Publications

Displaying 1 - 3 of 3
  • Duarte, R., Uhlmann, M., Van den Broek, D., Fitz, H., Petersson, K. M., & Morrison, A. (2018). Encoding symbolic sequences with spiking neural reservoirs. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN). doi:10.1109/IJCNN.2018.8489114.

    Abstract

    Biologically inspired spiking networks are an important tool to study the nature of computation and cognition in neural systems. In this work, we investigate the representational capacity of spiking networks engaged in an identity mapping task. We compare two schemes for encoding symbolic input, one in which input is injected as a direct current and one where input is delivered as a spatio-temporal spike pattern. We test the ability of networks to discriminate their input as a function of the number of distinct input symbols. We also compare performance using either membrane potentials or filtered spike trains as state variable. Furthermore, we investigate how the circuit behavior depends on the balance between excitation and inhibition, and the degree of synchrony and regularity in its internal dynamics. Finally, we compare different linear methods of decoding population activity onto desired target labels. Overall, our results suggest that even this simple mapping task is strongly influenced by design choices on input encoding, state-variables, circuit characteristics and decoding methods, and these factors can interact in complex ways. This work highlights the importance of constraining computational network models of behavior by available neurobiological evidence.
  • Ergin, R., Senghas, A., Jackendoff, R., & Gleitman, L. (2018). Structural cues for symmetry, asymmetry, and non-symmetry in Central Taurus Sign Language. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 104-106). ToruĊ„, Poland: NCU Press. doi:10.12775/3991-1.025.
  • Lopopolo, A., Frank, S. L., Van den Bosch, A., Nijhof, A., & Willems, R. M. (2018). The Narrative Brain Dataset (NBD), an fMRI dataset for the study of natural language processing in the brain. In B. Devereux, E. Shutova, & C.-R. Huang (Eds.), Proceedings of LREC 2018 Workshop "Linguistic and Neuro-Cognitive Resources (LiNCR) (pp. 8-11). Paris: LREC.

    Abstract

    We present the Narrative Brain Dataset, an fMRI dataset that was collected during spoken presentation of short excerpts of three stories in Dutch. Together with the brain imaging data, the dataset contains the written versions of the stimulation texts. The texts are accompanied with stochastic (perplexity and entropy) and semantic computational linguistic measures. The richness and unconstrained nature of the data allows the study of language processing in the brain in a more naturalistic setting than is common for fMRI studies. We hope that by making NBD available we serve the double purpose of providing useful neural data to researchers interested in natural language processing in the brain and to further stimulate data sharing in the field of neuroscience of language.

Share this page