Buitelaar, J., Fernández, G., Brunner, H. G., Van Bokhoven, H., Franke, B., Hegenscheid, K., Homuth, G., Fisher, S. E., Grabe, H. J., Francks, C., & Hagoort, P. (2014). A genome wide search for quantitative trait loci affecting the cortical surface area and thickness of Heschl's gyrus. Genes, Brain and Behavior, 13, 675-685. doi:10.1111/gbb.12157.

    Abstract

    Heschl's gyrus (HG) is a core region of the auditory cortex whose morphology is highly variable across individuals. This variability has been linked to sound perception ability in both speech and music domains. Previous studies show that variations in morphological features of HG, such as cortical surface area and thickness, are heritable. To identify genetic variants that affect HG morphology, we conducted a genome-wide association scan (GWAS) meta-analysis in 3054 healthy individuals using HG surface area and thickness as quantitative traits. None of the single nucleotide polymorphisms (SNPs) showed association P values that would survive correction for multiple testing over the genome. The most significant association was found between right HG area and SNP rs72932726 close to gene DCBLD2 (3q12.1; P=2.77x10(-7)). This SNP was also associated with other regions involved in speech processing. The SNP rs333332 within gene KALRN (3q21.2; P=2.27x10(-6)) and rs143000161 near gene COBLL1 (2q24.3; P=2.40x10(-6)) were associated with the area and thickness of left HG, respectively. Both genes are involved in the development of the nervous system. The SNP rs7062395 close to the X-linked deafness gene POU3F4 was associated with right HG thickness (Xq21.1; P=2.38x10(-6)). This is the first molecular genetic analysis of variability in HG morphology
  • Capilla, A., Schoffelen, J.-M., Paterson, G., Thut, G., & Gross, J. (2014). Dissociated α-band modulations in the dorsal and ventral visual pathways in visuospatial attention and perception. Cerebral Cortex., 24(2), 550-561. doi:10.1093/cercor/bhs343.

    Abstract

    Modulations of occipito-parietal α-band (8–14 Hz) power that are opposite in direction (α-enhancement vs. α-suppression) and origin of generation (ipsilateral vs. contralateral to the locus of attention) are a robust correlate of anticipatory visuospatial attention. Yet, the neural generators of these α-band modulations, their interdependence across homotopic areas, and their respective contribution to subsequent perception remain unclear. To shed light on these questions, we employed magnetoencephalography, while human volunteers performed a spatially cued detection task. Replicating previous findings, we found α-power enhancement ipsilateral to the attended hemifield and contralateral α-suppression over occipitoparietal sensors. Source localization (beamforming) analysis showed that α-enhancement and suppression were generated in 2 distinct brain regions, located in the dorsal and ventral visual streams, respectively. Moreover, α-enhancement and suppression showed different dynamics and contribution to perception. In contrast to the initial and transient dorsal α-enhancement, α-suppression in ventro-lateral occipital cortex was sustained and influenced subsequent target detection. This anticipatory biasing of ventrolateral extrastriate α-activity probably reflects increased receptivity in the brain region specialized in processing upcoming target features. Our results add to current models on the role of α-oscillations in attention orienting by showing that α-enhancement and suppression can be dissociated in time, space, and perceptual relevance.

    Additional information

    Capilla_Suppl_Data.pdf
  • Chang, F., & Fitz, H. (2014). Computational models of sentence production: A dual-path approach. In M. Goldrick, & M. Miozzo (Eds.), The Oxford handbook of language production (pp. 70-89). Oxford: Oxford University Press.

    Abstract

    Sentence production is the process we use to create language-specific sentences that convey particular meanings. In production, there are complex interactions between meaning, words, and syntax at different points in sentences. Computational models can make these interactions explicit and connectionist learning algorithms have been useful for building such models. Connectionist models use domaingeneral mechanisms to learn internal representations and these mechanisms can also explain evidence of long-term syntactic adaptation in adult speakers. This paper will review work showing that these models can generalize words in novel ways and learn typologically-different languages like English and Japanese. It will also present modeling work which shows that connectionist learning algorithms can account for complex sentence production in children and adult production phenomena like structural priming, heavy NP shift, and conceptual/lexical accessibility.
  • Chu, M., Meyer, A. S., Foulkes, L., & Kita, S. (2014). Individual differences in frequency and saliency of speech-accompanying gestures: The role of cognitive abilities and empathy. Journal of Experimental Psychology: General, 143, 694-709. doi:10.1037/a0033861.

    Abstract

    The present study concerns individual differences in gesture production. We used correlational and multiple regression analyses to examine the relationship between individuals’ cognitive abilities and empathy levels and their gesture frequency and saliency. We chose predictor variables according to experimental evidence of the functions of gesture in speech production and communication. We examined 3 types of gestures: representational gestures, conduit gestures, and palm-revealing gestures. Higher frequency of representational gestures was related to poorer visual and spatial working memory, spatial transformation ability, and conceptualization ability; higher frequency of conduit gestures was related to poorer visual working memory, conceptualization ability, and higher levels of empathy; and higher frequency of palm-revealing gestures was related to higher levels of empathy. The saliency of all gestures was positively related to level of empathy. These results demonstrate that cognitive abilities and empathy levels are related to individual differences in gesture frequency and saliency
  • Chu, M., & Hagoort, P. (2014). Synchronization of speech and gesture: Evidence for interaction in action. Journal of Experimental Psychology: General, 143(4), 1726-1741. doi:10.1037/a0036281.

    Abstract

    Language and action systems are highly interlinked. A critical piece of evidence is that speech and its accompanying gestures are tightly synchronized. Five experiments were conducted to test 2 hypotheses about the synchronization of speech and gesture. According to the interactive view, there is continuous information exchange between the gesture and speech systems, during both their planning and execution phases. According to the ballistic view, information exchange occurs only during the planning phases of gesture and speech, but the 2 systems become independent once their execution has been initiated. In all experiments, participants were required to point to and/or name a light that had just lit up. Virtual reality and motion tracking technologies were used to disrupt their gesture or speech execution. Participants delayed their speech onset when their gesture was disrupted. They did so even when their gesture was disrupted at its late phase and even when they received only the kinesthetic feedback of their gesture. Also, participants prolonged their gestures when their speech was disrupted. These findings support the interactive view and add new constraints on models of speech and gesture production
  • Cristia, A., Minagawa-Kawai, Y., Egorova, N., Gervain, J., Filippin, L., Cabrol, D., & Dupoux, E. (2014). Neural correlates of infant accent discrimination: An fNIRS study. Developmental Science, 17(4), 628-635. doi:10.1111/desc.12160.

    Abstract

    The present study investigated the neural correlates of infant discrimination of very similar linguistic varieties (Quebecois and Parisian French) using functional Near InfraRed Spectroscopy. In line with previous behavioral and electrophysiological data, there was no evidence that 3-month-olds discriminated the two regional accents, whereas 5-month-olds did, with the locus of discrimination in left anterior perisylvian regions. These neuroimaging results suggest that a developing language network relying crucially on left perisylvian cortices sustains infants' discrimination of similar linguistic varieties within this early period of infancy.

    Files private

    Request files
  • Cristia, A., Seidl, A., Junge, C., Soderstrom, M., & Hagoort, P. (2014). Predicting individual variation in language from infant speech perception measures. Child development, 85(4), 1330-1345. doi:10.1111/cdev.12193.

    Abstract

    There are increasing reports that individual variation in behavioral and neurophysiological measures of infant speech processing predicts later language outcomes, and specifically concurrent or subsequent vocabulary size. If such findings are held up under scrutiny, they could both illuminate theoretical models of language development and contribute to the prediction of communicative disorders. A qualitative, systematic review of this emergent literature illustrated the variety of approaches that have been used and highlighted some conceptual problems regarding the measurements. A quantitative analysis of the same data established that the bivariate relation was significant, with correlations of similar strength to those found for well-established nonlinguistic predictors of language. Further exploration of infant speech perception predictors, particularly from a methodological perspective, is recommended.
  • Cristia, A., & Seidl, A. (2014). The hyperarticulation hypothesis of infant-directed speech. Journal of Child Language, 41(4), 913-934. doi:10.1017/S0305000912000669.

    Abstract

    Typically, the point vowels [i,ɑ,u] are acoustically more peripheral in infant-directed speech (IDS) compared to adult-directed speech (ADS). If caregivers seek to highlight lexically relevant contrasts in IDS, then two sounds that are contrastive should become more distinct, whereas two sounds that are surface realizations of the same underlying sound category should not. To test this prediction, vowels that are phonemically contrastive ([i-ɪ] and [eɪ-ε]), vowels that map onto the same underlying category ([æ- ] and [ε- ]), and the point vowels [i,ɑ,u] were elicited in IDS and ADS by American English mothers of two age groups of infants (four- and eleven-month-olds). As in other work, point vowels were produced in more peripheral positions in IDS compared to ADS. However, there was little evidence of hyperarticulation per se (e.g. [i-ɪ] was hypoarticulated). We suggest that across-the-board lexically based hyperarticulation is not a necessary feature of IDS.

    Additional information

    CORRIGENDUM
  • Dautriche, I., Cristia, A., Brusini, P., Yuan, S., Fisher, C., & Christophe, A. (2014). Toddlers default to canonical surface-to-meaning mapping when learning verbs. Child Development, 85(3), 1168-1180. doi:10.1111/cdev.12183.

    Abstract

    This work was supported by grants from the French Agence Nationale de la Recherche (ANR-2010-BLAN-1901) and from French Fondation de France to Anne Christophe, from the National Institute of Child Health and Human Development (HD054448) to Cynthia Fisher, Fondation Fyssen and Ecole de Neurosciences de Paris to Alex Cristia, and a PhD fellowship from the Direction Générale de l'Armement (DGA, France) supported by the PhD program FdV (Frontières du Vivant) to Isabelle Dautriche. We thank Isabelle Brunet for the recruitment, Michel Dutat for the technical support, and Hernan Anllo for his puppet mastery skill. We are grateful to the families that participated in this study. We also thank two anonymous reviewers for their comments on an earlier draft of this manuscript.
  • Dolscheid, S., Hunnius, S., Casasanto, D., & Majid, A. (2014). Prelinguistic infants are sensitive to space-pitch associations found across cultures. Psychological Science, 25(6), 1256-1261. doi:10.1177/0956797614528521.

    Abstract

    People often talk about musical pitch using spatial metaphors. In English, for instance, pitches can be “high” or “low” (i.e., height-pitch association), whereas in other languages, pitches are described as “thin” or “thick” (i.e., thickness-pitch association). According to results from psychophysical studies, metaphors in language can shape people’s nonlinguistic space-pitch representations. But does language establish mappings between space and pitch in the first place, or does it only modify preexisting associations? To find out, we tested 4-month-old Dutch infants’ sensitivity to height-pitch and thickness-pitch mappings using a preferential-looking paradigm. The infants looked significantly longer at cross-modally congruent stimuli for both space-pitch mappings, which indicates that infants are sensitive to these associations before language acquisition. The early presence of space-pitch mappings means that these associations do not originate from language. Instead, language builds on preexisting mappings, changing them gradually via competitive associative learning. Space-pitch mappings that are language-specific in adults develop from mappings that may be universal in infants.
  • Dolscheid, S., Willems, R. M., Hagoort, P., & Casasanto, D. (2014). The relation of space and musical pitch in the brain. In P. Bello, M. Guarini, M. McShane, & B. Scassellati (Eds.), Proceedings of the 36th Annual Meeting of the Cognitive Science Society (CogSci 2014) (pp. 421-426). Austin, Tx: Cognitive Science Society.

    Abstract

    Numerous experiments show that space and musical pitch are closely linked in people's minds. However, the exact nature of space-pitch associations and their neuronal underpinnings are not well understood. In an fMRI experiment we investigated different types of spatial representations that may underlie musical pitch. Participants judged stimuli that varied in spatial height in both the visual and tactile modalities, as well as auditory stimuli that varied in pitch height. In order to distinguish between unimodal and multimodal spatial bases of musical pitch, we examined whether pitch activations were present in modality-specific (visual or tactile) versus multimodal (visual and tactile) regions active during spatial height processing. Judgments of musical pitch were found to activate unimodal visual areas, suggesting that space-pitch associations may involve modality-specific spatial representations, supporting a key assumption of embodied theories of metaphorical mental representation.
  • Fitz, H. (2014). Computermodelle für Spracherwerb und Sprachproduktion. Forschungsbericht 2014 - Max-Planck-Institut für Psycholinguistik. In Max-Planck-Gesellschaft Jahrbuch 2014. München: Max Planck Society for the Advancement of Science. Retrieved from http://www.mpg.de/7850678/Psycholinguistik_JB_2014?c=8236817.

    Abstract

    Relative clauses are a syntactic device to create complex sentences and they make language structurally productive. Despite a considerable number of experimental studies, it is still largely unclear how children learn relative clauses and how these are processed in the language system. Researchers at the MPI for Psycholinguistics used a computational learning model to gain novel insights into these issues. The model explains the differential development of relative clauses in English as well as cross-linguistic differences
  • Folia, V., & Petersson, K. M. (2014). Implicit structured sequence learning: An fMRI study of the structural mere-exposure effect. Frontiers in Psychology, 5: 41. doi:10.3389/fpsyg.2014.00041.

    Abstract

    In this event-related FMRI study we investigated the effect of five days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the FMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45) and the medial prefrontal regions (centered on BA 8/32). Importantly, and central to this study, the inclusion of a naive preference FMRI baseline measurement allowed us to conclude that these FMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax) in unsupervised AGL paradigms with proper learning designs.
  • Ganushchak, L. Y., & Acheson, D. J. (Eds.). (2014). What's to be learned from speaking aloud? - Advances in the neurophysiological measurement of overt language production. [Research topic] [Special Issue]. Frontiers in Language Sciences. Retrieved from http://www.frontiersin.org/Language_Sciences/researchtopics/What_s_to_be_Learned_from_Spea/1671.

    Abstract

    Researchers have long avoided neurophysiological experiments of overt speech production due to the suspicion that artifacts caused by muscle activity may lead to a bad signal-to-noise ratio in the measurements. However, the need to actually produce speech may influence earlier processing and qualitatively change speech production processes and what we can infer from neurophysiological measures thereof. Recently, however, overt speech has been successfully investigated using EEG, MEG, and fMRI. The aim of this Research Topic is to draw together recent research on the neurophysiological basis of language production, with the aim of developing and extending theoretical accounts of the language production process. In this Research Topic of Frontiers in Language Sciences, we invite both experimental and review papers, as well as those about the latest methods in acquisition and analysis of overt language production data. All aspects of language production are welcome: i.e., from conceptualization to articulation during native as well as multilingual language production. Focus should be placed on using the neurophysiological data to inform questions about the processing stages of language production. In addition, emphasis should be placed on the extent to which the identified components of the electrophysiological signal (e.g., ERP/ERF, neuronal oscillations, etc.), brain areas or networks are related to language comprehension and other cognitive domains. By bringing together electrophysiological and neuroimaging evidence on language production mechanisms, a more complete picture of the locus of language production processes and their temporal and neurophysiological signatures will emerge.
  • De Grauwe, S., Willems, R. M., Rüschemeyer, S.-A., Lemhöfer, K., & Schriefers, H. (2014). Embodied language in first- and second-language speakers: Neural correlates of processing motor verbs. Neuropsychologia, 56, 334-349. doi:10.1016/j.neuropsychologia.2014.02.003.

    Abstract

    The involvement of neural motor and sensory systems in the processing of language has so far mainly been studied in native (L1) speakers. In an fMRI experiment, we investigated whether non-native (L2) semantic representations are rich enough to allow for activation in motor and somatosensory brain areas. German learners of Dutch and a control group of Dutch native speakers made lexical decisions about visually presented Dutch motor and non-motor verbs. Region-of-interest (ROI) and whole-brain analyses indicated that L2 speakers, like L1 speakers, showed significantly increased activation for simple motor compared to non-motor verbs in motor and somatosensory regions. This effect was not restricted to Dutch-German cognate verbs, but was also present for non-cognate verbs. These results indicate that L2 semantic representations are rich enough for motor-related activations to develop in motor and somatosensory areas.
  • De Grauwe, S., Lemhöfer, K., Willems, R. M., & Schriefers, H. (2014). L2 speakers decompose morphologically complex verbs: fMRI evidence from priming of transparent derived verbs. Frontiers in Human Neuroscience, 8: 802. doi:10.3389/fnhum.2014.00802.

    Abstract

    In this functional magnetic resonance imaging (fMRI) long-lag priming study, we investigated the processing of Dutch semantically transparent, derived prefix verbs. In such words, the meaning of the word as a whole can be deduced from the meanings of its parts, e.g., wegleggen “put aside.” Many behavioral and some fMRI studies suggest that native (L1) speakers decompose transparent derived words. The brain region usually implicated in morphological decomposition is the left inferior frontal gyrus (LIFG). In non-native (L2) speakers, the processing of transparent derived words has hardly been investigated, especially in fMRI studies, and results are contradictory: some studies find more reliance on holistic (i.e., non-decompositional) processing by L2 speakers; some find no difference between L1 and L2 speakers. In this study, we wanted to find out whether Dutch transparent derived prefix verbs are decomposed or processed holistically by German L2 speakers of Dutch. Half of the derived verbs (e.g., omvallen “fall down”) were preceded by their stem (e.g., vallen “fall”) with a lag of 4–6 words (“primed”); the other half (e.g., inslapen “fall asleep”) were not (“unprimed”). L1 and L2 speakers of Dutch made lexical decisions on these visually presented verbs. Both region of interest analyses and whole-brain analyses showed that there was a significant repetition suppression effect for primed compared to unprimed derived verbs in the LIFG. This was true both for the analyses over L2 speakers only and for the analyses over the two language groups together. The latter did not reveal any interaction with language group (L1 vs. L2) in the LIFG. Thus, L2 speakers show a clear priming effect in the LIFG, an area that has been associated with morphological decomposition. Our findings are consistent with the idea that L2 speakers engage in decomposition of transparent derived verbs rather than processing them holistically

    Additional information

    Data Sheet 1.docx
  • Guadalupe, T., Willems, R. M., Zwiers, M., Arias Vasquez, A., Hoogman, M., Hagoort, P., Fernández, G., Buitelaar, J., Franke, B., Fisher, S. E., & Francks, C. (2014). Differences in cerebral cortical anatomy of left- and right-handers. Frontiers in Psychology, 5: 261. doi:10.3389/fpsyg.2014.00261.

    Abstract

    The left and right sides of the human brain are specialized for different kinds of information processing, and much of our cognition is lateralized to an extent towards one side or the other. Handedness is a reflection of nervous system lateralization. Roughly ten percent of people are mixed- or left-handed, and they show an elevated rate of reductions or reversals of some cerebral functional asymmetries compared to right-handers. Brain anatomical correlates of left-handedness have also been suggested. However, the relationships of left-handedness to brain structure and function remain far from clear. We carried out a comprehensive analysis of cortical surface area differences between 106 left-handed subjects and 1960 right-handed subjects, measured using an automated method of regional parcellation (FreeSurfer, Destrieux atlas). This is the largest study sample that has so far been used in relation to this issue. No individual cortical region showed an association with left-handedness that survived statistical correction for multiple testing, although there was a nominally significant association with the surface area of a previously implicated region: the left precentral sulcus. Identifying brain structural correlates of handedness may prove useful for genetic studies of cerebral asymmetries, as well as providing new avenues for the study of relations between handedness, cerebral lateralization and cognition.
  • Guadalupe, T., Zwiers, M. P., Teumer, A., Wittfeld, K., Arias Vasquez, A., Hoogman, M., Hagoort, P., Fernández, G., Buitelaar, J., Hegenscheid, K., Völzke, H., Franke, B., Fisher, S. E., Grabe, H. J., & Francks, C. (2014). Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets. Human Brain Mapping, 35(7), 3277-3289. doi:10.1002/hbm.22401.

    Abstract

    Functional and anatomical asymmetries are prevalent features of the human brain, linked to gender, handedness, and cognition. However, little is known about the neurodevelopmental processes involved. In zebrafish, asymmetries arise in the diencephalon before extending within the central nervous system. We aimed to identify genes involved in the development of subtle, left-right volumetric asymmetries of human subcortical structures using large datasets. We first tested the feasibility of measuring left-right volume differences in such large-scale samples, as assessed by two automated methods of subcortical segmentation (FSL|FIRST and FreeSurfer), using data from 235 subjects who had undergone MRI twice. We tested the agreement between the first and second scan, and the agreement between the segmentation methods, for measures of bilateral volumes of six subcortical structures and the hippocampus, and their volumetric asymmetries. We also tested whether there were biases introduced by left-right differences in the regional atlases used by the methods, by analyzing left-right flipped images. While many bilateral volumes were measured well (scan-rescan r = 0.6-0.8), most asymmetries, with the exception of the caudate nucleus, showed lower repeatabilites. We meta-analyzed genome-wide association scan results for caudate nucleus asymmetry in a combined sample of 3,028 adult subjects but did not detect associations at genome-wide significance (P < 5 × 10-8). There was no enrichment of genetic association in genes involved in left-right patterning of the viscera. Our results provide important information for researchers who are currently aiming to carry out large-scale genome-wide studies of subcortical and hippocampal volumes, and their asymmetries
  • Hagoort, P. (2014). Introduction to section on language and abstract thought. In M. S. Gazzaniga, & G. R. Mangun (Eds.), The cognitive neurosciences (5th ed., pp. 615-618). Cambridge, Mass: MIT Press.
  • Hagoort, P. (2014). Nodes and networks in the neural architecture for language: Broca's region and beyond. Current Opinion in Neurobiology, 28, 136-141. doi:10.1016/j.conb.2014.07.013.

    Abstract

    Current views on the neurobiological underpinnings of language are discussed that deviate in a number of ways from the classical Wernicke–Lichtheim–Geschwind model. More areas than Broca's and Wernicke's region are involved in language. Moreover, a division along the axis of language production and language comprehension does not seem to be warranted. Instead, for central aspects of language processing neural infrastructure is shared between production and comprehension. Three different accounts of the role of Broca's area in language are discussed. Arguments are presented in favor of a dynamic network view, in which the functionality of a region is co-determined by the network of regions in which it is embedded at particular moments in time. Finally, core regions of language processing need to interact with other networks (e.g. the attentional networks and the ToM network) to establish full functionality of language and communication.
  • Hagoort, P., & Levinson, S. C. (2014). Neuropragmatics. In M. S. Gazzaniga, & G. R. Mangun (Eds.), The cognitive neurosciences (5th ed., pp. 667-674). Cambridge, Mass: MIT Press.
  • Hagoort, P., & Indefrey, P. (2014). The neurobiology of language beyond single words. Annual Review of Neuroscience, 37, 347-362. doi:10.1146/annurev-neuro-071013-013847.

    Abstract

    A hallmark of human language is that we combine lexical building blocks retrieved from memory in endless new ways. This combinatorial aspect of language is referred to as unification. Here we focus on the neurobiological infrastructure for syntactic and semantic unification. Unification is characterized by a high-speed temporal profile including both prediction and integration of retrieved lexical elements. A meta-analysis of numerous neuroimaging studies reveals a clear dorsal/ventral gradient in both left inferior frontal cortex and left posterior temporal cortex, with dorsal foci for syntactic processing and ventral foci for semantic processing. In addition to core areas for unification, further networks need to be recruited to realize language-driven communication to its full extent. One example is the theory of mind network, which allows listeners and readers to infer the intended message (speaker meaning) from the coded meaning of the linguistic utterance. This indicates that sensorimotor simulation cannot handle all of language processing.
  • Heyselaar, E., Hagoort, P., & Segaert, K. (2014). In dialogue with an avatar, syntax production is identical compared to dialogue with a human partner. In P. Bello, M. Guarini, M. McShane, & B. Scassellati (Eds.), Proceedings of the 36th Annual Meeting of the Cognitive Science Society (CogSci 2014) (pp. 2351-2356). Austin, Tx: Cognitive Science Society.

    Abstract

    The use of virtual reality (VR) as a methodological tool is becoming increasingly popular in behavioural research due to its seemingly limitless possibilities. This new method has not been used frequently in the field of psycholinguistics, however, possibly due to the assumption that humancomputer interaction does not accurately reflect human-human interaction. In the current study we compare participants’ language behaviour in a syntactic priming task with human versus avatar partners. Our study shows comparable priming effects between human and avatar partners (Human: 12.3%; Avatar: 12.6% for passive sentences) suggesting that VR is a valid platform for conducting language research and studying dialogue interactions.
  • Holler, J., Schubotz, L., Kelly, S., Hagoort, P., Schuetze, M., & Ozyurek, A. (2014). Social eye gaze modulates processing of speech and co-speech gesture. Cognition, 133, 692-697. doi:10.1016/j.cognition.2014.08.008.

    Abstract

    In human face-to-face communication, language comprehension is a multi-modal, situated activity. However, little is known about how we combine information from different modalities during comprehension, and how perceived communicative intentions, often signaled through visual signals, influence this process. We explored this question by simulating a multi-party communication context in which a speaker alternated her gaze between two recipients. Participants viewed speech-only or speech + gesture object-related messages when being addressed (direct gaze) or unaddressed (gaze averted to other participant). They were then asked to choose which of two object images matched the speaker’s preceding message. Unaddressed recipients responded significantly more slowly than addressees for speech-only utterances. However, perceiving the same speech accompanied by gestures sped unaddressed recipients up to a level identical to that of addressees. That is, when unaddressed recipients’ speech processing suffers, gestures can enhance the comprehension of a speaker’s message. We discuss our findings with respect to two hypotheses attempting to account for how social eye gaze may modulate multi-modal language comprehension.
  • Junge, C., Cutler, A., & Hagoort, P. (2014). Successful word recognition by 10-month-olds given continuous speech both at initial exposure and test. Infancy, 19(2), 179-193. doi:10.1111/infa.12040.

    Abstract

    Most words that infants hear occur within fluent speech. To compile a vocabulary, infants therefore need to segment words from speech contexts. This study is the first to investigate whether infants (here: 10-month-olds) can recognize words when both initial exposure and test presentation are in continuous speech. Electrophysiological evidence attests that this indeed occurs: An increased extended negativity (word recognition effect) appears for familiarized target words relative to control words. This response proved constant at the individual level: Only infants who showed this negativity at test had shown such a response, within six repetitions after first occurrence, during familiarization.
  • Keller, K. L., Fritz, R. S., Zoubek, C. M., Kennedy, E. H., Cronin, K. A., Rothwell, E. S., & Serfass, T. L. (2014). Effects of transport on fecal glucocorticoid levels in captive-bred cotton-top tamarins (Saguinus oedipus). Journal of the Pennsylvania Academy of Science, 88(2), 84-88.

    Abstract

    The relocation of animals can induce stress when animals are placed in novel environmental conditions. The movement of captive animals among facilities is common, especially for non-human primates used in research. The stress response begins with the activation of the hypothalamic-pituitary-adrenal (HPA) axis which results in the release of glucocorticoid hormones (GC), which at chronic levels could lead to deleterious physiological effects. There is a substantial body of data concerning GC levels affecting reproduction, and rank and aggression in primates. However, the effect of transport has received much less attention. Fecal samples from eight (four male and four female) captive-bred cotton-top tamarins (Saguinus oedipus) were collected at four different time points (two pre-transport and two post-transport). The fecal samples were analyzed using an immunoassay to determine GC levels. A repeated measures analysis of variance (ANOVA) demonstrated that GC levels differed among transport times (p = 0.009), but not between sexes (p = 0.963). Five of the eight tamarins exhibited an increase in GC levels after transport. Seven of the eight tamarins exhibited a decrease in GC levels from three to six days post-transport to three weeks post-transport. Most values returned to pre-transport levels after three weeks. The results indicate that these tamarins experienced elevated GC levels following transport, but these increases were of short duration. This outcome would suggest that the negative effects of elevated GC levels were also of short duration.
  • Kok, P. (2014). On the role of expectation in visual perception: A top-down view of early visual cortex. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Kunert, R., & Scheepers, C. (2014). Speed and accuracy of dyslexic versus typical word recognition: An eye-movement investigation. Frontiers in Psychology, 5: 1129. doi:10.3389/fpsyg.2014.01129.

    Abstract

    Developmental dyslexia is often characterized by a dual deficit in both word recognition accuracy and general processing speed. While previous research into dyslexic word recognition may have suffered from speed-accuracy trade-off, the present study employed a novel eye-tracking task that is less prone to such confounds. Participants (10 dyslexics and 12 controls) were asked to look at real word stimuli, and to ignore simultaneously presented non-word stimuli, while their eye-movements were recorded. Improvements in word recognition accuracy over time were modeled in terms of a continuous non-linear function. The words' rhyme consistency and the non-words' lexicality (unpronounceable, pronounceable, pseudohomophone) were manipulated within-subjects. Speed-related measures derived from the model fits confirmed generally slower processing in dyslexics, and showed a rhyme consistency effect in both dyslexics and controls. In terms of overall error rate, dyslexics (but not controls) performed less accurately on rhyme-inconsistent words, suggesting a representational deficit for such words in dyslexics. Interestingly, neither group showed a pseudohomophone effect in speed or accuracy, which might call the task-independent pervasiveness of this effect into question. The present results illustrate the importance of distinguishing between speed- vs. accuracy-related effects for our understanding of dyslexic word recognition

    Additional information

    Kunert_Data Sheet 1.DOCX
  • Lai, V. T., Garrido Rodriguez, G., & Narasimhan, B. (2014). Thinking-for-speaking in early and late bilinguals. Bilingualism: Language and Cognition, 17, 139-152. doi:10.1017/S1366728913000151.

    Abstract

    When speakers describe motion events using different languages, they subsequently classify those events in language-specific ways (Gennari, Sloman, Malt & Fitch, 2002). Here we ask if bilingual speakers flexibly shift their event classification preferences based on the language in which they verbally encode those events. English–Spanish bilinguals and monolingual controls described motion events in either Spanish or English. Subsequently they judged the similarity of the motion events in a triad task. Bilinguals tested in Spanish and Spanish monolinguals were more likely to make similarity judgments based on the path of motion versus bilinguals tested in English and English monolinguals. The effect is modulated in bilinguals by the age of acquisition of the second language. Late bilinguals based their judgments on path more often when Spanish was used to describe the motion events versus English. Early bilinguals had a path preference independent of the language in use. These findings support “thinking-for-speaking” (Slobin, 1996) in late bilinguals.
  • Levy, J., Hagoort, P., & Démonet, J.-F. (2014). A neuronal gamma oscillatory signature during morphological unification in the left occipitotemporal junction. Human Brain Mapping, 35, 5847-5860. doi:10.1002/hbm.22589.

    Abstract

    Morphology is the aspect of language concerned with the internal structure of words. In the past decades, a large body of masked priming (behavioral and neuroimaging) data has suggested that the visual word recognition system automatically decomposes any morphologically complex word into a stem and its constituent morphemes. Yet the reliance of morphology on other reading processes (e.g., orthography and semantics), as well as its underlying neuronal mechanisms are yet to be determined. In the current magnetoencephalography study, we addressed morphology from the perspective of the unification framework, that is, by applying the Hold/Release paradigm, morphological unification was simulated via the assembly of internal morphemic units into a whole word. Trials representing real words were divided into words with a transparent (true) or a nontransparent (pseudo) morphological relationship. Morphological unification of truly suffixed words was faster and more accurate and additionally enhanced induced oscillations in the narrow gamma band (60–85 Hz, 260–440 ms) in the left posterior occipitotemporal junction. This neural signature could not be explained by a mere automatic lexical processing (i.e., stem perception), but more likely it related to a semantic access step during the morphological unification process. By demonstrating the validity of unification at the morphological level, this study contributes to the vast empirical evidence on unification across other language processes. Furthermore, we point out that morphological unification relies on the retrieval of lexical semantic associations via induced gamma band oscillations in a cerebral hub region for visual word form processing.
  • Lüttjohann, A., Schoffelen, J.-M., & Van Luijtelaar, G. (2014). Termination of ongoing spike-wave discharges investigated by cortico-thalamic network analyses. Neurobiology of Disease, 70, 127-137. doi:10.1016/j.nbd.2014.06.007.

    Abstract

    Purpose While decades of research were devoted to study generation mechanisms of spontaneous spike and wave discharges (SWD), little attention has been paid to network mechanisms associated with the spontaneous termination of SWD. In the current study coupling-dynamics at the onset and termination of SWD were studied in an extended part of the cortico-thalamo-cortical system of freely moving, genetic absence epileptic WAG/Rij rats. Methods Local-field potential recordings of 16 male WAG/Rij rats, equipped with multiple electrodes targeting layer 4 to 6 of the somatosensory-cortex (ctx4, ctx5, ctx6), rostral and caudal reticular thalamic nucleus (rRTN & cRTN), Ventral Postero Medial (VPM), anterior- (ATN) and posterior (Po) thalamic nucleus, were obtained. Six seconds lasting pre-SWD->SWD, SWD->post SWD and control periods were analyzed with time-frequency methods and between-region interactions were quantified with frequencyresolved Granger Causality (GC) analysis. Results Most channel-pairs showed increases in GC lasting from onset to offset of the SWD. While for most thalamo-thalamic pairs a dominant coupling direction was found during the complete SWD, most cortico-thalamic pairs only showed a dominant directional drive (always from cortex to thalamus) during the first 500ms of SWD. Channel-pair ctx4-rRTN showed a longer lasting dominant cortical drive, which stopped 1.5 sec prior to SWD offset. This early decrease in directional coupling was followed by an increase in directional coupling from cRTN to rRTN 1 sec prior to SWD offset. For channel pairs ctx5-Po and ctx6-Po the heightened cortex->thalamus coupling remained until 1.5 sec following SWD offset, while the thalamus->cortex coupling for these pairs stopped at SWD offset. Conclusion The high directional coupling from somatosensory cortex to the thalamus at SWD onset is in good agreement with the idea of a cortical epileptic focus that initiates and entrains other brain structures into seizure activity. The decrease of cortex to rRTN coupling as well as the increased coupling from cRTN to rRTN preceding SWD termination demonstrate that SWD termination is a gradual process that involves both cortico-thalamic as well as intrathalamic processes. The rostral RTN seems to be an important resonator for SWD and relevant for maintenance, while the cRTN might inhibit this oscillation. The somatosensory cortex seems to attempt to reinitiate SWD following its offset via its strong coupling to the posterior thalamus.
  • Magyari, L., Bastiaansen, M. C. M., De Ruiter, J. P., & Levinson, S. C. (2014). Early anticipation lies behind the speed of response in conversation. Journal of Cognitive Neuroscience, 26(11), 2530-2539. doi:10.1162/jocn_a_00673.

    Abstract

    RTs in conversation, with average gaps of 200 msec and often less, beat standard RTs, despite the complexity of response and the lag in speech production (600 msec or more). This can only be achieved by anticipation of timing and content of turns in conversation, about which little is known. Using EEG and an experimental task with conversational stimuli, we show that estimation of turn durations are based on anticipating the way the turn would be completed. We found a neuronal correlate of turn-end anticipation localized in ACC and inferior parietal lobule, namely a beta-frequency desynchronization as early as 1250 msec, before the end of the turn. We suggest that anticipation of the other's utterance leads to accurately timed transitions in everyday conversations.
  • Pacheco, A., Araújo, S., Faísca, L., de Castro, S. L., Petersson, K. M., & Reis, A. (2014). Dyslexia's heterogeneity: Cognitive profiling of Portuguese children with dyslexia. Reading and Writing, 27(9), 1529-1545. doi:10.1007/s11145-014-9504-5.

    Abstract

    Recent studies have emphasized that developmental dyslexia is a multiple-deficit disorder, in contrast to the traditional single-deficit view. In this context, cognitive profiling of children with dyslexia may be a relevant contribution to this unresolved discussion. The aim of this study was to profile 36 Portuguese children with dyslexia from the 2nd to 5th grade. Hierarchical cluster analysis was used to group participants according to their phonological awareness, rapid automatized naming, verbal short-term memory, vocabulary, and nonverbal intelligence abilities. The results suggested a two-cluster solution: a group with poorer performance on phoneme deletion and rapid automatized naming compared with the remaining variables (Cluster 1) and a group characterized by underperforming on the variables most related to phonological processing (phoneme deletion and digit span), but not on rapid automatized naming (Cluster 2). Overall, the results seem more consistent with a hybrid perspective, such as that proposed by Pennington and colleagues (2012), for understanding the heterogeneity of dyslexia. The importance of characterizing the profiles of individuals with dyslexia becomes clear within the context of constructing remediation programs that are specifically targeted and are more effective in terms of intervention outcome.

    Additional information

    11145_2014_9504_MOESM1_ESM.doc
  • Peeters, D., Runnqvist, E., Bertrand, D., & Grainger, J. (2014). Asymmetrical switch costs in bilingual language production induced by reading words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(1), 284-292. doi:10.1037/a0034060.

    Abstract

    We examined language-switching effects in French–English bilinguals using a paradigm where pictures are always named in the same language (either French or English) within a block of trials, and on each trial, the picture is preceded by a printed word from the same language or from the other language. Participants had to either make a language decision on the word or categorize it as an animal name or not. Picture-naming latencies in French (Language 1 [L1]) were slower when pictures were preceded by an English word than by a French word, independently of the task performed on the word. There were no language-switching effects when pictures were named in English (L2). This pattern replicates asymmetrical switch costs found with the cued picture-naming paradigm and shows that the asymmetrical pattern can be obtained (a) in the absence of artificial (nonlinguistic) language cues, (b) when the switch involves a shift from comprehension in 1 language to production in another, and (c) when the naming language is blocked (univalent response). We concluded that language switch costs in bilinguals cannot be reduced to effects driven by task control or response-selection mechanisms.
  • Peeters, D., Azar, Z., & Ozyurek, A. (2014). The interplay between joint attention, physical proximity, and pointing gesture in demonstrative choice. In P. Bello, M. Guarini, M. McShane, & B. Scassellati (Eds.), Proceedings of the 36th Annual Meeting of the Cognitive Science Society (CogSci 2014) (pp. 1144-1149). Austin, Tx: Cognitive Science Society.
  • Peeters, D., & Dresler, M. (2014). The scientific significance of sleep-talking. Frontiers for Young Minds, 2(9). Retrieved from http://kids.frontiersin.org/articles/24/the_scientific_significance_of_sleep_talking/.

    Abstract

    Did one of your parents, siblings, or friends ever tell you that you were talking in your sleep? Nothing to be ashamed of! A recent study found that more than half of all people have had the experience of speaking out loud while being asleep [1]. This might even be underestimated, because often people do not notice that they are sleep-talking, unless somebody wakes them up or tells them the next day. Most neuroscientists, linguists, and psychologists studying language are interested in our language production and language comprehension skills during the day. In the present article, we will explore what is known about the production of overt speech during the night. We suggest that the study of sleep-talking may be just as interesting and informative as the study of wakeful speech.
  • Piai, V., Roelofs, A., Jensen, O., Schoffelen, J.-M., & Bonnefond, M. (2014). Distinct patterns of brain activity characterise lexical activation and competition in spoken word production. PLoS One, 9(2): e88674. doi:10.1371/journal.pone.0088674.

    Abstract

    According to a prominent theory of language production, concepts activate multiple associated words in memory, which enter into competition for selection. However, only a few electrophysiological studies have identified brain responses reflecting competition. Here, we report a magnetoencephalography study in which the activation of competing words was manipulated by presenting pictures (e.g., dog) with distractor words. The distractor and picture name were semantically related (cat), unrelated (pin), or identical (dog). Related distractors are stronger competitors to the picture name because they receive additional activation from the picture relative to other distractors. Picture naming times were longer with related than unrelated and identical distractors. Phase-locked and non-phase-locked activity were distinct but temporally related. Phase-locked activity in left temporal cortex, peaking at 400 ms, was larger on unrelated than related and identical trials, suggesting differential activation of alternative words by the picture-word stimuli. Non-phase-locked activity between roughly 350–650 ms (4–10 Hz) in left superior frontal gyrus was larger on related than unrelated and identical trials, suggesting differential resolution of the competition among the alternatives, as reflected in the naming times. These findings characterise distinct patterns of activity associated with lexical activation and competition, supporting the theory that words are selected by competition.
  • Schoffelen, J.-M., & Gross, J. (2014). Studying dynamic neural interactions with MEG. In S. Supek, & C. J. Aine (Eds.), Magnetoencephalography: From signals to dynamic cortical networks (pp. 405-427). Berlin: Springer.

Share this page