Anne Cutler †

Publications

Displaying 1 - 11 of 11
  • Cutler, A., Andics, A., & Fang, Z. (2011). Inter-dependent categorization of voices and segments. In W.-S. Lee, & E. Zee (Eds.), Proceedings of the 17th International Congress of Phonetic Sciences [ICPhS 2011] (pp. 552-555). Hong Kong: Department of Chinese, Translation and Linguistics, City University of Hong Kong.

    Abstract

    Listeners performed speeded two-alternative choice between two unfamiliar and relatively similar voices or between two phonetically close segments, in VC syllables. For each decision type (segment, voice), the non-target dimension (voice, segment) either was constant, or varied across four alternatives. Responses were always slower when a non-target dimension varied than when it did not, but the effect of phonetic variation on voice identity decision was stronger than that of voice variation on phonetic identity decision. Cues to voice and segment identity in speech are processed inter-dependently, but hard categorization decisions about voices draw on, and are hence sensitive to, segmental information.
  • Tuinman, A., Mitterer, H., & Cutler, A. (2011). The efficiency of cross-dialectal word recognition. In Proceedings of the 12th Annual Conference of the International Speech Communication Association (Interspeech 2011), Florence, Italy (pp. 153-156).

    Abstract

    Dialects of the same language can differ in the casual speech processes they allow; e.g., British English allows the insertion of [r] at word boundaries in sequences such as saw ice, while American English does not. In two speeded word recognition experiments, American listeners heard such British English sequences; in contrast to non-native listeners, they accurately perceived intended vowel-initial words even with intrusive [r]. Thus despite input mismatches, cross-dialectal word recognition benefits from the full power of native-language processing.
  • Wagner, M., Tran, D., Togneri, R., Rose, P., Powers, D., Onslow, M., Loakes, D., Lewis, T., Kuratate, T., Kinoshita, Y., Kemp, N., Ishihara, S., Ingram, J., Hajek, J., Grayden, D., Göcke, R., Fletcher, J., Estival, D., Epps, J., Dale, R. and 11 moreWagner, M., Tran, D., Togneri, R., Rose, P., Powers, D., Onslow, M., Loakes, D., Lewis, T., Kuratate, T., Kinoshita, Y., Kemp, N., Ishihara, S., Ingram, J., Hajek, J., Grayden, D., Göcke, R., Fletcher, J., Estival, D., Epps, J., Dale, R., Cutler, A., Cox, F., Chetty, G., Cassidy, S., Butcher, A., Burnham, D., Bird, S., Best, C., Bennamoun, M., Arciuli, J., & Ambikairajah, E. (2011). The Big Australian Speech Corpus (The Big ASC). In M. Tabain, J. Fletcher, D. Grayden, J. Hajek, & A. Butcher (Eds.), Proceedings of the Thirteenth Australasian International Conference on Speech Science and Technology (pp. 166-170). Melbourne: ASSTA.
  • Koster, M., & Cutler, A. (1997). Segmental and suprasegmental contributions to spoken-word recognition in Dutch. In Proceedings of EUROSPEECH 97 (pp. 2167-2170). Grenoble, France: ESCA.

    Abstract

    Words can be distinguished by segmental differences or by suprasegmental differences or both. Studies from English suggest that suprasegmentals play little role in human spoken-word recognition; English stress, however, is nearly always unambiguously coded in segmental structure (vowel quality); this relationship is less close in Dutch. The present study directly compared the effects of segmental and suprasegmental mispronunciation on word recognition in Dutch. There was a strong effect of suprasegmental mispronunciation, suggesting that Dutch listeners do exploit suprasegmental information in word recognition. Previous findings indicating the effects of mis-stressing for Dutch differ with stress position were replicated only when segmental change was involved, suggesting that this is an effect of segmental rather than suprasegmental processing.
  • Pallier, C., Cutler, A., & Sebastian-Galles, N. (1997). Prosodic structure and phonetic processing: A cross-linguistic study. In Proceedings of EUROSPEECH 97 (pp. 2131-2134). Grenoble, France: ESCA.

    Abstract

    Dutch and Spanish differ in how predictable the stress pattern is as a function of the segmental content: it is correlated with syllable weight in Dutch but not in Spanish. In the present study, two experiments were run to compare the abilities of Dutch and Spanish speakers to separately process segmental and stress information. It was predicted that the Spanish speakers would have more difficulty focusing on the segments and ignoring the stress pattern than the Dutch speakers. The task was a speeded classification task on CVCV syllables, with blocks of trials in which the stress pattern could vary versus blocks in which it was fixed. First, we found interference due to stress variability in both languages, suggesting that the processing of segmental information cannot be performed independently of stress. Second, the effect was larger for Spanish than for Dutch, suggesting that that the degree of interference from stress variation may be partially mitigated by the predictability of stress placement in the language.
  • Butterfield, S., & Cutler, A. (1990). Intonational cues to word boundaries in clear speech? In Proceedings of the Institute of Acoustics: Vol 12, part 10 (pp. 87-94). St. Albans, Herts.: Institute of Acoustics.
  • Cutler, A. (1990). Syllabic lengthening as a word boundary cue. In R. Seidl (Ed.), Proceedings of the 3rd Australian International Conference on Speech Science and Technology (pp. 324-328). Canberra: Australian Speech Science and Technology Association.

    Abstract

    Bisyllabic sequences which could be interpreted as one word or two were produced in sentence contexts by a trained speaker, and syllabic durations measured. Listeners judged whether the bisyllables, excised from context, were one word or two. The proportion of two-word choices correlated positively with measured duration, but only for bisyllables stressed on the second syllable. The results may suggest a limit for listener sensitivity to syllabic lengthening as a word boundary cue.
  • Cutler, A., Norris, D., & Van Ooijen, B. (1990). Vowels as phoneme detection targets. In Proceedings of the First International Conference on Spoken Language Processing (pp. 581-584).

    Abstract

    Phoneme detection is a psycholinguistic task in which listeners' response time to detect the presence of a pre-specified phoneme target is measured. Typically, detection tasks have used consonant targets. This paper reports two experiments in which subjects responded to vowels as phoneme detection targets. In the first experiment, targets occurred in real words, in the second in nonsense words. Response times were long by comparison with consonantal targets. Targets in initial syllables were responded to much more slowly than targets in second syllables. Strong vowels were responded to faster than reduced vowels in real words but not in nonwords. These results suggest that the process of phoneme detection produces different results for vowels and for consonants. We discuss possible explanations for this difference, in particular the possibility of language-specificity.
  • Cutler, A. (1983). Semantics, syntax and sentence accent. In M. Van den Broecke, & A. Cohen (Eds.), Proceedings of the Tenth International Congress of Phonetic Sciences (pp. 85-91). Dordrecht: Foris.
  • Scott, D. R., & Cutler, A. (1982). Segmental cues to syntactic structure. In Proceedings of the Institute of Acoustics 'Spectral Analysis and its Use in Underwater Acoustics' (pp. E3.1-E3.4). London: Institute of Acoustics.
  • Cutler, A. (1970). An experimental method for semantic field study. Linguistic Communications, 2, 87-94.

    Abstract

    This paper emphasizes the need for empirical research and objective discovery procedures in semantics, and illustrates a method by which these goals may be obtained. The aim of the methodology described is to provide a description of the internal structure of a semantic field by eliciting the description--in an objective, standardized manner--from a representative group of native speakers. This would produce results that would be equally obtainable by any linguist using the same method under the same conditions with a similarly representative set of informants. The standardized method suggested by the author is the Semantic Differential developed by C. E. Osgood in the 1950's. Applying this method to semantic research, it is further hypothesized that, should different members of a semantic field be employed as concepts on a Semantic Differential task, a factor analysis of the results would reveal the dimensions operative within the body of data. The author demonstrates the use of the Semantic Differential and factor analysis in an actual experiment.

Share this page