Anne Cutler †

Publications

Displaying 1 - 32 of 32
  • Cutler, A., & Jesse, A. (2021). Word stress in speech perception. In J. S. Pardo, L. C. Nygaard, & D. B. Pisoni (Eds.), The handbook of speech perception (2nd ed., pp. 239-265). Chichester: Wiley.
  • Cutler, A., Aslin, R. N., Gervain, J., & Nespor, M. (2021). Special issue in honor of Jacques Mehler, Cognition's founding editor [preface]. Cognition, 213: 104786. doi:10.1016/j.cognition.2021.104786.
  • Kember, H., Choi, J., Yu, J., & Cutler, A. (2021). The processing of linguistic prominence. Language and Speech, 64(2), 413-436. doi:10.1177/0023830919880217.

    Abstract

    Prominence, the expression of informational weight within utterances, can be signaled by
    prosodic highlighting (head-prominence, as in English) or by position (as in Korean edge-prominence).
    Prominence confers processing advantages, even if conveyed only by discourse manipulations. Here
    we compared processing of prominence in English and Korean, using a task that indexes processing
    success, namely recognition memory. In each language, participants’ memory was tested for target
    words heard in sentences in which they were prominent due to prosody, position, both or neither.
    Prominence produced recall advantage, but the relative effects differed across language. For Korean
    listeners the positional advantage was greater, but for English listeners prosodic and syntactic
    prominence had equivalent and additive effects. In a further experiment semantic and phonological
    foils tested depth of processing of the recall targets. Both foil types were correctly rejected,
    suggesting that semantic processing had not reached the level at which word form was no longer
    available. Together the results suggest that prominence processing is primarily driven by universal
    effects of information structure; but language-specific differences in frequency of experience prompt
    different relative advantages of prominence signal types. Processing efficiency increases in each case,
    however, creating more accurate and more rapidly contactable memory representations.
  • Norris, D., & Cutler, A. (2021). More why, less how: What we need from models of cognition. Cognition, 213: 104688. doi:10.1016/j.cognition.2021.104688.

    Abstract

    Science regularly experiences periods in which simply describing the world is prioritised over attempting to explain it. Cognition, this journal, came into being some 45 years ago as an attempt to lay one such period to rest; without doubt, it has helped create the current cognitive science climate in which theory is decidedly welcome. Here we summarise the reasons why a theoretical approach is imperative in our field, and call attention to some potentially counter-productive trends in which cognitive models are concerned too exclusively with how processes work at the expense of why the processes exist in the first place and thus what the goal of modelling them must be.
  • Zhou, W., Broersma, M., & Cutler, A. (2021). Asymmetric memory for birth language perception versus production in young international adoptees. Cognition, 213: 104788. doi:10.1016/j.cognition.2021.104788.

    Abstract

    Adults who as children were adopted into a different linguistic community retain knowledge of their birth language. The possession (without awareness) of such knowledge is known to facilitate the (re)learning of birth-language speech patterns; this perceptual learning predicts such adults' production success as well, indicating that the retained linguistic knowledge is abstract in nature. Adoptees' acquisition of their adopted language is fast and complete; birth-language mastery disappears rapidly, although this latter process has been little studied. Here, 46 international adoptees from China aged four to 10 years, with Dutch as their new language, plus 47 matched non-adopted Dutch-native controls and 40 matched non-adopted Chinese controls, undertook across a two-week period 10 blocks of training in perceptually identifying Chinese speech contrasts (one segmental, one tonal) which were unlike any Dutch contrasts. Chinese controls easily accomplished all these tasks. The same participants also provided speech production data in an imitation task. In perception, adoptees and Dutch controls scored equivalently poorly at the outset of training; with training, the adoptees significantly improved while the Dutch controls did not. In production, adoptees' imitations both before and after training could be better identified, and received higher goodness ratings, than those of Dutch controls. The perception results confirm that birth-language knowledge is stored and can facilitate re-learning in post-adoption childhood; the production results suggest that although processing of phonological category detail appears to depend on access to the stored knowledge, general articulatory dimensions can at this age also still be remembered, and may facilitate spoken imitation.

    Additional information

    stimulus materials
  • Choi, J., Broersma, M., & Cutler, A. (2018). Phonetic learning is not enhanced by sequential exposure to more than one language. Linguistic Research, 35(3), 567-581. doi:10.17250/khisli.35.3.201812.006.

    Abstract

    Several studies have documented that international adoptees, who in early years have
    experienced a change from a language used in their birth country to a new language
    in an adoptive country, benefit from the limited early exposure to the birth language
    when relearning that language’s sounds later in life. The adoptees’ relearning advantages
    have been argued to be conferred by lasting birth-language knowledge obtained from
    the early exposure. However, it is also plausible to assume that the advantages may
    arise from adoptees’ superior ability to learn language sounds in general, as a result
    of their unusual linguistic experience, i.e., exposure to multiple languages in sequence
    early in life. If this is the case, then the adoptees’ relearning benefits should generalize
    to previously unheard language sounds, rather than be limited to their birth-language
    sounds. In the present study, adult Korean adoptees in the Netherlands and matched
    Dutch-native controls were trained on identifying a Japanese length distinction to which
    they had never been exposed before. The adoptees and Dutch controls did not differ
    on any test carried out before, during, or after the training, indicating that observed
    adoptee advantages for birth-language relearning do not generalize to novel, previously
    unheard language sounds. The finding thus fails to support the suggestion that
    birth-language relearning advantages may arise from enhanced ability to learn language
    sounds in general conferred by early experience in multiple languages. Rather, our
    finding supports the original contention that such advantages involve memory traces
    obtained before adoption
  • Cutler, A., & Farrell, J. (2018). Listening in first and second language. In J. I. Liontas (Ed.), The TESOL encyclopedia of language teaching. New York: Wiley. doi:10.1002/9781118784235.eelt0583.

    Abstract

    Listeners' recognition of spoken language involves complex decoding processes: The continuous speech stream must be segmented into its component words, and words must be recognized despite great variability in their pronunciation (due to talker differences, or to influence of phonetic context, or to speech register) and despite competition from many spuriously present forms supported by the speech signal. L1 listeners deal more readily with all levels of this complexity than L2 listeners. Fortunately, the decoding processes necessary for competent L2 listening can be taught in the classroom. Evidence-based methodologies targeted at the development of efficient speech decoding include teaching of minimal pairs, of phonotactic constraints, and of reduction processes, as well as the use of dictation and L2 video captions.
  • Johnson, E. K., Bruggeman, L., & Cutler, A. (2018). Abstraction and the (misnamed) language familiarity effect. Cognitive Science, 42, 633-645. doi:10.1111/cogs.12520.

    Abstract

    Talkers are recognized more accurately if they are speaking the listeners’ native language rather than an unfamiliar language. This “language familiarity effect” has been shown not to depend upon comprehension and must instead involve language sound patterns. We further examine the level of sound-pattern processing involved, by comparing talker recognition in foreign languages versus two varieties of English, by (a) English speakers of one variety, (b) English speakers of the other variety, and (c) non-native listeners (more familiar with one of the varieties). All listener groups performed better with native than foreign speech, but no effect of language variety appeared: Native listeners discriminated talkers equally well in each, with the native variety never outdoing the other variety, and non-native listeners discriminated talkers equally poorly in each, irrespective of the variety's familiarity. The results suggest that this talker recognition effect rests not on simple familiarity, but on an abstract level of phonological processing
  • Kidd, E., Junge, C., Spokes, T., Morrison, L., & Cutler, A. (2018). Individual differences in infant speech segmentation: Achieving the lexical shift. Infancy, 23(6), 770-794. doi:10.1111/infa.12256.

    Abstract

    We report a large‐scale electrophysiological study of infant speech segmentation, in which over 100 English‐acquiring 9‐month‐olds were exposed to unfamiliar bisyllabic words embedded in sentences (e.g., He saw a wild eagle up there), after which their brain responses to either the just‐familiarized word (eagle) or a control word (coral) were recorded. When initial exposure occurs in continuous speech, as here, past studies have reported that even somewhat older infants do not reliably recognize target words, but that successful segmentation varies across children. Here, we both confirm and further uncover the nature of this variation. The segmentation response systematically varied across individuals and was related to their vocabulary development. About one‐third of the group showed a left‐frontally located relative negativity in response to familiar versus control targets, which has previously been described as a mature response. Another third showed a similarly located positive‐going reaction (a previously described immature response), and the remaining third formed an intermediate grouping that was primarily characterized by an initial response delay. A fine‐grained group‐level analysis suggested that a developmental shift to a lexical mode of processing occurs toward the end of the first year, with variation across individual infants in the exact timing of this shift.

    Additional information

    supporting information
  • Norris, D., McQueen, J. M., & Cutler, A. (2018). Commentary on “Interaction in spoken word recognition models". Frontiers in Psychology, 9: 1568. doi:10.3389/fpsyg.2018.01568.
  • Cutler, A. (2015). Lexical stress in English pronunciation. In M. Reed, & J. M. Levis (Eds.), The Handbook of English Pronunciation (pp. 106-124). Chichester: Wiley.
  • Cutler, A. (2015). Representation of second language phonology. Applied Psycholinguistics, 36(1), 115-128. doi:10.1017/S0142716414000459.

    Abstract

    Orthographies encode phonological information only at the level of words (chiefly, the information encoded concerns phonetic segments; in some cases, tonal information or default stress may be encoded). Of primary interest to second language (L2) learners is whether orthography can assist in clarifying L2 phonological distinctions that are particularly difficult to perceive (e.g., where one native-language phonemic category captures two L2 categories). A review of spoken-word recognition evidence suggests that orthographic information can install knowledge of such a distinction in lexical representations but that this does not affect learners’ ability to perceive the phonemic distinction in speech. Words containing the difficult phonemes become even harder for L2 listeners to recognize, because perception maps less accurately to lexical content.
  • Ernestus, M., & Cutler, A. (2015). BALDEY: A database of auditory lexical decisions. Quarterly Journal of Experimental Psychology, 68, 1469-1488. doi:10.1080/17470218.2014.984730.

    Abstract

    In an auditory lexical decision experiment, 5,541 spoken content words and pseudo-words were presented to 20 native speakers of Dutch. The words vary in phonological makeup and in number of syllables and stress pattern, and are further representative of the native Dutch vocabulary in that most are morphologically complex, comprising two stems or one stem plus derivational and inflectional suffixes, with inflections representing both regular and irregular paradigms; the pseudo-words were matched in these respects to the real words. The BALDEY data file includes response times and accuracy rates, with for each item morphological information plus phonological and acoustic information derived from automatic phonemic segmentation of the stimuli. Two initial analyses illustrate how this data set can be used. First, we discuss several measures of the point at which a word has no further neighbors, and compare the degree to which each measure predicts our lexical decision response outcomes. Second, we investigate how well four different measures of frequency of occurrence (from written corpora, spoken corpora, subtitles and frequency ratings by 70 participants) predict the same outcomes. These analyses motivate general conclusions about the auditory lexical decision task. The (publicly available) BALDEY database lends itself to many further analyses.
  • Cutler, A. (2009). Greater sensitivity to prosodic goodness in non-native than in native listeners. Journal of the Acoustical Society of America, 125, 3522-3525. doi:10.1121/1.3117434.

    Abstract

    English listeners largely disregard suprasegmental cues to stress in recognizing words. Evidence for this includes the demonstration of Fear et al. [J. Acoust. Soc. Am. 97, 1893–1904 (1995)] that cross-splicings are tolerated between stressed and unstressed full vowels (e.g., au- of autumn, automata). Dutch listeners, however, do exploit suprasegmental stress cues in recognizing native-language words. In this study, Dutch listeners were presented with English materials from the study of Fear et al. Acceptability ratings by these listeners revealed sensitivity to suprasegmental mismatch, in particular, in replacements of unstressed full vowels by higher-stressed vowels, thus evincing greater sensitivity to prosodic goodness than had been shown by the original native listener group.
  • Cutler, A. (2009). Psycholinguistics in our time. In P. Rabbitt (Ed.), Inside psychology: A science over 50 years (pp. 91-101). Oxford: Oxford University Press.
  • Cutler, A., Otake, T., & McQueen, J. M. (2009). Vowel devoicing and the perception of spoken Japanese words. Journal of the Acoustical Society of America, 125(3), 1693-1703. doi:10.1121/1.3075556.

    Abstract

    Three experiments, in which Japanese listeners detected Japanese words embedded in nonsense sequences, examined the perceptual consequences of vowel devoicing in that language. Since vowelless sequences disrupt speech segmentation [Norris et al. (1997). Cognit. Psychol. 34, 191– 243], devoicing is potentially problematic for perception. Words in initial position in nonsense sequences were detected more easily when followed by a sequence containing a vowel than by a vowelless segment (with or without further context), and vowelless segments that were potential devoicing environments were no easier than those not allowing devoicing. Thus asa, “morning,” was easier in asau or asazu than in all of asap, asapdo, asaf, or asafte, despite the fact that the /f/ in the latter two is a possible realization of fu, with devoiced [u]. Japanese listeners thus do not treat devoicing contexts as if they always contain vowels. Words in final position in nonsense sequences, however, produced a different pattern: here, preceding vowelless contexts allowing devoicing impeded word detection less strongly (so, sake was detected less accurately, but not less rapidly, in nyaksake—possibly arising from nyakusake—than in nyagusake). This is consistent with listeners treating consonant sequences as potential realizations of parts of existing lexical candidates wherever possible.
  • Kooijman, V., Hagoort, P., & Cutler, A. (2009). Prosodic structure in early word segmentation: ERP evidence from Dutch ten-month-olds. Infancy, 14, 591 -612. doi:10.1080/15250000903263957.

    Abstract

    Recognizing word boundaries in continuous speech requires detailed knowledge of the native language. In the first year of life, infants acquire considerable word segmentation abilities. Infants at this early stage in word segmentation rely to a large extent on the metrical pattern of their native language, at least in stress-based languages. In Dutch and English (both languages with a preferred trochaic stress pattern), segmentation of strong-weak words develops rapidly between 7 and 10 months of age. Nevertheless, trochaic languages contain not only strong-weak words but also words with a weak-strong stress pattern. In this article, we present electrophysiological evidence of the beginnings of weak-strong word segmentation in Dutch 10-month-olds. At this age, the ability to combine different cues for efficient word segmentation does not yet seem to be completely developed. We provide evidence that Dutch infants still largely rely on strong syllables, even for the segmentation of weak-strong words.
  • Tyler, M., & Cutler, A. (2009). Cross-language differences in cue use for speech segmentation. Journal of the Acoustical Society of America, 126, 367-376. doi:10.1121/1.3129127.

    Abstract

    Two artificial-language learning experiments directly compared English, French, and Dutch listeners’ use of suprasegmental cues for continuous-speech segmentation. In both experiments, listeners heard unbroken sequences of consonant-vowel syllables, composed of recurring three- and four-syllable “words.” These words were demarcated by(a) no cue other than transitional probabilities induced by their recurrence, (b) a consistent left-edge cue, or (c) a consistent right-edge cue. Experiment 1 examined a vowel lengthening cue. All three listener groups benefited from this cue in right-edge position; none benefited from it in left-edge position. Experiment 2 examined a pitch-movement cue. English listeners used this cue in left-edge position, French listeners used it in right-edge position, and Dutch listeners used it in both positions. These findings are interpreted as evidence of both language-universal and language-specific effects. Final lengthening is a language-universal effect expressing a more general (non-linguistic) mechanism. Pitch movement expresses prominence which has characteristically different placements across languages: typically at right edges in French, but at left edges in English and Dutch. Finally, stress realization in English versus Dutch encourages greater attention to suprasegmental variation by Dutch than by English listeners, allowing Dutch listeners to benefit from an informative pitch-movement cue even in an uncharacteristic position.
  • Chen, H.-C., & Cutler, A. (1997). Auditory priming in spoken and printed word recognition. In H.-C. Chen (Ed.), Cognitive processing of Chinese and related Asian languages (pp. 77-81). Hong Kong: Chinese University Press.
  • Cutler, A., & Otake, T. (1997). Contrastive studies of spoken-language processing. Journal of Phonetic Society of Japan, 1, 4-13.
  • Cutler, A., & Chen, H.-C. (1997). Lexical tone in Cantonese spoken-word processing. Perception and Psychophysics, 59, 165-179. Retrieved from http://www.psychonomic.org/search/view.cgi?id=778.

    Abstract

    In three experiments, the processing of lexical tone in Cantonese was examined. Cantonese listeners more often accepted a nonword as a word when the only difference between the nonword and the word was in tone, especially when the F0 onset difference between correct and erroneous tone was small. Same–different judgments by these listeners were also slower and less accurate when the only difference between two syllables was in tone, and this was true whether the F0 onset difference between the two tones was large or small. Listeners with no knowledge of Cantonese produced essentially the same same-different judgment pattern as that produced by the native listeners, suggesting that the results display the effects of simple perceptual processing rather than of linguistic knowledge. It is argued that the processing of lexical tone distinctions may be slowed, relative to the processing of segmental distinctions, and that, in speeded-response tasks, tone is thus more likely to be misprocessed than is segmental structure.
  • Cutler, A. (1997). Prosody and the structure of the message. In Y. Sagisaka, N. Campbell, & N. Higuchi (Eds.), Computing prosody: Computational models for processing spontaneous speech (pp. 63-66). Heidelberg: Springer.
  • Cutler, A., Dahan, D., & Van Donselaar, W. (1997). Prosody in the comprehension of spoken language: A literature review. Language and Speech, 40, 141-201.

    Abstract

    Research on the exploitation of prosodic information in the recognition of spoken language is reviewed. The research falls into three main areas: the use of prosody in the recognition of spoken words, in which most attention has been paid to the question of whether the prosodic structure of a word plays a role in initial contact with stored lexical representations; the use of prosody in the computation of syntactic structure, in which the resolution of global and local ambiguities has formed the central focus; and the role of prosody in the processing of discourse structure, in which there has been a preponderance of work on the contribution of accentuation and deaccentuation to integration of concepts with an existing discourse model. The review reveals that in each area progress has been made towards new conceptions of prosody's role in processing, and in particular this has involved abandonment of previously held deterministic views of the relationship between prosodic structure and other aspects of linguistic structure
  • Cutler, A. (1997). The comparative perspective on spoken-language processing. Speech Communication, 21, 3-15. doi:10.1016/S0167-6393(96)00075-1.

    Abstract

    Psycholinguists strive to construct a model of human language processing in general. But this does not imply that they should confine their research to universal aspects of linguistic structure, and avoid research on language-specific phenomena. First, even universal characteristics of language structure can only be accurately observed cross-linguistically. This point is illustrated here by research on the role of the syllable in spoken-word recognition, on the perceptual processing of vowels versus consonants, and on the contribution of phonetic assimilation phonemena to phoneme identification. In each case, it is only by looking at the pattern of effects across languages that it is possible to understand the general principle. Second, language-specific processing can certainly shed light on the universal model of language comprehension. This second point is illustrated by studies of the exploitation of vowel harmony in the lexical segmentation of Finnish, of the recognition of Dutch words with and without vowel epenthesis, and of the contribution of different kinds of lexical prosodic structure (tone, pitch accent, stress) to the initial activation of candidate words in lexical access. In each case, aspects of the universal processing model are revealed by analysis of these language-specific effects. In short, the study of spoken-language processing by human listeners requires cross-linguistic comparison.
  • Cutler, A. (1997). The syllable’s role in the segmentation of stress languages. Language and Cognitive Processes, 12, 839-845. doi:10.1080/016909697386718.
  • McQueen, J. M., & Cutler, A. (1997). Cognitive processes in speech perception. In W. J. Hardcastle, & J. D. Laver (Eds.), The handbook of phonetic sciences (pp. 556-585). Oxford: Blackwell.
  • Norris, D., McQueen, J. M., Cutler, A., & Butterfield, S. (1997). The possible-word constraint in the segmentation of continuous speech. Cognitive Psychology, 34, 191-243. doi:10.1006/cogp.1997.0671.

    Abstract

    We propose that word recognition in continuous speech is subject to constraints on what may constitute a viable word of the language. This Possible-Word Constraint (PWC) reduces activation of candidate words if their recognition would imply word status for adjacent input which could not be a word - for instance, a single consonant. In two word-spotting experiments, listeners found it much harder to detectapple,for example, infapple(where [f] alone would be an impossible word), than invuffapple(wherevuffcould be a word of English). We demonstrate that the PWC can readily be implemented in a competition-based model of continuous speech recognition, as a constraint on the process of competition between candidate words; where a stretch of speech between a candidate word and a (known or likely) word boundary is not a possible word, activation of the candidate word is reduced. This implementation accurately simulates both the present results and data from a range of earlier studies of speech segmentation.
  • Suomi, K., McQueen, J. M., & Cutler, A. (1997). Vowel harmony and speech segmentation in Finnish. Journal of Memory and Language, 36, 422-444. doi:10.1006/jmla.1996.2495.

    Abstract

    Finnish vowel harmony rules require that if the vowel in the first syllable of a word belongs to one of two vowel sets, then all subsequent vowels in that word must belong either to the same set or to a neutral set. A harmony mismatch between two syllables containing vowels from the opposing sets thus signals a likely word boundary. We report five experiments showing that Finnish listeners can exploit this information in an on-line speech segmentation task. Listeners found it easier to detect words likehymyat the end of the nonsense stringpuhymy(where there is a harmony mismatch between the first two syllables) than in the stringpyhymy(where there is no mismatch). There was no such effect, however, when the target words appeared at the beginning of the nonsense string (e.g.,hymypuvshymypy). Stronger harmony effects were found for targets containing front harmony vowels (e.g.,hymy) than for targets containing back harmony vowels (e.g.,paloinkypaloandkupalo). The same pattern of results appeared whether target position within the string was predictable or unpredictable. Harmony mismatch thus appears to provide a useful segmentation cue for the detection of word onsets in Finnish speech.
  • Cutler, A., & Foss, D. (1977). On the role of sentence stress in sentence processing. Language and Speech, 20, 1-10.
  • Fay, D., & Cutler, A. (1977). Malapropisms and the structure of the mental lexicon. Linguistic Inquiry, 8, 505-520. Retrieved from http://www.jstor.org/stable/4177997.
  • Cutler, A. (1976). High-stress words are easier to perceive than low-stress words, even when they are equally stressed. Texas Linguistic Forum, 2, 53-57.
  • Cutler, A. (1976). Phoneme-monitoring reaction time as a function of preceding intonation contour. Perception and Psychophysics, 20, 55-60. Retrieved from http://www.psychonomic.org/search/view.cgi?id=18194.

    Abstract

    An acoustically invariant one-word segment occurred in two versions of one syntactic context. In one version, the preceding intonation contour indicated that a stress would fall at the point where this word occurred. In the other version, the preceding contour predicted reduced stress at that point. Reaction time to the initial phoneme of the word was faster in the former case, despite the fact that no acoustic correlates of stress were present. It is concluded that a part of the sentence comprehension process is the prediction of upcoming sentence accents.

Share this page