Anne Cutler

Publications

Displaying 1 - 32 of 32
  • Braun, B., Tagliapietra, L., & Cutler, A. (2008). Contrastive utterances make alternatives salient: Cross-modal priming evidence. In Proceedings of Interspeech 2008 (pp. 69-69).

    Abstract

    Sentences with contrastive intonation are assumed to presuppose contextual alternatives to the accented elements. Two cross-modal priming experiments tested in Dutch whether such contextual alternatives are automatically available to listeners. Contrastive associates – but not non- contrastive associates - were facilitated only when primes were produced in sentences with contrastive intonation, indicating that contrastive intonation makes unmentioned contextual alternatives immediately available. Possibly, contrastive contours trigger a “presupposition resolution mechanism” by which these alternatives become salient.
  • Braun, B., Lemhöfer, K., & Cutler, A. (2008). English word stress as produced by English and Dutch speakers: The role of segmental and suprasegmental differences. In Proceedings of Interspeech 2008 (pp. 1953-1953).

    Abstract

    It has been claimed that Dutch listeners use suprasegmental cues (duration, spectral tilt) more than English listeners in distinguishing English word stress. We tested whether this asymmetry also holds in production, comparing the realization of English word stress by native English speakers and Dutch speakers. Results confirmed that English speakers centralize unstressed vowels more, while Dutch speakers of English make more use of suprasegmental differences.
  • Broersma, M., & Cutler, A. (2008). Phantom word activation in L2. System, 36(1), 22-34. doi:10.1016/j.system.2007.11.003.

    Abstract

    L2 listening can involve the phantom activation of words which are not actually in the input. All spoken-word recognition involves multiple concurrent activation of word candidates, with selection of the correct words achieved by a process of competition between them. L2 listening involves more such activation than L1 listening, and we report two studies illustrating this. First, in a lexical decision study, L2 listeners accepted (but L1 listeners did not accept) spoken non-words such as groof or flide as real English words. Second, a priming study demonstrated that the same spoken non-words made recognition of the real words groove, flight easier for L2 (but not L1) listeners, suggesting that, for the L2 listeners only, these real words had been activated by the spoken non-word input. We propose that further understanding of the activation and competition process in L2 lexical processing could lead to new understanding of L2 listening difficulty.
  • Cutler, A., Garcia Lecumberri, M. L., & Cooke, M. (2008). Consonant identification in noise by native and non-native listeners: Effects of local context. Journal of the Acoustical Society of America, 124(2), 1264-1268. doi:10.1121/1.2946707.

    Abstract

    Speech recognition in noise is harder in second (L2) than first languages (L1). This could be because noise disrupts speech processing more in L2 than L1, or because L1 listeners recover better though disruption is equivalent. Two similar prior studies produced discrepant results: Equivalent noise effects for L1 and L2 (Dutch) listeners, versus larger effects for L2 (Spanish) than L1. To explain this, the latter experiment was presented to listeners from the former population. Larger noise effects on consonant identification emerged for L2 (Dutch) than L1 listeners, suggesting that task factors rather than L2 population differences underlie the results discrepancy.
  • Cutler, A., McQueen, J. M., Butterfield, S., & Norris, D. (2008). Prelexically-driven perceptual retuning of phoneme boundaries. In Proceedings of Interspeech 2008 (pp. 2056-2056).

    Abstract

    Listeners heard an ambiguous /f-s/ in nonword contexts where only one of /f/ or /s/ was legal (e.g., frul/*srul or *fnud/snud). In later categorisation of a phonetic continuum from /f/ to /s/, their category boundaries had shifted; hearing -rul led to expanded /f/ categories, -nud expanded /s/. Thus phonotactic sequence information alone induces perceptual retuning of phoneme category boundaries; lexical access is not required.
  • Cutler, A. (2008). The abstract representations in speech processing. Quarterly Journal of Experimental Psychology, 61(11), 1601-1619. doi:10.1080/13803390802218542.

    Abstract

    Speech processing by human listeners derives meaning from acoustic input via intermediate steps involving abstract representations of what has been heard. Recent results from several lines of research are here brought together to shed light on the nature and role of these representations. In spoken-word recognition, representations of phonological form and of conceptual content are dissociable. This follows from the independence of patterns of priming for a word's form and its meaning. The nature of the phonological-form representations is determined not only by acoustic-phonetic input but also by other sources of information, including metalinguistic knowledge. This follows from evidence that listeners can store two forms as different without showing any evidence of being able to detect the difference in question when they listen to speech. The lexical representations are in turn separate from prelexical representations, which are also abstract in nature. This follows from evidence that perceptual learning about speaker-specific phoneme realization, induced on the basis of a few words, generalizes across the whole lexicon to inform the recognition of all words containing the same phoneme. The efficiency of human speech processing has its basis in the rapid execution of operations over abstract representations.
  • Goudbeek, M., Cutler, A., & Smits, R. (2008). Supervised and unsupervised learning of multidimensionally varying nonnative speech categories. Speech Communication, 50(2), 109-125. doi:10.1016/j.specom.2007.07.003.

    Abstract

    The acquisition of novel phonetic categories is hypothesized to be affected by the distributional properties of the input, the relation of the new categories to the native phonology, and the availability of supervision (feedback). These factors were examined in four experiments in which listeners were presented with novel categories based on vowels of Dutch. Distribution was varied such that the categorization depended on the single dimension duration, the single dimension frequency, or both dimensions at once. Listeners were clearly sensitive to the distributional information, but unidimensional contrasts proved easier to learn than multidimensional. The native phonology was varied by comparing Spanish versus American English listeners. Spanish listeners found categorization by frequency easier than categorization by duration, but this was not true of American listeners, whose native vowel system makes more use of duration-based distinctions. Finally, feedback was either available or not; this comparison showed supervised learning to be significantly superior to unsupervised learning.
  • Kim, J., Davis, C., & Cutler, A. (2008). Perceptual tests of rhythmic similarity: II. Syllable rhythm. Language and Speech, 51(4), 343-359. doi:10.1177/0023830908099069.

    Abstract

    To segment continuous speech into its component words, listeners make use of language rhythm; because rhythm differs across languages, so do the segmentation procedures which listeners use. For each of stress-, syllable-and mora-based rhythmic structure, perceptual experiments have led to the discovery of corresponding segmentation procedures. In the case of mora-based rhythm, similar segmentation has been demonstrated in the otherwise unrelated languages Japanese and Telugu; segmentation based on syllable rhythm, however, has been previously demonstrated only for European languages from the Romance family. We here report two target detection experiments in which Korean listeners, presented with speech in Korean and in French, displayed patterns of segmentation like those previously observed in analogous experiments with French listeners. The Korean listeners' accuracy in detecting word-initial target fragments in either language was significantly higher when the fragments corresponded exactly to a syllable in the input than when the fragments were smaller or larger than a syllable. We conclude that Korean and French listeners can call on similar procedures for segmenting speech, and we further propose that perceptual tests of speech segmentation provide a valuable accompaniment to acoustic analyses for establishing languages' rhythmic class membership.
  • Kooijman, V., Johnson, E. K., & Cutler, A. (2008). Reflections on reflections of infant word recognition. In A. D. Friederici, & G. Thierry (Eds.), Early language development: Bridging brain and behaviour (pp. 91-114). Amsterdam: Benjamins.
  • Cutler, A., & Fear, B. D. (1991). Categoricality in acceptability judgements for strong versus weak vowels. In J. Llisterri (Ed.), Proceedings of the ESCA Workshop on Phonetics and Phonology of Speaking Styles (pp. 18.1-18.5). Barcelona, Catalonia: Universitat Autonoma de Barcelona.

    Abstract

    A distinction between strong and weak vowels can be drawn on the basis of vowel quality, of stress, or of both factors. An experiment was conducted in which sets of contextually matched word-intial vowels ranging from clearly strong to clearly weak were cross-spliced, and the naturalness of the resulting words was rated by listeners. The ratings showed that in general cross-spliced words were only significantly less acceptable than unspliced words when schwa was not involved; this supports a categorical distinction based on vowel quality.
  • Cutler, A. (1991). Linguistic rhythm and speech segmentation. In J. Sundberg, L. Nord, & R. Carlson (Eds.), Music, language, speech and brain (pp. 157-166). London: Macmillan.
  • Cutler, A. (1991). Proceed with caution. New Scientist, (1799), 53-54.
  • Cutler, A. (1991). Prosody in situations of communication: Salience and segmentation. In Proceedings of the Twelfth International Congress of Phonetic Sciences: Vol. 1 (pp. 264-270). Aix-en-Provence: Université de Provence, Service des publications.

    Abstract

    Speakers and listeners have a shared goal: to communicate. The processes of speech perception and of speech production interact in many ways under the constraints of this communicative goal; such interaction is as characteristic of prosodic processing as of the processing of other aspects of linguistic structure. Two of the major uses of prosodic information in situations of communication are to encode salience and segmentation, and these themes unite the contributions to the symposium introduced by the present review.
  • Cutler, A., & Butterfield, S. (1991). Word boundary cues in clear speech: A supplementary report. Speech Communication, 10, 335-353. doi:10.1016/0167-6393(91)90002-B.

    Abstract

    One of a listener's major tasks in understanding continuous speech is segmenting the speech signal into separate words. When listening conditions are difficult, speakers can help listeners by deliberately speaking more clearly. In four experiments, we examined how word boundaries are produced in deliberately clear speech. In an earlier report we showed that speakers do indeed mark word boundaries in clear speech, by pausing at the boundary and lengthening pre-boundary syllables; moreover, these effects are applied particularly to boundaries preceding weak syllables. In English, listeners use segmentation procedures which make word boundaries before strong syllables easier to perceive; thus marking word boundaries before weak syllables in clear speech will make clear precisely those boundaries which are otherwise hard to perceive. The present report presents supplementary data, namely prosodic analyses of the syllable following a critical word boundary. More lengthening and greater increases in intensity were applied in clear speech to weak syllables than to strong. Mean F0 was also increased to a greater extent on weak syllables than on strong. Pitch movement, however, increased to a greater extent on strong syllables than on weak. The effects were, however, very small in comparison to the durational effects we observed earlier for syllables preceding the boundary and for pauses at the boundary.
  • Van Ooijen, B., Cutler, A., & Norris, D. (1991). Detection times for vowels versus consonants. In Eurospeech 91: Vol. 3 (pp. 1451-1454). Genova: Istituto Internazionale delle Comunicazioni.

    Abstract

    This paper reports two experiments with vowels and consonants as phoneme detection targets in real words. In the first experiment, two relatively distinct vowels were compared with two confusible stop consonants. Response times to the vowels were longer than to the consonants. Response times correlated negatively with target phoneme length. In the second, two relatively distinct vowels were compared with their corresponding semivowels. This time, the vowels were detected faster than the semivowels. We conclude that response time differences between vowels and stop consonants in this task may reflect differences between phoneme categories in the variability of tokens, both in the acoustic realisation of targets and in the' representation of targets by subjects.
  • Butterfield, S., & Cutler, A. (1988). Segmentation errors by human listeners: Evidence for a prosodic segmentation strategy. In W. Ainsworth, & J. Holmes (Eds.), Proceedings of SPEECH ’88: Seventh Symposium of the Federation of Acoustic Societies of Europe: Vol. 3 (pp. 827-833). Edinburgh: Institute of Acoustics.
  • Cutler, A., Mehler, J., Norris, D., & Segui, J. (1988). Limits on bilingualism [Letters to Nature]. Nature, 340, 229-230. doi:10.1038/340229a0.

    Abstract

    SPEECH, in any language, is continuous; speakers provide few reliable cues to the boundaries of words, phrases, or other meaningful units. To understand speech, listeners must divide the continuous speech stream into portions that correspond to such units. This segmentation process is so basic to human language comprehension that psycholinguists long assumed that all speakers would do it in the same way. In previous research1,2, however, we reported that segmentation routines can be language-specific: speakers of French process spoken words syllable by syllable, but speakers of English do not. French has relatively clear syllable boundaries and syllable-based timing patterns, whereas English has relatively unclear syllable boundaries and stress-based timing; thus syllabic segmentation would work more efficiently in the comprehension of French than in the comprehension of English. Our present study suggests that at this level of language processing, there are limits to bilingualism: a bilingual speaker has one and only one basic language.
  • Cutler, A., & Norris, D. (1988). The role of strong syllables in segmentation for lexical access. Journal of Experimental Psychology: Human Perception and Performance, 14, 113-121. doi:10.1037/0096-1523.14.1.113.

    Abstract

    A model of speech segmentation in a stress language is proposed, according to which the occurrence of a strong syllable triggers segmentation of the speech signal, whereas occurrence of a weak syllable does not trigger segmentation. We report experiments in which listeners detected words embedded in nonsense bisyllables more slowly when the bisyllable had two strong syllables than when it had a strong and a weak syllable; mint was detected more slowly in mintayve than in mintesh. According to our proposed model, this result is an effect of segmentation: When the second syllable is strong, it is segmented from the first syllable, and successful detection of the embedded word therefore requires assembly of speech material across a segmentation position. Speech recognition models involving phonemic or syllabic recoding, or based on strictly left-to-right processes, do not predict this result. It is argued that segmentation at strong syllables in continuous speech recognition serves the purpose of detecting the most efficient locations at which to initiate lexical access. (C) 1988 by the American Psychological Association
  • Cutler, A. (1988). The perfect speech error. In L. Hyman, & C. Li (Eds.), Language, speech and mind: Studies in honor of Victoria A. Fromkin (pp. 209-223). London: Croom Helm.
  • Hawkins, J. A., & Cutler, A. (1988). Psycholinguistic factors in morphological asymmetry. In J. A. Hawkins (Ed.), Explaining language universals (pp. 280-317). Oxford: Blackwell.
  • Henderson, L., Coltheart, M., Cutler, A., & Vincent, N. (1988). Preface. Linguistics, 26(4), 519-520. doi:10.1515/ling.1988.26.4.519.
  • Mehta, G., & Cutler, A. (1988). Detection of target phonemes in spontaneous and read speech. Language and Speech, 31, 135-156.

    Abstract

    Although spontaneous speech occurs more frequently in most listeners’ experience than read speech, laboratory studies of human speech recognition typically use carefully controlled materials read from a script. The phonological and prosodic characteristics of spontaneous and read speech differ considerably, however, which suggests that laboratory results may not generalize to the recognition of spontaneous and read speech materials, and their response time to detect word-initial target phonemes was measured. Response were, overall, equally fast in each speech mode. However analysis of effects previously reported in phoneme detection studies revealed significant differences between speech modes. In read speech but not in spontaneous speech, later targets were detected more rapidly than earlier targets, and targets preceded by long words were detected more rapidly than targets preceded by short words. In contrast, in spontaneous speech but not in read speech, targets were detected more rapidly in accented than unaccented words and in strong than in weak syllables. An explanation for this pattern is offered in terms of characteristic prosodic differences between spontaneous and read speech. The results support claim from previous work that listeners pay great attention to prosodic information in the process of recognizing speech.
  • Norris, D., & Cutler, A. (1988). Speech recognition in French and English. MRC News, 39, 30-31.
  • Norris, D., & Cutler, A. (1988). The relative accessibility of phonemes and syllables. Perception and Psychophysics, 43, 541-550. Retrieved from http://www.psychonomic.org/search/view.cgi?id=8530.

    Abstract

    Previous research comparing detection times for syllables and for phonemes has consistently found that syllables are responded to faster than phonemes. This finding poses theoretical problems for strictly hierarchical models of speech recognition, in which smaller units should be able to be identified faster than larger units. However, inspection of the characteristics of previous experiments’stimuli reveals that subjects have been able to respond to syllables on the basis of only a partial analysis of the stimulus. In the present experiment, five groups of subjects listened to identical stimulus material. Phoneme and syllable monitoring under standard conditions was compared with monitoring under conditions in which near matches of target and stimulus occurred on no-response trials. In the latter case, when subjects were forced to analyze each stimulus fully, phonemes were detected faster than syllables.
  • Beattie, G. W., Cutler, A., & Pearson, M. (1982). Why is Mrs Thatcher interrupted so often? [Letters to Nature]. Nature, 300, 744-747. doi:10.1038/300744a0.

    Abstract

    If a conversation is to proceed smoothly, the participants have to take turns to speak. Studies of conversation have shown that there are signals which speakers give to inform listeners that they are willing to hand over the conversational turn1−4. Some of these signals are part of the text (for example, completion of syntactic segments), some are non-verbal (such as completion of a gesture), but most are carried by the pitch, timing and intensity pattern of the speech; for example, both pitch and loudness tend to drop particularly low at the end of a speaker's turn. When one speaker interrupts another, the two can be said to be disputing who has the turn. Interruptions can occur because one participant tries to dominate or disrupt the conversation. But it could also be the case that mistakes occur in the way these subtle turn-yielding signals are transmitted and received. We demonstrate here that many interruptions in an interview with Mrs Margaret Thatcher, the British Prime Minister, occur at points where independent judges agree that her turn appears to have finished. It is suggested that she is unconsciously displaying turn-yielding cues at certain inappropriate points. The turn-yielding cues responsible are identified.
  • Cutler, A. (1982). Idioms: the older the colder. Linguistic Inquiry, 13(2), 317-320. Retrieved from http://www.jstor.org/stable/4178278?origin=JSTOR-pdf.
  • Cutler, A., & Fay, D. A. (1982). One mental lexicon, phonologically arranged: Comments on Hurford’s comments. Linguistic Inquiry, 13, 107-113. Retrieved from http://www.jstor.org/stable/4178262.
  • Cutler, A. (1982). Prosody and sentence perception in English. In J. Mehler, E. C. Walker, & M. Garrett (Eds.), Perspectives on mental representation: Experimental and theoretical studies of cognitive processes and capacities (pp. 201-216). Hillsdale, N.J: Erlbaum.
  • Cutler, A. (1982). Speech errors: A classified bibliography. Bloomington: Indiana University Linguistics Club.
  • Cutler, A. (Ed.). (1982). Slips of the tongue and language production. The Hague: Mouton.
  • Scott, D. R., & Cutler, A. (1982). Segmental cues to syntactic structure. In Proceedings of the Institute of Acoustics 'Spectral Analysis and its Use in Underwater Acoustics' (pp. E3.1-E3.4). London: Institute of Acoustics.
  • Cutler, A. (1970). An experimental method for semantic field study. Linguistic Communications, 2, 87-94.

    Abstract

    This paper emphasizes the need for empirical research and objective discovery procedures in semantics, and illustrates a method by which these goals may be obtained. The aim of the methodology described is to provide a description of the internal structure of a semantic field by eliciting the description--in an objective, standardized manner--from a representative group of native speakers. This would produce results that would be equally obtainable by any linguist using the same method under the same conditions with a similarly representative set of informants. The standardized method suggested by the author is the Semantic Differential developed by C. E. Osgood in the 1950's. Applying this method to semantic research, it is further hypothesized that, should different members of a semantic field be employed as concepts on a Semantic Differential task, a factor analysis of the results would reveal the dimensions operative within the body of data. The author demonstrates the use of the Semantic Differential and factor analysis in an actual experiment.

Share this page