Publications

Displaying 901 - 909 of 909
  • Xiang, H., Van Leeuwen, T. M., Dediu, D., Roberts, L., Norris, D. G., & Hagoort, P. (2015). L2-proficiency-dependent laterality shift in structural connectivity of brain language pathways. Brain Connectivity, 5(6), 349-361. doi:10.1089/brain.2013.0199.

    Abstract

    Diffusion tensor imaging (DTI) and a longitudinal language learning approach were applied to investigate the relationship between the achieved second language (L2) proficiency during L2 learning and the reorganization of structural connectivity between core language areas. Language proficiency tests and DTI scans were obtained from German students before and after they completed an intensive 6-week course of the Dutch language. In the initial learning stage, with increasing L2 proficiency, the hemispheric dominance of the BA6-temporal pathway (mainly along the arcuate fasciculus) shifted from the left to the right hemisphere. With further increased proficiency, however, lateralization dominance was again found in the left BA6-temporal pathway. This result is consistent with reports in the literature that imply a stronger involvement of the right hemisphere in L2-processing especially for less proficient L2-speakers. This is the first time that a L2-proficiency-dependent laterality shift in structural connectivity of language pathways during L2 acquisition has been observed to shift from left to right, and back to left hemisphere dominance with increasing L2-proficiency. We additionally find that changes in fractional anisotropy values after the course are related to the time elapsed between the two scans. The results suggest that structural connectivity in (at least part of) the perisylvian language network may be subject to fast dynamic changes following language learning
  • Yang, Y., Dai, B., Howell, P., Wang, X., Li, K., & Lu, C. (2014). White and Grey Matter Changes in the Language Network during Healthy Aging. PLoS One, 9(9): e108077. doi: 10.1371/journal.pone.0108077.

    Abstract

    Neural structures change with age but there is no consensus on the exact processes involved. This study tested the hypothesis that white and grey matter in the language network changes during aging according to a “last in, first out” process. The fractional anisotropy (FA) of white matter and cortical thickness of grey matter were measured in 36 participants whose ages ranged from 55 to 79 years. Within the language network, the dorsal pathway connecting the mid-to-posterior superior temporal cortex (STC) and the inferior frontal cortex (IFC) was affected more by aging in both FA and thickness than the other dorsal pathway connecting the STC with the premotor cortex and the ventral pathway connecting the mid-to-anterior STC with the ventral IFC. These results were independently validated in a second group of 20 participants whose ages ranged from 50 to 73 years. The pathway that is most affected during aging matures later than the other two pathways (which are present at birth). The results are interpreted as showing that the neural structures which mature later are affected more than those that mature earlier, supporting the “last in, first out” theory.
  • Zeshan, U. (2003). Aspects of Türk Işaret Dili (Turkish Sign Language). Sign Language and Linguistics, 6(1), 43-75. doi:10.1075/sll.6.1.04zes.

    Abstract

    This article provides a first overview of some striking grammatical structures in Türk Idotscedilaret Dili (Turkish Sign Language, TID), the sign language used by the Deaf community in Turkey. The data are described with a typological perspective in mind, focusing on aspects of TID grammar that are typologically unusual across sign languages. After giving an overview of the historical, sociolinguistic and educational background of TID and the language community using this sign language, five domains of TID grammar are investigated in detail. These include a movement derivation signalling completive aspect, three types of nonmanual negation — headshake, backward head tilt, and puffed cheeks — and their distribution, cliticization of the negator NOT to a preceding predicate host sign, an honorific whole-entity classifier used to refer to humans, and a question particle, its history and current status in the language. A final evaluation points out the significance of these data for sign language research and looks at perspectives for a deeper understanding of the language and its history.
  • Zhao, H., Zhou, W., Yao, Z., Wan, Y., Cao, J., Zhang, L., Zhao, J., Li, H., Zhou, R., Li, B., Wei, G., Zhang, Z., French, C. A., Dekker, J. D., Yang, Y., Fisher, S. E., Tucker, H. O., & Guo, X. (2015). Foxp1/2/4 regulate endochondral ossification as a suppresser complex. Developmental Biology, 398, 242-254. doi:10.1016/j.ydbio.2014.12.007.

    Abstract

    Osteoblast induction and differentiation in developing long bones is dynamically controlled by the opposing action of transcriptional activators and repressors. In contrast to the long list of activators that have been discovered over past decades, the network of repressors is not well-defined. Here we identify the expression of Foxp1/2/4 proteins, comprised of Forkhead-box (Fox) transcription factors of the Foxp subfamily, in both perichondrial skeletal progenitors and proliferating chondrocytes during endochondral ossification. Mice carrying loss-of-function and gain-of-function Foxp mutations had gross defects in appendicular skeleton formation. At the cellular level, over-expression of Foxp1/2/4 in chondroctyes abrogated osteoblast formation and chondrocyte hypertrophy. Conversely, single or compound deficiency of Foxp1/2/4 in skeletal progenitors or chondrocytes resulted in premature osteoblast differentiation in the perichondrium, coupled with impaired proliferation, survival, and hypertrophy of chondrocytes in the growth plate. Foxp1/2/4 and Runx2 proteins interacted in vitro and in vivo, and Foxp1/2/4 repressed Runx2 transactivation function in heterologous cells. This study establishes Foxp1/2/4 proteins as coordinators of osteogenesis and chondrocyte hypertrophy in developing long bones and suggests that a novel transcriptional repressor network involving Foxp1/2/4 may regulate Runx2 during endochondral ossification.
  • Zhen, Z., Yang, Z., Huang, L., Kong, X., Wang, X., Dang, X., Huang, Y., Song, Y., & Liu, J. (2015). Quantifying interindividual variability and asymmetry of face-selective regions: A probabilistic functional atlas. NeuroImage, 113, 13-25. doi:10.1016/j.neuroimage.2015.03.010.

    Abstract

    Face-selective regions (FSRs) are among the most widely studied functional regions in the human brain. However, individual variability of the FSRs has not been well quantified. Here we use functional magnetic resonance imaging (fMRI) to localize the FSRs and quantify their spatial and functional variabilities in 202 healthy adults. The occipital face area (OFA), posterior and anterior fusiform face areas (pFFA and aFFA), posterior continuation of the superior temporal sulcus (pcSTS), and posterior and anterior STS (pSTS and aSTS) were delineated for each individual with a semi-automated procedure. A probabilistic atlas was constructed to characterize their interindividual variability, revealing that the FSRs were highly variable in location and extent across subjects. The variability of FSRs was further quantified on both functional (i.e., face selectivity) and spatial (i.e., volume, location of peak activation, and anatomical location) features. Considerable interindividual variability and rightward asymmetry were found in all FSRs on these features. Taken together, our work presents the first effort to characterize comprehensively the variability of FSRs in a large sample of healthy subjects, and invites future work on the origin of the variability and its relation to individual differences in behavioral performance. Moreover, the probabilistic functional atlas will provide an adequate spatial reference for mapping the face network.
  • Ziegler, A., DeStefano, A. L., König, I. R., Bardel, C., Brinza, D., Bull, S., Cai, Z., Glaser, B., Jiang, W., Lee, K. E., Li, C. X., Li, J., Li, X., Majoram, P., Meng, Y., Nicodemus, K. K., Platt, A., Schwarz, D. F., Shi, W., Shugart, Y. Y. and 7 moreZiegler, A., DeStefano, A. L., König, I. R., Bardel, C., Brinza, D., Bull, S., Cai, Z., Glaser, B., Jiang, W., Lee, K. E., Li, C. X., Li, J., Li, X., Majoram, P., Meng, Y., Nicodemus, K. K., Platt, A., Schwarz, D. F., Shi, W., Shugart, Y. Y., Stassen, H. H., Sun, Y. V., Won, S., Wang, W., Wahba, G., Zagaar, U. A., & Zhao, Z. (2007). Data mining, neural nets, trees–problems 2 and 3 of Genetic Analysis Workshop 15. Genetic Epidemiology, 31(Suppl 1), S51-S60. doi:10.1002/gepi.20280.

    Abstract

    Genome-wide association studies using thousands to hundreds of thousands of single nucleotide polymorphism (SNP) markers and region-wide association studies using a dense panel of SNPs are already in use to identify disease susceptibility genes and to predict disease risk in individuals. Because these tasks become increasingly important, three different data sets were provided for the Genetic Analysis Workshop 15, thus allowing examination of various novel and existing data mining methods for both classification and identification of disease susceptibility genes, gene by gene or gene by environment interaction. The approach most often applied in this presentation group was random forests because of its simplicity, elegance, and robustness. It was used for prediction and for screening for interesting SNPs in a first step. The logistic tree with unbiased selection approach appeared to be an interesting alternative to efficiently select interesting SNPs. Machine learning, specifically ensemble methods, might be useful as pre-screening tools for large-scale association studies because they can be less prone to overfitting, can be less computer processor time intensive, can easily include pair-wise and higher-order interactions compared with standard statistical approaches and can also have a high capability for classification. However, improved implementations that are able to deal with hundreds of thousands of SNPs at a time are required.
  • Zora, H., Schwarz, I.-C., & Heldner, M. (2015). Neural correlates of lexical stress: Mismatch negativity reflects fundamental frequency and intensity. NeuroReport, 26(13), 791-796. doi:10.1097/WNR.0000000000000426.

    Abstract

    Neural correlates of lexical stress were studied using the mismatch negativity (MMN) component in event-related potentials. The MMN responses were expected to reveal the encoding of stress information into long-term memory and the contributions of prosodic features such as fundamental frequency (F0) and intensity toward lexical access. In a passive oddball paradigm, neural responses to changes in F0, intensity, and in both features together were recorded for words and pseudowords. The findings showed significant differences not only between words and pseudowords but also between prosodic features. Early processing of prosodic information in words was indexed by an intensity-related MMN and an F0-related P200. These effects were stable at right-anterior and mid-anterior regions. At a later latency, MMN responses were recorded for both words and pseudowords at the mid-anterior and posterior regions. The P200 effect observed for F0 at the early latency for words developed into an MMN response. Intensity elicited smaller MMN for pseudowords than for words. Moreover, a larger brain area was recruited for the processing of words than for the processing of pseudowords. These findings suggest earlier and higher sensitivity to prosodic changes in words than in pseudowords, reflecting a language-related process. The present study, therefore, not only establishes neural correlates of lexical stress but also confirms the presence of long-term memory traces for prosodic information in the brain.
  • De Zubicaray, G. I., Hartsuiker, R. J., & Acheson, D. J. (2014). Mind what you say—general and specific mechanisms for monitoring in speech production. Frontiers in Human Neuroscience, 8: 514. doi:10.3389%2Ffnhum.2014.00514.

    Abstract

    For most people, speech production is relatively effortless and error-free. Yet it has long been recognized that we need some type of control over what we are currently saying and what we plan to say. Precisely how we monitor our internal and external speech has been a topic of research interest for several decades. The predominant approach in psycholinguistics has assumed monitoring of both is accomplished via systems responsible for comprehending others' speech.

    This special topic aimed to broaden the field, firstly by examining proposals that speech production might also engage more general systems, such as those involved in action monitoring. A second aim was to examine proposals for a production-specific, internal monitor. Both aims require that we also specify the nature of the representations subject to monitoring.
  • Zumer, J. M., Scheeringa, R., Schoffelen, J.-M., Norris, D. G., & Jensen, O. (2014). Occipital alpha activity during stimulus processing gates the information flow to object-selective cortex. PLoS Biology, 12(10): e1001965. doi:10.1371/journal.pbio.1001965.

    Abstract

    Given the limited processing capabilities of the sensory system, it is essential that attended information is gated to downstream areas, whereas unattended information is blocked. While it has been proposed that alpha band (8–13 Hz) activity serves to route information to downstream regions by inhibiting neuronal processing in task-irrelevant regions, this hypothesis remains untested. Here we investigate how neuronal oscillations detected by electroencephalography in visual areas during working memory encoding serve to gate information reflected in the simultaneously recorded blood-oxygenation-level-dependent (BOLD) signals recorded by functional magnetic resonance imaging in downstream ventral regions. We used a paradigm in which 16 participants were presented with faces and landscapes in the right and left hemifields; one hemifield was attended and the other unattended. We observed that decreased alpha power contralateral to the attended object predicted the BOLD signal representing the attended object in ventral object-selective regions. Furthermore, increased alpha power ipsilateral to the attended object predicted a decrease in the BOLD signal representing the unattended object. We also found that the BOLD signal in the dorsal attention network inversely correlated with visual alpha power. This is the first demonstration, to our knowledge, that oscillations in the alpha band are implicated in the gating of information from the visual cortex to the ventral stream, as reflected in the representationally specific BOLD signal. This link of sensory alpha to downstream activity provides a neurophysiological substrate for the mechanism of selective attention during stimulus processing, which not only boosts the attended information but also suppresses distraction. Although previous studies have shown a relation between the BOLD signal from the dorsal attention network and the alpha band at rest, we demonstrate such a relation during a visuospatial task, indicating that the dorsal attention network exercises top-down control of visual alpha activity.

Share this page