Anne Cutler †

Publications

Displaying 1 - 59 of 59
  • Choi, J., Broersma, M., & Cutler, A. (2015). Enhanced processing of a lost language: Linguistic knowledge or linguistic skill? In Proceedings of Interspeech 2015: 16th Annual Conference of the International Speech Communication Association (pp. 3110-3114).

    Abstract

    Same-different discrimination judgments for pairs of Korean stop consonants, or of Japanese syllables differing in phonetic segment length, were made by adult Korean adoptees in the Netherlands, by matched Dutch controls, and Korean controls. The adoptees did not outdo either control group on either task, although the same individuals had performed significantly better than matched controls on an identification learning task. This suggests that early exposure to multiple phonetic systems does not specifically improve acoustic-phonetic skills; rather, enhanced performance suggests retained language knowledge.
  • Cutler, A. (2015). Lexical stress in English pronunciation. In M. Reed, & J. M. Levis (Eds.), The Handbook of English Pronunciation (pp. 106-124). Chichester: Wiley.
  • Cutler, A. (2015). Representation of second language phonology. Applied Psycholinguistics, 36(1), 115-128. doi:10.1017/S0142716414000459.

    Abstract

    Orthographies encode phonological information only at the level of words (chiefly, the information encoded concerns phonetic segments; in some cases, tonal information or default stress may be encoded). Of primary interest to second language (L2) learners is whether orthography can assist in clarifying L2 phonological distinctions that are particularly difficult to perceive (e.g., where one native-language phonemic category captures two L2 categories). A review of spoken-word recognition evidence suggests that orthographic information can install knowledge of such a distinction in lexical representations but that this does not affect learners’ ability to perceive the phonemic distinction in speech. Words containing the difficult phonemes become even harder for L2 listeners to recognize, because perception maps less accurately to lexical content.
  • Ernestus, M., & Cutler, A. (2015). BALDEY: A database of auditory lexical decisions. Quarterly Journal of Experimental Psychology, 68, 1469-1488. doi:10.1080/17470218.2014.984730.

    Abstract

    In an auditory lexical decision experiment, 5,541 spoken content words and pseudo-words were presented to 20 native speakers of Dutch. The words vary in phonological makeup and in number of syllables and stress pattern, and are further representative of the native Dutch vocabulary in that most are morphologically complex, comprising two stems or one stem plus derivational and inflectional suffixes, with inflections representing both regular and irregular paradigms; the pseudo-words were matched in these respects to the real words. The BALDEY data file includes response times and accuracy rates, with for each item morphological information plus phonological and acoustic information derived from automatic phonemic segmentation of the stimuli. Two initial analyses illustrate how this data set can be used. First, we discuss several measures of the point at which a word has no further neighbors, and compare the degree to which each measure predicts our lexical decision response outcomes. Second, we investigate how well four different measures of frequency of occurrence (from written corpora, spoken corpora, subtitles and frequency ratings by 70 participants) predict the same outcomes. These analyses motivate general conclusions about the auditory lexical decision task. The (publicly available) BALDEY database lends itself to many further analyses.
  • Cooper, N., & Cutler, A. (2004). Perception of non-native phonemes in noise. In S. Kin, & M. J. Bae (Eds.), Proceedings of the 8th International Conference on Spoken Language Processing (Interspeech 2004-ICSLP) (pp. 469-472). Seoul: Sunjijn Printing Co.

    Abstract

    We report an investigation of the perception of American English phonemes by Dutch listeners proficient in English. Listeners identified either the consonant or the vowel in most possible English CV and VC syllables. The syllables were embedded in multispeaker babble at three signal-to-noise ratios (16 dB, 8 dB, and 0 dB). Effects of signal-to-noise ratio on vowel and consonant identification are discussed as a function of syllable position and of relationship to the native phoneme inventory. Comparison of the results with previously reported data from native listeners reveals that noise affected the responding of native and non-native listeners similarly.
  • Cutler, A., Norris, D., & Sebastián-Gallés, N. (2004). Phonemic repertoire and similarity within the vocabulary. In S. Kin, & M. J. Bae (Eds.), Proceedings of the 8th International Conference on Spoken Language Processing (Interspeech 2004-ICSLP) (pp. 65-68). Seoul: Sunjijn Printing Co.

    Abstract

    Language-specific differences in the size and distribution of the phonemic repertoire can have implications for the task facing listeners in recognising spoken words. A language with more phonemes will allow shorter words and reduced embedding of short words within longer ones, decreasing the potential for spurious lexical competitors to be activated by speech signals. We demonstrate that this is the case via comparative analyses of the vocabularies of English and Spanish. A language which uses suprasegmental as well as segmental contrasts, however, can substantially reduce the extent of spurious embedding.
  • Cutler, A. (2004). Segmentation of spoken language by normal adult listeners. In R. Kent (Ed.), MIT encyclopedia of communication sciences and disorders (pp. 392-395). Cambridge, MA: MIT Press.
  • Cutler, A., Weber, A., Smits, R., & Cooper, N. (2004). Patterns of English phoneme confusions by native and non-native listeners. Journal of the Acoustical Society of America, 116(6), 3668-3678. doi:10.1121/1.1810292.

    Abstract

    Native American English and non-native(Dutch)listeners identified either the consonant or the vowel in all possible American English CV and VC syllables. The syllables were embedded in multispeaker babble at three signal-to-noise ratios(0, 8, and 16 dB). The phoneme identification
    performance of the non-native listeners was less accurate than that of the native listeners. All listeners were adversely affected by noise. With these isolated syllables, initial segments were harder to identify than final segments. Crucially, the effects of language background and noise did not interact; the performance asymmetry between the native and non-native groups was not significantly different across signal-to-noise ratios. It is concluded that the frequently reported disproportionate difficulty of non-native listening under disadvantageous conditions is not due to a disproportionate increase in phoneme misidentifications.
  • Cutler, A. (2004). On spoken-word recognition in a second language. Newsletter, American Association of Teachers of Slavic and East European Languages, 47, 15-15.
  • Cutler, A., & Henton, C. G. (2004). There's many a slip 'twixt the cup and the lip. In H. Quené, & V. Van Heuven (Eds.), On speech and Language: Studies for Sieb G. Nooteboom (pp. 37-45). Utrecht: Netherlands Graduate School of Linguistics.

    Abstract

    The retiring academic may look back upon, inter alia, years of conference attendance. Speech error researchers are uniquely fortunate because they can collect data in any situation involving communication; accordingly, the retiring speech error researcher will have collected data at those conferences. We here address the issue of whether error data collected in situations involving conviviality (such as at conferences) is representative of error data in general. Our approach involved a comparison, across three levels of linguistic processing, between a specially constructed Conviviality Sample and the largest existing source of speech error data, the newly available Fromkin Speech Error Database. The results indicate that there are grounds for regarding the data in the Conviviality Sample as a better than average reflection of the true population of all errors committed. These findings encourage us to recommend further data collection in collaboration with like-minded colleagues.
  • Cutler, A. (2004). Twee regels voor academische vorming. In H. Procee (Ed.), Bij die wereld wil ik horen! Zesendertig columns en drie essays over de vorming tot academicus. (pp. 42-45). Amsterdam: Boom.
  • Cutler, A., Mister, E., Norris, D., & Sebastián-Gallés, N. (2004). La perception de la parole en espagnol: Un cas particulier? In L. Ferrand, & J. Grainger (Eds.), Psycholinguistique cognitive: Essais en l'honneur de Juan Segui (pp. 57-74). Brussels: De Boeck.
  • Indefrey, P., & Cutler, A. (2004). Prelexical and lexical processing in listening. In M. Gazzaniga (Ed.), The cognitive neurosciences III. (pp. 759-774). Cambridge, MA: MIT Press.

    Abstract

    This paper presents a meta-analysis of hemodynamic studies on passive auditory language processing. We assess the overlap of hemodynamic activation areas and activation maxima reported in experiments involving the presentation of sentences, words, pseudowords, or sublexical or non-linguistic auditory stimuli. Areas that have been reliably replicated are identified. The results of the meta-analysis are compared to electrophysiological, magnetencephalic (MEG), and clinical findings. It is concluded that auditory language input is processed in a left posterior frontal and bilateral temporal cortical network. Within this network, no processing leve l is related to a single cortical area. The temporal lobes seem to differ with respect to their involvement in post-lexical processing, in that the left temporal lobe has greater involvement than the right, and also in the degree of anatomical specialization for phonological, lexical, and sentence -level processing, with greater overlap on the right contrasting with a higher degree of differentiation on the left.
  • Weber, A., & Cutler, A. (2004). Lexical competition in non-native spoken-word recognition. Journal of Memory and Language, 50(1), 1-25. doi:10.1016/S0749-596X(03)00105-0.

    Abstract

    Four eye-tracking experiments examined lexical competition in non-native spoken-word recognition. Dutch listeners hearing English fixated longer on distractor pictures with names containing vowels that Dutch listeners are likely to confuse with vowels in a target picture name (pencil, given target panda) than on less confusable distractors (beetle, given target bottle). English listeners showed no such viewing time difference. The confusability was asymmetric: given pencil as target, panda did not distract more than distinct competitors. Distractors with Dutch names phonologically related to English target names (deksel, ‘lid,’ given target desk) also received longer fixations than distractors with phonologically unrelated names. Again, English listeners showed no differential effect. With the materials translated into Dutch, Dutch listeners showed no activation of the English words (desk, given target deksel). The results motivate two conclusions: native phonemic categories capture second-language input even when stored representations maintain a second-language distinction; and lexical competition is greater for non-native than for native listeners.
  • Cutler, A. (1994). How human speech recognition is affected by phonological diversity among languages. In R. Togneri (Ed.), Proceedings of the fifth Australian International Conference on Speech Science and Technology: Vol. 1 (pp. 285-288). Canberra: Australian Speech Science and Technology Association.

    Abstract

    Listeners process spoken language in ways which are adapted to the phonological structure of their native language. As a consequence, non-native speakers do not listen to a language in the same way as native speakers; moreover, listeners may use their native language listening procedures inappropriately with foreign input. With sufficient experience, however, it may be possible to inhibit this latter (counter-productive) behavior.
  • Cutler, A., Norris, D., & McQueen, J. M. (1994). Modelling lexical access from continuous speech input. Dokkyo International Review, 7, 193-215.

    Abstract

    The recognition of speech involves the segmentation of continuous utterances into their component words. Cross-linguistic evidence is briefly reviewed which suggests that although there are language-specific solutions to this segmentation problem, they have one thing in common: they are all based on language rhythm. In English, segmentation is stress-based: strong syllables are postulated to be the onsets of words. Segmentation, however, can also be achieved by a process of competition between activated lexical hypotheses, as in the Shortlist model. A series of experiments is summarised showing that segmentation of continuous speech depends on both lexical competition and a metrically-guided procedure. In the final section, the implementation of metrical segmentation in the Shortlist model is described: the activation of lexical hypotheses matching strong syllables in the input is boosted and that of hypotheses mismatching strong syllables in the input is penalised.
  • Cutler, A., & Otake, T. (1994). Mora or phoneme? Further evidence for language-specific listening. Journal of Memory and Language, 33, 824-844. doi:10.1006/jmla.1994.1039.

    Abstract

    Japanese listeners detect speech sound targets which correspond precisely to a mora (a phonological unit which is the unit of rhythm in Japanese) more easily than targets which do not. English listeners detect medial vowel targets more slowly than consonants. Six phoneme detection experiments investigated these effects in both subject populations, presented with native- and foreign-language input. Japanese listeners produced faster and more accurate responses to moraic than to nonmoraic targets both in Japanese and, where possible, in English; English listeners responded differently. The detection disadvantage for medial vowels appeared with English listeners both in English and in Japanese; again, Japanese listeners responded differently. Some processing operations which listeners apply to speech input are language-specific; these language-specific procedures, appropriate for listening to input in the native language, may be applied to foreign-language input irrespective of whether they remain appropriate.
  • Cutler, A., & Young, D. (1994). Rhythmic structure of word blends in English. In Proceedings of the Third International Conference on Spoken Language Processing (pp. 1407-1410). Kobe: Acoustical Society of Japan.

    Abstract

    Word blends combine fragments from two words, either in speech errors or when a new word is created. Previous work has demonstrated that in Japanese, such blends preserve moraic structure; in English they do not. A similar effect of moraic structure is observed in perceptual research on segmentation of continuous speech in Japanese; English listeners, by contrast, exploit stress units in segmentation, suggesting that a general rhythmic constraint may underlie both findings. The present study examined whether mis parallel would also hold for word blends. In spontaneous English polysyllabic blends, the source words were significantly more likely to be split before a strong than before a weak (unstressed) syllable, i.e. to be split at a stress unit boundary. In an experiment in which listeners were asked to identify the source words of blends, significantly more correct detections resulted when splits had been made before strong syllables. Word blending, like speech segmentation, appears to be constrained by language rhythm.
  • Cutler, A. (1994). The perception of rhythm in language. Cognition, 50, 79-81. doi:10.1016/0010-0277(94)90021-3.
  • Cutler, A., McQueen, J. M., Baayen, R. H., & Drexler, H. (1994). Words within words in a real-speech corpus. In R. Togneri (Ed.), Proceedings of the 5th Australian International Conference on Speech Science and Technology: Vol. 1 (pp. 362-367). Canberra: Australian Speech Science and Technology Association.

    Abstract

    In a 50,000-word corpus of spoken British English the occurrence of words embedded within other words is reported. Within-word embedding in this real speech sample is common, and analogous to the extent of embedding observed in the vocabulary. Imposition of a syllable boundary matching constraint reduces but by no means eliminates spurious embedding. Embedded words are most likely to overlap with the beginning of matrix words, and thus may pose serious problems for speech recognisers.
  • McQueen, J. M., Norris, D., & Cutler, A. (1994). Competition in spoken word recognition: Spotting words in other words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 621-638.

    Abstract

    Although word boundaries are rarely clearly marked, listeners can rapidly recognize the individual words of spoken sentences. Some theories explain this in terms of competition between multiply activated lexical hypotheses; others invoke sensitivity to prosodic structure. We describe a connectionist model, SHORTLIST, in which recognition by activation and competition is successful with a realistically sized lexicon. Three experiments are then reported in which listeners detected real words embedded in nonsense strings, some of which were themselves the onsets of longer words. Effects both of competition between words and of prosodic structure were observed, suggesting that activation and competition alone are not sufficient to explain word recognition in continuous speech. However, the results can be accounted for by a version of SHORTLIST that is sensitive to prosodic structure.
  • Norris, D., McQueen, J. M., & Cutler, A. (1994). Competition and segmentation in spoken word recognition. In Proceedings of the Third International Conference on Spoken Language Processing: Vol. 1 (pp. 401-404). Yokohama: PACIFICO.

    Abstract

    This paper describes recent experimental evidence which shows that models of spoken word recognition must incorporate both inhibition between competing lexical candidates and a sensitivity to metrical cues to lexical segmentation. A new version of the Shortlist [1][2] model incorporating the Metrical Segmentation Strategy [3] provides a detailed simulation of the data.
  • Botelho da Silva, T., & Cutler, A. (1993). Ill-formedness and transformability in Portuguese idioms. In C. Cacciari, & P. Tabossi (Eds.), Idioms: Processing, structure and interpretation (pp. 129-143). Hillsdale, NJ: Erlbaum.
  • Cutler, A. (1993). Language-specific processing: Does the evidence converge? In G. T. Altmann, & R. C. Shillcock (Eds.), Cognitive models of speech processing: The Sperlonga Meeting II (pp. 115-123). Hillsdale, NJ: Erlbaum.
  • Cutler, A. (1993). Phonological cues to open- and closed-class words in the processing of spoken sentences. Journal of Psycholinguistic Research, 22, 109-131.

    Abstract

    Evidence is presented that (a) the open and the closed word classes in English have different phonological characteristics, (b) the phonological dimension on which they differ is one to which listeners are highly sensitive, and (c) spoken open- and closed-class words produce different patterns of results in some auditory recognition tasks. What implications might link these findings? Two recent lines of evidence from disparate paradigms—the learning of an artificial language, and natural and experimentally induced misperception of juncture—are summarized, both of which suggest that listeners are sensitive to the phonological reflections of open- vs. closed-class word status. Although these correlates cannot be strictly necessary for efficient processing, if they are present listeners exploit them in making word class assignments. That such a use of phonological information is of value to listeners could be indirect evidence that open- vs. closed-class words undergo different processing operations. Parts of the research reported in this paper were carried out in collaboration with Sally Butterfield and David Carter, and supported by the Alvey Directorate (United Kingdom). Jonathan Stankler's master's research was supported by the Science and Engineering Research Council (United Kingdom). Thanks to all of the above, and to Merrill Garrett, Mike Kelly, James McQueen, and Dennis Norris for further assistance.
  • Cutler, A., Kearns, R., Norris, D., & Scott, D. R. (1993). Problems with click detection: Insights from cross-linguistic comparisons. Speech Communication, 13, 401-410. doi:10.1016/0167-6393(93)90038-M.

    Abstract

    Cross-linguistic comparisons may shed light on the levels of processing involved in the performance of psycholinguistic tasks. For instance, if the same pattern of results appears whether or not subjects understand the experimental materials, it may be concluded that the results do not reflect higher-level linguistic processing. In the present study, English and French listeners performed two tasks - click location and speeded click detection - with both English and French sentences, closely matched for syntactic and phonological structure. Clicks were located more accurately in open- than in closed-class words in both English and French; they were detected more rapidly in open- than in closed-class words in English, but not in French. The two listener groups produced the same pattern of responses, suggesting that higher-level linguistic processing was not involved in the listeners' responses. It is concluded that click detection tasks are primarily sensitive to low-level (e.g. acoustic) effects, and hence are not well suited to the investigation of linguistic processing.
  • Cutler, A. (1993). Segmentation problems, rhythmic solutions. Lingua, 92, 81-104. doi:10.1016/0024-3841(94)90338-7.

    Abstract

    The lexicon contains discrete entries, which must be located in speech input in order for speech to be understood; but the continuity of speech signals means that lexical access from spoken input involves a segmentation problem for listeners. The speech environment of prelinguistic infants may not provide special information to assist the infant listeners in solving this problem. Mature language users in possession of a lexicon might be thought to be able to avoid explicit segmentation of speech by relying on information from successful lexical access; however, evidence from adult perceptual studies indicates that listeners do use explicit segmentation procedures. These procedures differ across languages and seem to exploit language-specific rhythmic structure. Efficient as these procedures are, they may not have been developed in response to statistical properties of the input, because bilinguals, equally competent in two languages, apparently only possess one rhythmic segmentation procedure. The origin of rhythmic segmentation may therefore lie in the infant's exploitation of rhythm to solve the segmentation problem and gain a first toehold on lexical acquisition. Recent evidence from speech production and perception studies with prelinguistic infants supports the claim that infants are sensitive to rhythmic structure and its relationship to lexical segmentation.
  • Cutler, A. (1993). Segmenting speech in different languages. The Psychologist, 6(10), 453-455.
  • Cutler, A., & Mehler, J. (1993). The periodicity bias. Journal of Phonetics, 21, 101-108.
  • Jusczyk, P. W., Cutler, A., & Redanz, N. J. (1993). Infants’ preference for the predominant stress patterns of English words. Child Development, 64, 675-687. Retrieved from http://www.jstor.org/stable/1131210.

    Abstract

    One critical aspect of language acquisition is the development of a lexicon that associates sounds and meanings; but developing a lexicon first requires that the infant segment utterances into individual words. How might the infant begin this process? The present study was designed to examine the potential role that sensitivity to predominant stress patterns of words might play in lexical development. In English, by far the majority of words have stressed (strong) initial syllables. Experiment 1 of our study demonstrated that by 9 months of age American infants listen significantly longer to words with strong/weak stress patterns than to words with weak/strong stress patterns. However, Experiment 2 showed that no significant preferences for the predominant stress pattern appear with 6-month-old infants, which suggests that the preference develops as a result of increasing familiarity with the prosodic features of the native language. In a third experiment, 9-month-olds showed a preference for strong/weak patterns even when the speech input was low-pass filtered, which suggests that their preference is specifically for the prosodic structure of the words. Together the results suggest that attention to predominant stress patterns in the native language may form an important part of the infant's process of developing a lexicon.
  • Nix, A. J., Mehta, G., Dye, J., & Cutler, A. (1993). Phoneme detection as a tool for comparing perception of natural and synthetic speech. Computer Speech and Language, 7, 211-228. doi:10.1006/csla.1993.1011.

    Abstract

    On simple intelligibility measures, high-quality synthesiser output now scores almost as well as natural speech. Nevertheless, it is widely agreed that perception of synthetic speech is a harder task for listeners than perception of natural speech; in particular, it has been hypothesized that listeners have difficulty identifying phonemes in synthetic speech. If so, a simple measure of the speed with which a phoneme can be identified should prove a useful tool for comparing perception of synthetic and natural speech. The phoneme detection task was here used in three experiments comparing perception of natural and synthetic speech. In the first, response times to synthetic and natural targets were not significantly different, but in the second and third experiments response times to synthetic targets were significantly slower than to natural targets. A speed-accuracy tradeoff in the third experiment suggests that an important factor in this task is the response criterion adopted by subjects. It is concluded that the phoneme detection task is a useful tool for investigating phonetic processing of synthetic speech input, but subjects must be encouraged to adopt a response criterion which emphasizes rapid responding. When this is the case, significantly longer response times for synthetic targets can indicate a processing disadvantage for synthetic speech at an early level of phonetic analysis.
  • Otake, T., Hatano, G., Cutler, A., & Mehler, J. (1993). Mora or syllable? Speech segmentation in Japanese. Journal of Memory and Language, 32, 258-278. doi:10.1006/jmla.1993.1014.

    Abstract

    Four experiments examined segmentation of spoken Japanese words by native and non-native listeners. Previous studies suggested that language rhythm determines the segmentation unit most natural to native listeners: French has syllabic rhythm, and French listeners use the syllable in segmentation, while English has stress rhythm, and segmentation by English listeners is based on stress. The rhythm of Japanese is based on a subsyllabic unit, the mora. In the present experiments Japanese listeners′ response patterns were consistent with moraic segmentation; acoustic artifacts could not have determined the results since nonnative (English and French) listeners showed different response patterns with the same materials. Predictions of a syllabic hypothesis were disconfirmed in the Japanese listeners′ results; in contrast, French listeners showed a pattern of responses consistent with the syllabic hypothesis. The results provide further evidence that listeners′ segmentation of spoken words relies on procedures determined by the characteristic phonology of their native language.
  • Van Ooijen, B., Cutler, A., & Berinetto, P. M. (1993). Click detection in Italian and English. In Eurospeech 93: Vol. 1 (pp. 681-684). Berlin: ESCA.

    Abstract

    We report four experiments in which English and Italian monolinguals detected clicks in continous speech in their native language. Two of the experiments used an off-line location task, and two used an on-line reaction time task. Despite there being large differences between English and Italian with respect to rhythmic characteristics, very similar response patterns were found for the two language groups. It is concluded that the process of click detection operates independently from language-specific differences in perceptual processing at the sublexical level.
  • Young, D., Altmann, G. T., Cutler, A., & Norris, D. (1993). Metrical structure and the perception of time-compressed speech. In Eurospeech 93: Vol. 2 (pp. 771-774).

    Abstract

    In the absence of explicitly marked cues to word boundaries, listeners tend to segment spoken English at the onset of strong syllables. This may suggest that under difficult listening conditions, speech should be easier to recognize where strong syllables are word-initial. We report two experiments in which listeners were presented with sentences which had been time-compressed to make listening difficult. The first study contrasted sentences in which all content words began with strong syllables with sentences in which all content words began with weak syllables. The intelligibility of the two groups of sentences did not differ significantly. Apparent rhythmic effects in the results prompted a second experiment; however, no significant effects of systematic rhythmic manipulation were observed. In both experiments, the strongest predictor of intelligibility was the rated plausibility of the sentences. We conclude that listeners' recognition responses to time-compressed speech may be strongly subject to experiential bias; effects of rhythmic structure are most likely to show up also as bias effects.
  • Butterfield, S., & Cutler, A. (1988). Segmentation errors by human listeners: Evidence for a prosodic segmentation strategy. In W. Ainsworth, & J. Holmes (Eds.), Proceedings of SPEECH ’88: Seventh Symposium of the Federation of Acoustic Societies of Europe: Vol. 3 (pp. 827-833). Edinburgh: Institute of Acoustics.
  • Cutler, A., Mehler, J., Norris, D., & Segui, J. (1988). Limits on bilingualism [Letters to Nature]. Nature, 340, 229-230. doi:10.1038/340229a0.

    Abstract

    SPEECH, in any language, is continuous; speakers provide few reliable cues to the boundaries of words, phrases, or other meaningful units. To understand speech, listeners must divide the continuous speech stream into portions that correspond to such units. This segmentation process is so basic to human language comprehension that psycholinguists long assumed that all speakers would do it in the same way. In previous research1,2, however, we reported that segmentation routines can be language-specific: speakers of French process spoken words syllable by syllable, but speakers of English do not. French has relatively clear syllable boundaries and syllable-based timing patterns, whereas English has relatively unclear syllable boundaries and stress-based timing; thus syllabic segmentation would work more efficiently in the comprehension of French than in the comprehension of English. Our present study suggests that at this level of language processing, there are limits to bilingualism: a bilingual speaker has one and only one basic language.
  • Cutler, A. (1988). The perfect speech error. In L. Hyman, & C. Li (Eds.), Language, speech and mind: Studies in honor of Victoria A. Fromkin (pp. 209-223). London: Croom Helm.
  • Cutler, A., & Norris, D. (1988). The role of strong syllables in segmentation for lexical access. Journal of Experimental Psychology: Human Perception and Performance, 14, 113-121. doi:10.1037/0096-1523.14.1.113.

    Abstract

    A model of speech segmentation in a stress language is proposed, according to which the occurrence of a strong syllable triggers segmentation of the speech signal, whereas occurrence of a weak syllable does not trigger segmentation. We report experiments in which listeners detected words embedded in nonsense bisyllables more slowly when the bisyllable had two strong syllables than when it had a strong and a weak syllable; mint was detected more slowly in mintayve than in mintesh. According to our proposed model, this result is an effect of segmentation: When the second syllable is strong, it is segmented from the first syllable, and successful detection of the embedded word therefore requires assembly of speech material across a segmentation position. Speech recognition models involving phonemic or syllabic recoding, or based on strictly left-to-right processes, do not predict this result. It is argued that segmentation at strong syllables in continuous speech recognition serves the purpose of detecting the most efficient locations at which to initiate lexical access. (C) 1988 by the American Psychological Association
  • Hawkins, J. A., & Cutler, A. (1988). Psycholinguistic factors in morphological asymmetry. In J. A. Hawkins (Ed.), Explaining language universals (pp. 280-317). Oxford: Blackwell.
  • Henderson, L., Coltheart, M., Cutler, A., & Vincent, N. (1988). Preface. Linguistics, 26(4), 519-520. doi:10.1515/ling.1988.26.4.519.
  • Mehta, G., & Cutler, A. (1988). Detection of target phonemes in spontaneous and read speech. Language and Speech, 31, 135-156.

    Abstract

    Although spontaneous speech occurs more frequently in most listeners’ experience than read speech, laboratory studies of human speech recognition typically use carefully controlled materials read from a script. The phonological and prosodic characteristics of spontaneous and read speech differ considerably, however, which suggests that laboratory results may not generalize to the recognition of spontaneous and read speech materials, and their response time to detect word-initial target phonemes was measured. Response were, overall, equally fast in each speech mode. However analysis of effects previously reported in phoneme detection studies revealed significant differences between speech modes. In read speech but not in spontaneous speech, later targets were detected more rapidly than earlier targets, and targets preceded by long words were detected more rapidly than targets preceded by short words. In contrast, in spontaneous speech but not in read speech, targets were detected more rapidly in accented than unaccented words and in strong than in weak syllables. An explanation for this pattern is offered in terms of characteristic prosodic differences between spontaneous and read speech. The results support claim from previous work that listeners pay great attention to prosodic information in the process of recognizing speech.
  • Norris, D., & Cutler, A. (1988). Speech recognition in French and English. MRC News, 39, 30-31.
  • Norris, D., & Cutler, A. (1988). The relative accessibility of phonemes and syllables. Perception and Psychophysics, 43, 541-550. Retrieved from http://www.psychonomic.org/search/view.cgi?id=8530.

    Abstract

    Previous research comparing detection times for syllables and for phonemes has consistently found that syllables are responded to faster than phonemes. This finding poses theoretical problems for strictly hierarchical models of speech recognition, in which smaller units should be able to be identified faster than larger units. However, inspection of the characteristics of previous experiments’stimuli reveals that subjects have been able to respond to syllables on the basis of only a partial analysis of the stimulus. In the present experiment, five groups of subjects listened to identical stimulus material. Phoneme and syllable monitoring under standard conditions was compared with monitoring under conditions in which near matches of target and stimulus occurred on no-response trials. In the latter case, when subjects were forced to analyze each stimulus fully, phonemes were detected faster than syllables.
  • Cutler, A. (1986). Forbear is a homophone: Lexical prosody does not constrain lexical access. Language and Speech, 29, 201-220.

    Abstract

    Because stress can occur in any position within an Eglish word, lexical prosody could serve as a minimal distinguishing feature between pairs of words. However, most pairs of English words with stress pattern opposition also differ vocalically: OBject an obJECT, CONtent and content have different vowels in their first syllables an well as different stress patters. To test whether prosodic information is made use in auditory word recognition independently of segmental phonetic information, it is necessary to examine pairs like FORbear – forBEAR of TRUSty – trusTEE, semantically unrelated words which echbit stress pattern opposition but no segmental difference. In a cross-modal priming task, such words produce the priming effects characteristic of homophones, indicating that lexical prosody is not used in the same was as segmental structure to constrain lexical access.
  • Cutler, A. (1986). Phonological structure in speech recognition. Phonology Yearbook, 3, 161-178. Retrieved from http://www.jstor.org/stable/4615397.

    Abstract

    Two bodies of recent research from experimental psycholinguistics are summarised, each of which is centred upon a concept from phonology: LEXICAL STRESS and the SYLLABLE. The evidence indicates that neither construct plays a role in prelexical representations during speech recog- nition. Both constructs, however, are well supported by other performance evidence. Testing phonological claims against performance evidence from psycholinguistics can be difficult, since the results of studies designed to test processing models are often of limited relevance to phonological theory.
  • Cutler, A., & Swinney, D. A. (1986). Prosody and the development of comprehension. Journal of Child Language, 14, 145-167.

    Abstract

    Four studies are reported in which young children’s response time to detect word targets was measured. Children under about six years of age did not show response time advantage for accented target words which adult listeners show. When semantic focus of the target word was manipulated independently of accent, children of about five years of age showed an adult-like response time advantage for focussed targets, but children younger than five did not. Id is argued that the processing advantage for accented words reflect the semantic role of accent as an expression of sentence focus. Processing advantages for accented words depend on the prior development of representations of sentence semantic structure, including the concept of focus. The previous literature on the development of prosodic competence shows an apparent anomaly in that young children’s productive skills appear to outstrip their receptive skills; however, this anomaly disappears if very young children’s prosody is assumed to be produced without an underlying representation of the relationship between prosody and semantics.
  • Cutler, A., & Butterfield, S. (1986). The perceptual integrity of initial consonant clusters. In R. Lawrence (Ed.), Speech and Hearing: Proceedings of the Institute of Acoustics (pp. 31-36). Edinburgh: Institute of Acoustics.
  • Cutler, A., Mehler, J., Norris, D., & Segui, J. (1986). The syllable’s differing role in the segmentation of French and English. Journal of Memory and Language, 25, 385-400. doi:10.1016/0749-596X(86)90033-1.

    Abstract

    Speech segmentation procedures may differ in speakers of different languages. Earlier work based on French speakers listening to French words suggested that the syllable functions as a segmentation unit in speech processing. However, while French has relatively regular and clearly bounded syllables, other languages, such as English, do not. No trace of syllabifying segmentation was found in English listeners listening to English words, French words, or nonsense words. French listeners, however, showed evidence of syllabification even when they were listening to English words. We conclude that alternative segmentation routines are available to the human language processor. In some cases speech segmentation may involve the operation of more than one procedure
  • Cutler, A. (1986). Why readers of this newsletter should run cross-linguistic experiments. European Psycholinguistics Association Newsletter, 13, 4-8.
  • Cutler, A. (1984). Stress and accent in language production and understanding. In D. Gibbon, & H. Richter (Eds.), Intonation, accent and rhythm: Studies in discourse phonology (pp. 77-90). Berlin: de Gruyter.
  • Cutler, A., & Clifton Jr., C. (1984). The use of prosodic information in word recognition. In H. Bouma, & D. Bouwhuis (Eds.), Attention and Performance X: Control of Language Processes (pp. 183-196). Hillsdale, NJ: Erlbaum.
  • Cutler, A., & Clifton, Jr., C. (1984). The use of prosodic information in word recognition. In H. Bouma, & D. G. Bouwhuis (Eds.), Attention and performance X: Control of language processes (pp. 183-196). London: Erlbaum.

    Abstract

    In languages with variable stress placement, lexical stress patterns can convey information about word identity. The experiments reported here address the question of whether lexical stress information can be used in word recognition. The results allow the following conclusions: 1. Prior information as to the number of syllables and lexical stress patterns of words and nonwords does not facilitate lexical decision responses (Experiment 1). 2. The strong correspondences between grammatical category membership and stress pattern in bisyllabic English words (strong-weak stress being associated primarily with nouns, weak-strong with verbs) are not exploited in the recognition of isolated words (Experiment 2). 3. When a change in lexical stress also involves a change in vowel quality, i.e., a segmental as well as a suprasegmental alteration, effects on word recognition are greater when no segmental correlates of suprasegmental changes are involved (Experiments 2 and 3). 4. Despite the above finding, when all other factors are controlled, lexical stress information per se can indeed be shown to play a part in word-recognition process (Experiment 3).
  • Scott, D. R., & Cutler, A. (1984). Segmental phonology and the perception of syntactic structure. Journal of Verbal Learning and Verbal Behavior, 23, 450-466. Retrieved from http://www.sciencedirect.com/science//journal/00225371.

    Abstract

    Recent research in speech production has shown that syntactic structure is reflected in segmental phonology--the application of certain phonological rules of English (e.g., palatalization and alveolar flapping) is inhibited across phrase boundaries. We examined whether such segmental effects can be used in speech perception as cues to syntactic structure, and the relation between the use of these segmental features as syntactic markers in production and perception. Speakers of American English (a dialect in which the above segmental effects occur) could indeed use the segmental cues in syntax perception; speakers of British English (in which the effects do not occur) were unable to make use of them, while speakers of British English who were long-term residents of the United States showed intermediate performance.
  • Cutler, A., & Foss, D. (1977). On the role of sentence stress in sentence processing. Language and Speech, 20, 1-10.
  • Cutler, A. (1977). The context-dependence of "intonational meanings". In W. Beach, S. Fox, & S. Philosoph (Eds.), Papers from the Thirteenth Regional Meeting, Chicago Linguistic Society (pp. 104-115). Chicago, Ill.: CLS.
  • Cutler, A. (1977). The psychological reality of word formation and lexical stress rules. In E. Fischer-Jørgensen, J. Rischel, & N. Thorsen (Eds.), Proceedings of the Ninth International Congress of Phonetic Sciences: Vol. 2 (pp. 79-85). Copenhagen: Institute of Phonetics, University of Copenhagen.
  • Fay, D., & Cutler, A. (1977). Malapropisms and the structure of the mental lexicon. Linguistic Inquiry, 8, 505-520. Retrieved from http://www.jstor.org/stable/4177997.
  • Cutler, A. (1975). Sentence stress and sentence comprehension. PhD Thesis, University of Texas, Austin.
  • Cutler, A., & Fay, D. (1975). You have a Dictionary in your Head, not a Thesaurus. Texas Linguistic Forum, 1, 27-40.

Share this page