Anne Cutler

Publications

Displaying 1 - 8 of 8
  • Koster, M., & Cutler, A. (1997). Segmental and suprasegmental contributions to spoken-word recognition in Dutch. In Proceedings of EUROSPEECH 97 (pp. 2167-2170). Grenoble, France: ESCA.

    Abstract

    Words can be distinguished by segmental differences or by suprasegmental differences or both. Studies from English suggest that suprasegmentals play little role in human spoken-word recognition; English stress, however, is nearly always unambiguously coded in segmental structure (vowel quality); this relationship is less close in Dutch. The present study directly compared the effects of segmental and suprasegmental mispronunciation on word recognition in Dutch. There was a strong effect of suprasegmental mispronunciation, suggesting that Dutch listeners do exploit suprasegmental information in word recognition. Previous findings indicating the effects of mis-stressing for Dutch differ with stress position were replicated only when segmental change was involved, suggesting that this is an effect of segmental rather than suprasegmental processing.
  • Pallier, C., Cutler, A., & Sebastian-Galles, N. (1997). Prosodic structure and phonetic processing: A cross-linguistic study. In Proceedings of EUROSPEECH 97 (pp. 2131-2134). Grenoble, France: ESCA.

    Abstract

    Dutch and Spanish differ in how predictable the stress pattern is as a function of the segmental content: it is correlated with syllable weight in Dutch but not in Spanish. In the present study, two experiments were run to compare the abilities of Dutch and Spanish speakers to separately process segmental and stress information. It was predicted that the Spanish speakers would have more difficulty focusing on the segments and ignoring the stress pattern than the Dutch speakers. The task was a speeded classification task on CVCV syllables, with blocks of trials in which the stress pattern could vary versus blocks in which it was fixed. First, we found interference due to stress variability in both languages, suggesting that the processing of segmental information cannot be performed independently of stress. Second, the effect was larger for Spanish than for Dutch, suggesting that that the degree of interference from stress variation may be partially mitigated by the predictability of stress placement in the language.
  • Cutler, A. (1983). Semantics, syntax and sentence accent. In M. Van den Broecke, & A. Cohen (Eds.), Proceedings of the Tenth International Congress of Phonetic Sciences (pp. 85-91). Dordrecht: Foris.
  • Cutler, A., & Ladd, D. R. (Eds.). (1983). Prosody: Models and measurements. Heidelberg: Springer.
  • Cutler, A. (1982). Speech errors: A classi´Čüed bibliography. Bloomington: Indiana University Linguistics Club.
  • Cutler, A. (Ed.). (1982). Slips of the tongue and language production. The Hague: Mouton.
  • Scott, D. R., & Cutler, A. (1982). Segmental cues to syntactic structure. In Proceedings of the Institute of Acoustics 'Spectral Analysis and its Use in Underwater Acoustics' (pp. E3.1-E3.4). London: Institute of Acoustics.
  • Cutler, A. (1970). An experimental method for semantic field study. Linguistic Communications, 2, 87-94.

    Abstract

    This paper emphasizes the need for empirical research and objective discovery procedures in semantics, and illustrates a method by which these goals may be obtained. The aim of the methodology described is to provide a description of the internal structure of a semantic field by eliciting the description--in an objective, standardized manner--from a representative group of native speakers. This would produce results that would be equally obtainable by any linguist using the same method under the same conditions with a similarly representative set of informants. The standardized method suggested by the author is the Semantic Differential developed by C. E. Osgood in the 1950's. Applying this method to semantic research, it is further hypothesized that, should different members of a semantic field be employed as concepts on a Semantic Differential task, a factor analysis of the results would reveal the dimensions operative within the body of data. The author demonstrates the use of the Semantic Differential and factor analysis in an actual experiment.

Share this page