Anne Cutler †

Publications

Displaying 1 - 36 of 36
  • Chen, H.-C., & Cutler, A. (1997). Auditory priming in spoken and printed word recognition. In H.-C. Chen (Ed.), Cognitive processing of Chinese and related Asian languages (pp. 77-81). Hong Kong: Chinese University Press.
  • Cutler, A., & Otake, T. (1997). Contrastive studies of spoken-language processing. Journal of Phonetic Society of Japan, 1, 4-13.
  • Cutler, A., & Chen, H.-C. (1997). Lexical tone in Cantonese spoken-word processing. Perception and Psychophysics, 59, 165-179. Retrieved from http://www.psychonomic.org/search/view.cgi?id=778.

    Abstract

    In three experiments, the processing of lexical tone in Cantonese was examined. Cantonese listeners more often accepted a nonword as a word when the only difference between the nonword and the word was in tone, especially when the F0 onset difference between correct and erroneous tone was small. Same–different judgments by these listeners were also slower and less accurate when the only difference between two syllables was in tone, and this was true whether the F0 onset difference between the two tones was large or small. Listeners with no knowledge of Cantonese produced essentially the same same-different judgment pattern as that produced by the native listeners, suggesting that the results display the effects of simple perceptual processing rather than of linguistic knowledge. It is argued that the processing of lexical tone distinctions may be slowed, relative to the processing of segmental distinctions, and that, in speeded-response tasks, tone is thus more likely to be misprocessed than is segmental structure.
  • Cutler, A. (1997). Prosody and the structure of the message. In Y. Sagisaka, N. Campbell, & N. Higuchi (Eds.), Computing prosody: Computational models for processing spontaneous speech (pp. 63-66). Heidelberg: Springer.
  • Cutler, A., Dahan, D., & Van Donselaar, W. (1997). Prosody in the comprehension of spoken language: A literature review. Language and Speech, 40, 141-201.

    Abstract

    Research on the exploitation of prosodic information in the recognition of spoken language is reviewed. The research falls into three main areas: the use of prosody in the recognition of spoken words, in which most attention has been paid to the question of whether the prosodic structure of a word plays a role in initial contact with stored lexical representations; the use of prosody in the computation of syntactic structure, in which the resolution of global and local ambiguities has formed the central focus; and the role of prosody in the processing of discourse structure, in which there has been a preponderance of work on the contribution of accentuation and deaccentuation to integration of concepts with an existing discourse model. The review reveals that in each area progress has been made towards new conceptions of prosody's role in processing, and in particular this has involved abandonment of previously held deterministic views of the relationship between prosodic structure and other aspects of linguistic structure
  • Cutler, A. (1997). The comparative perspective on spoken-language processing. Speech Communication, 21, 3-15. doi:10.1016/S0167-6393(96)00075-1.

    Abstract

    Psycholinguists strive to construct a model of human language processing in general. But this does not imply that they should confine their research to universal aspects of linguistic structure, and avoid research on language-specific phenomena. First, even universal characteristics of language structure can only be accurately observed cross-linguistically. This point is illustrated here by research on the role of the syllable in spoken-word recognition, on the perceptual processing of vowels versus consonants, and on the contribution of phonetic assimilation phonemena to phoneme identification. In each case, it is only by looking at the pattern of effects across languages that it is possible to understand the general principle. Second, language-specific processing can certainly shed light on the universal model of language comprehension. This second point is illustrated by studies of the exploitation of vowel harmony in the lexical segmentation of Finnish, of the recognition of Dutch words with and without vowel epenthesis, and of the contribution of different kinds of lexical prosodic structure (tone, pitch accent, stress) to the initial activation of candidate words in lexical access. In each case, aspects of the universal processing model are revealed by analysis of these language-specific effects. In short, the study of spoken-language processing by human listeners requires cross-linguistic comparison.
  • Cutler, A. (1997). The syllable’s role in the segmentation of stress languages. Language and Cognitive Processes, 12, 839-845. doi:10.1080/016909697386718.
  • Koster, M., & Cutler, A. (1997). Segmental and suprasegmental contributions to spoken-word recognition in Dutch. In Proceedings of EUROSPEECH 97 (pp. 2167-2170). Grenoble, France: ESCA.

    Abstract

    Words can be distinguished by segmental differences or by suprasegmental differences or both. Studies from English suggest that suprasegmentals play little role in human spoken-word recognition; English stress, however, is nearly always unambiguously coded in segmental structure (vowel quality); this relationship is less close in Dutch. The present study directly compared the effects of segmental and suprasegmental mispronunciation on word recognition in Dutch. There was a strong effect of suprasegmental mispronunciation, suggesting that Dutch listeners do exploit suprasegmental information in word recognition. Previous findings indicating the effects of mis-stressing for Dutch differ with stress position were replicated only when segmental change was involved, suggesting that this is an effect of segmental rather than suprasegmental processing.
  • McQueen, J. M., & Cutler, A. (1997). Cognitive processes in speech perception. In W. J. Hardcastle, & J. D. Laver (Eds.), The handbook of phonetic sciences (pp. 556-585). Oxford: Blackwell.
  • Norris, D., McQueen, J. M., Cutler, A., & Butterfield, S. (1997). The possible-word constraint in the segmentation of continuous speech. Cognitive Psychology, 34, 191-243. doi:10.1006/cogp.1997.0671.

    Abstract

    We propose that word recognition in continuous speech is subject to constraints on what may constitute a viable word of the language. This Possible-Word Constraint (PWC) reduces activation of candidate words if their recognition would imply word status for adjacent input which could not be a word - for instance, a single consonant. In two word-spotting experiments, listeners found it much harder to detectapple,for example, infapple(where [f] alone would be an impossible word), than invuffapple(wherevuffcould be a word of English). We demonstrate that the PWC can readily be implemented in a competition-based model of continuous speech recognition, as a constraint on the process of competition between candidate words; where a stretch of speech between a candidate word and a (known or likely) word boundary is not a possible word, activation of the candidate word is reduced. This implementation accurately simulates both the present results and data from a range of earlier studies of speech segmentation.
  • Pallier, C., Cutler, A., & Sebastian-Galles, N. (1997). Prosodic structure and phonetic processing: A cross-linguistic study. In Proceedings of EUROSPEECH 97 (pp. 2131-2134). Grenoble, France: ESCA.

    Abstract

    Dutch and Spanish differ in how predictable the stress pattern is as a function of the segmental content: it is correlated with syllable weight in Dutch but not in Spanish. In the present study, two experiments were run to compare the abilities of Dutch and Spanish speakers to separately process segmental and stress information. It was predicted that the Spanish speakers would have more difficulty focusing on the segments and ignoring the stress pattern than the Dutch speakers. The task was a speeded classification task on CVCV syllables, with blocks of trials in which the stress pattern could vary versus blocks in which it was fixed. First, we found interference due to stress variability in both languages, suggesting that the processing of segmental information cannot be performed independently of stress. Second, the effect was larger for Spanish than for Dutch, suggesting that that the degree of interference from stress variation may be partially mitigated by the predictability of stress placement in the language.
  • Suomi, K., McQueen, J. M., & Cutler, A. (1997). Vowel harmony and speech segmentation in Finnish. Journal of Memory and Language, 36, 422-444. doi:10.1006/jmla.1996.2495.

    Abstract

    Finnish vowel harmony rules require that if the vowel in the first syllable of a word belongs to one of two vowel sets, then all subsequent vowels in that word must belong either to the same set or to a neutral set. A harmony mismatch between two syllables containing vowels from the opposing sets thus signals a likely word boundary. We report five experiments showing that Finnish listeners can exploit this information in an on-line speech segmentation task. Listeners found it easier to detect words likehymyat the end of the nonsense stringpuhymy(where there is a harmony mismatch between the first two syllables) than in the stringpyhymy(where there is no mismatch). There was no such effect, however, when the target words appeared at the beginning of the nonsense string (e.g.,hymypuvshymypy). Stronger harmony effects were found for targets containing front harmony vowels (e.g.,hymy) than for targets containing back harmony vowels (e.g.,paloinkypaloandkupalo). The same pattern of results appeared whether target position within the string was predictable or unpredictable. Harmony mismatch thus appears to provide a useful segmentation cue for the detection of word onsets in Finnish speech.
  • Butterfield, S., & Cutler, A. (1988). Segmentation errors by human listeners: Evidence for a prosodic segmentation strategy. In W. Ainsworth, & J. Holmes (Eds.), Proceedings of SPEECH ’88: Seventh Symposium of the Federation of Acoustic Societies of Europe: Vol. 3 (pp. 827-833). Edinburgh: Institute of Acoustics.
  • Cutler, A., Mehler, J., Norris, D., & Segui, J. (1988). Limits on bilingualism [Letters to Nature]. Nature, 340, 229-230. doi:10.1038/340229a0.

    Abstract

    SPEECH, in any language, is continuous; speakers provide few reliable cues to the boundaries of words, phrases, or other meaningful units. To understand speech, listeners must divide the continuous speech stream into portions that correspond to such units. This segmentation process is so basic to human language comprehension that psycholinguists long assumed that all speakers would do it in the same way. In previous research1,2, however, we reported that segmentation routines can be language-specific: speakers of French process spoken words syllable by syllable, but speakers of English do not. French has relatively clear syllable boundaries and syllable-based timing patterns, whereas English has relatively unclear syllable boundaries and stress-based timing; thus syllabic segmentation would work more efficiently in the comprehension of French than in the comprehension of English. Our present study suggests that at this level of language processing, there are limits to bilingualism: a bilingual speaker has one and only one basic language.
  • Cutler, A. (1988). The perfect speech error. In L. Hyman, & C. Li (Eds.), Language, speech and mind: Studies in honor of Victoria A. Fromkin (pp. 209-223). London: Croom Helm.
  • Cutler, A., & Norris, D. (1988). The role of strong syllables in segmentation for lexical access. Journal of Experimental Psychology: Human Perception and Performance, 14, 113-121. doi:10.1037/0096-1523.14.1.113.

    Abstract

    A model of speech segmentation in a stress language is proposed, according to which the occurrence of a strong syllable triggers segmentation of the speech signal, whereas occurrence of a weak syllable does not trigger segmentation. We report experiments in which listeners detected words embedded in nonsense bisyllables more slowly when the bisyllable had two strong syllables than when it had a strong and a weak syllable; mint was detected more slowly in mintayve than in mintesh. According to our proposed model, this result is an effect of segmentation: When the second syllable is strong, it is segmented from the first syllable, and successful detection of the embedded word therefore requires assembly of speech material across a segmentation position. Speech recognition models involving phonemic or syllabic recoding, or based on strictly left-to-right processes, do not predict this result. It is argued that segmentation at strong syllables in continuous speech recognition serves the purpose of detecting the most efficient locations at which to initiate lexical access. (C) 1988 by the American Psychological Association
  • Hawkins, J. A., & Cutler, A. (1988). Psycholinguistic factors in morphological asymmetry. In J. A. Hawkins (Ed.), Explaining language universals (pp. 280-317). Oxford: Blackwell.
  • Henderson, L., Coltheart, M., Cutler, A., & Vincent, N. (1988). Preface. Linguistics, 26(4), 519-520. doi:10.1515/ling.1988.26.4.519.
  • Mehta, G., & Cutler, A. (1988). Detection of target phonemes in spontaneous and read speech. Language and Speech, 31, 135-156.

    Abstract

    Although spontaneous speech occurs more frequently in most listeners’ experience than read speech, laboratory studies of human speech recognition typically use carefully controlled materials read from a script. The phonological and prosodic characteristics of spontaneous and read speech differ considerably, however, which suggests that laboratory results may not generalize to the recognition of spontaneous and read speech materials, and their response time to detect word-initial target phonemes was measured. Response were, overall, equally fast in each speech mode. However analysis of effects previously reported in phoneme detection studies revealed significant differences between speech modes. In read speech but not in spontaneous speech, later targets were detected more rapidly than earlier targets, and targets preceded by long words were detected more rapidly than targets preceded by short words. In contrast, in spontaneous speech but not in read speech, targets were detected more rapidly in accented than unaccented words and in strong than in weak syllables. An explanation for this pattern is offered in terms of characteristic prosodic differences between spontaneous and read speech. The results support claim from previous work that listeners pay great attention to prosodic information in the process of recognizing speech.
  • Norris, D., & Cutler, A. (1988). Speech recognition in French and English. MRC News, 39, 30-31.
  • Norris, D., & Cutler, A. (1988). The relative accessibility of phonemes and syllables. Perception and Psychophysics, 43, 541-550. Retrieved from http://www.psychonomic.org/search/view.cgi?id=8530.

    Abstract

    Previous research comparing detection times for syllables and for phonemes has consistently found that syllables are responded to faster than phonemes. This finding poses theoretical problems for strictly hierarchical models of speech recognition, in which smaller units should be able to be identified faster than larger units. However, inspection of the characteristics of previous experiments’stimuli reveals that subjects have been able to respond to syllables on the basis of only a partial analysis of the stimulus. In the present experiment, five groups of subjects listened to identical stimulus material. Phoneme and syllable monitoring under standard conditions was compared with monitoring under conditions in which near matches of target and stimulus occurred on no-response trials. In the latter case, when subjects were forced to analyze each stimulus fully, phonemes were detected faster than syllables.
  • Cutler, A., Mehler, J., Norris, D., & Segui, J. (1983). A language-specific comprehension strategy [Letters to Nature]. Nature, 304, 159-160. doi:10.1038/304159a0.

    Abstract

    Infants acquire whatever language is spoken in the environment into which they are born. The mental capability of the newborn child is not biased in any way towards the acquisition of one human language rather than another. Because psychologists who attempt to model the process of language comprehension are interested in the structure of the human mind, rather than in the properties of individual languages, strategies which they incorporate in their models are presumed to be universal, not language-specific. In other words, strategies of comprehension are presumed to be characteristic of the human language processing system, rather than, say, the French, English, or Igbo language processing systems. We report here, however, on a comprehension strategy which appears to be used by native speakers of French but not by native speakers of English.
  • Cutler, A. (1983). Lexical complexity and sentence processing. In G. B. Flores d'Arcais, & R. J. Jarvella (Eds.), The process of language understanding (pp. 43-79). Chichester, Sussex: Wiley.
  • Cutler, A., & Ladd, D. R. (Eds.). (1983). Prosody: Models and measurements. Heidelberg: Springer.
  • Cutler, A. (1983). Semantics, syntax and sentence accent. In M. Van den Broecke, & A. Cohen (Eds.), Proceedings of the Tenth International Congress of Phonetic Sciences (pp. 85-91). Dordrecht: Foris.
  • Cutler, A. (1983). Speakers’ conceptions of the functions of prosody. In A. Cutler, & D. R. Ladd (Eds.), Prosody: Models and measurements (pp. 79-91). Heidelberg: Springer.
  • Ladd, D. R., & Cutler, A. (1983). Models and measurements in the study of prosody. In A. Cutler, & D. R. Ladd (Eds.), Prosody: Models and measurements (pp. 1-10). Heidelberg: Springer.
  • Levelt, W. J. M., & Cutler, A. (1983). Prosodic marking in speech repair. Journal of semantics, 2, 205-217. doi:10.1093/semant/2.2.205.

    Abstract

    Spontaneous self-corrections in speech pose a communication problem; the speaker must make clear to the listener not only that the original Utterance was faulty, but where it was faulty and how the fault is to be corrected. Prosodic marking of corrections - making the prosody of the repair noticeably different from that of the original utterance - offers a resource which the speaker can exploit to provide the listener with such information. A corpus of more than 400 spontaneous speech repairs was analysed, and the prosodic characteristics compared with the syntactic and semantic characteristics of each repair. Prosodic marking showed no relationship at all with the syntactic characteristics of repairs. Instead, marking was associated with certain semantic factors: repairs were marked when the original utterance had been actually erroneous, rather than simply less appropriate than the repair; and repairs tended to be marked more often when the set of items encompassing the error and the repair was small rather than when it was large. These findings lend further weight to the characterization of accent as essentially semantic in function.
  • Cutler, A. (1981). Degrees of transparency in word formation. Canadian Journal of Linguistics, 26, 73-77.
  • Cutler, A. (1981). Making up materials is a confounded nuisance, or: Will we able to run any psycholinguistic experiments at all in 1990? Cognition, 10, 65-70. doi:10.1016/0010-0277(81)90026-3.
  • Cutler, A., & Darwin, C. J. (1981). Phoneme-monitoring reaction time and preceding prosody: Effects of stop closure duration and of fundamental frequency. Perception and Psychophysics, 29, 217-224. Retrieved from http://www.psychonomic.org/search/view.cgi?id=12660.

    Abstract

    In an earlier study, it was shown that listeners can use prosodic cues that predict where sentence stress will fall; phoneme-monitoring RTs are faster when the preceding prosody indicates that the word bearing the target will be stressed. Two experiments which further investigate this effect are described. In the first, it is shown that the duration of the closure preceding the release of the target stop consonant burst does not affect the RT advantage for stressed words. In the second, it is shown that fundamental frequency variation is not a necessary component of the prosodic variation that produces the predicted-stress effect. It is argued that sentence processing involves a very flexible use of prosodic information.
  • Cutler, A. (1981). The cognitive reality of suprasegmental phonology. In T. Myers, J. Laver, & J. Anderson (Eds.), The cognitive representation of speech (pp. 399-400). Amsterdam: North-Holland.
  • Cutler, A. (1981). The reliability of speech error data. Linguistics, 19, 561-582.
  • Fodor, J. A., & Cutler, A. (1981). Semantic focus and sentence comprehension. Cognition, 7, 49-59. doi:10.1016/0010-0277(79)90010-6.

    Abstract

    Reaction time to detect a phoneme target in a sentence was found to be faster when the word in which the target occurred formed part of the semantic focus of the sentence. Focus was determined by asking a question before the sentence; that part of the sentence which comprised the answer to the sentence was assumed to be focussed. This procedure made it possible to vary position offocus within the sentence while holding all acoustic aspects of the sentence itself constant. It is argued that sentence understanding is facilitated by rapid identification of focussed information. Since focussed words are usually accented, it is further argued that the active search for accented words demonstrated in previous research should be interpreted as a search for semantic focus.
  • Garnham, A., Shillcock, R. C., Brown, G. D. A., Mill, A. I. D., & Cutler, A. (1981). Slips of the tongue in the London-Lund corpus of spontaneous conversation. Linguistics, 19, 805-817.
  • Cutler, A. (1974). On saying what you mean without meaning what you say. In M. Galy, R. Fox, & A. Bruck (Eds.), Papers from the Tenth Regional Meeting, Chicago Linguistic Society (pp. 117-127). Chicago, Ill.: CLS.

Share this page