Anne Cutler †

Publications

Displaying 1 - 12 of 12
  • Choi, J., Broersma, M., & Cutler, A. (2015). Enhanced processing of a lost language: Linguistic knowledge or linguistic skill? In Proceedings of Interspeech 2015: 16th Annual Conference of the International Speech Communication Association (pp. 3110-3114).

    Abstract

    Same-different discrimination judgments for pairs of Korean stop consonants, or of Japanese syllables differing in phonetic segment length, were made by adult Korean adoptees in the Netherlands, by matched Dutch controls, and Korean controls. The adoptees did not outdo either control group on either task, although the same individuals had performed significantly better than matched controls on an identification learning task. This suggests that early exposure to multiple phonetic systems does not specifically improve acoustic-phonetic skills; rather, enhanced performance suggests retained language knowledge.
  • Cutler, A., & Bruggeman, L. (2013). Vocabulary structure and spoken-word recognition: Evidence from French reveals the source of embedding asymmetry. In Proceedings of INTERSPEECH: 14th Annual Conference of the International Speech Communication Association (pp. 2812-2816).

    Abstract

    Vocabularies contain hundreds of thousands of words built from only a handful of phonemes, so that inevitably longer words tend to contain shorter ones. In many languages (but not all) such embedded words occur more often word-initially than word-finally, and this asymmetry, if present, has farreaching consequences for spoken-word recognition. Prior research had ascribed the asymmetry to suffixing or to effects of stress (in particular, final syllables containing the vowel schwa). Analyses of the standard French vocabulary here reveal an effect of suffixing, as predicted by this account, and further analyses of an artificial variety of French reveal that extensive final schwa has an independent and additive effect in promoting the embedding asymmetry.
  • Braun, B., Lemhöfer, K., & Cutler, A. (2008). English word stress as produced by English and Dutch speakers: The role of segmental and suprasegmental differences. In Proceedings of Interspeech 2008 (pp. 1953-1953).

    Abstract

    It has been claimed that Dutch listeners use suprasegmental cues (duration, spectral tilt) more than English listeners in distinguishing English word stress. We tested whether this asymmetry also holds in production, comparing the realization of English word stress by native English speakers and Dutch speakers. Results confirmed that English speakers centralize unstressed vowels more, while Dutch speakers of English make more use of suprasegmental differences.
  • Braun, B., Tagliapietra, L., & Cutler, A. (2008). Contrastive utterances make alternatives salient: Cross-modal priming evidence. In Proceedings of Interspeech 2008 (pp. 69-69).

    Abstract

    Sentences with contrastive intonation are assumed to presuppose contextual alternatives to the accented elements. Two cross-modal priming experiments tested in Dutch whether such contextual alternatives are automatically available to listeners. Contrastive associates – but not non- contrastive associates - were facilitated only when primes were produced in sentences with contrastive intonation, indicating that contrastive intonation makes unmentioned contextual alternatives immediately available. Possibly, contrastive contours trigger a “presupposition resolution mechanism” by which these alternatives become salient.
  • Cutler, A., McQueen, J. M., Butterfield, S., & Norris, D. (2008). Prelexically-driven perceptual retuning of phoneme boundaries. In Proceedings of Interspeech 2008 (pp. 2056-2056).

    Abstract

    Listeners heard an ambiguous /f-s/ in nonword contexts where only one of /f/ or /s/ was legal (e.g., frul/*srul or *fnud/snud). In later categorisation of a phonetic continuum from /f/ to /s/, their category boundaries had shifted; hearing -rul led to expanded /f/ categories, -nud expanded /s/. Thus phonotactic sequence information alone induces perceptual retuning of phoneme category boundaries; lexical access is not required.
  • McQueen, J. M., Norris, D., & Cutler, A. (2001). Can lexical knowledge modulate prelexical representations over time? In R. Smits, J. Kingston, T. Neary, & R. Zondervan (Eds.), Proceedings of the workshop on Speech Recognition as Pattern Classification (SPRAAC) (pp. 145-150). Nijmegen: Max Planck Institute for Psycholinguistics.

    Abstract

    The results of a study on perceptual learning are reported. Dutch subjects made lexical decisions on a list of words and nonwords. Embedded in the list were either [f]- or [s]-final words in which the final fricative had been replaced by an ambiguous sound, midway between [f] and [s]. One group of listeners heard ambiguous [f]- final Dutch words like [kara?] (based on karaf, carafe) and unambiguous [s]-final words (e.g., karkas, carcase). A second group heard the reverse (e.g., ambiguous [karka?] and unambiguous karaf). After this training phase, listeners labelled ambiguous fricatives on an [f]- [s] continuum. The subjects who had heard [?] in [f]- final words categorised these fricatives as [f] reliably more often than those who had heard [?] in [s]-final words. These results suggest that speech recognition is dynamic: the system adjusts to the constraints of each particular listening situation. The lexicon can provide this adjustment process with a training signal.
  • Moore, R. K., & Cutler, A. (2001). Constraints on theories of human vs. machine recognition of speech. In R. Smits, J. Kingston, T. Neary, & R. Zondervan (Eds.), Proceedings of the workshop on Speech Recognition as Pattern Classification (SPRAAC) (pp. 145-150). Nijmegen: Max Planck Institute for Psycholinguistics.

    Abstract

    The central issues in the study of speech recognition by human listeners (HSR) and of automatic speech recognition (ASR) are clearly comparable; nevertheless the research communities that concern themselves with ASR and HSR are largely distinct. This paper compares the research objectives of the two fields, and attempts to draw informative lessons from one to the other.
  • Otake, T., & Cutler, A. (2001). Recognition of (almost) spoken words: Evidence from word play in Japanese. In P. Dalsgaard (Ed.), Proceedings of EUROSPEECH 2001 (pp. 465-468).

    Abstract

    Current models of spoken-word recognition assume automatic activation of multiple candidate words fully or partially compatible with the speech input. We propose that listeners make use of this concurrent activation in word play such as punning. Distortion in punning should ideally involve no more than a minimal contrastive deviation between two words, namely a phoneme. Moreover, we propose that this metric of similarity does not presuppose phonemic awareness on the part of the punster. We support these claims with an analysis of modern and traditional puns in Japanese (in which phonemic awareness in language users is not encouraged by alphabetic orthography). For both data sets, the results support the predictions. Punning draws on basic processes of spokenword recognition, common across languages.
  • Warner, N., Jongman, A., Mucke, D., & Cutler, A. (2001). The phonological status of schwa insertion in Dutch: An EMA study. In B. Maassen, W. Hulstijn, R. Kent, H. Peters, & P. v. Lieshout (Eds.), Speech motor control in normal and disordered speech: 4th International Speech Motor Conference (pp. 86-89). Nijmegen: Vantilt.

    Abstract

    Articulatory data are used to address the question of whether Dutch schwa insertion is a phonological or a phonetic process. By investigating tongue tip raising and dorsal lowering, we show that /l/ when it appears before inserted schwa is a light /l/, just as /l/ before an underlying schwa is, and unlike the dark /l/ before a consonant in non-insertion productions of the same words. The fact that inserted schwa can condition the light/dark /l/ alternation shows that schwa insertion involves the phonological insertion of a segment rather than phonetic adjustments to articulations.
  • Cutler, A., Van Ooijen, B., & Norris, D. (1999). Vowels, consonants, and lexical activation. In J. Ohala, Y. Hasegawa, M. Ohala, D. Granville, & A. Bailey (Eds.), Proceedings of the Fourteenth International Congress of Phonetic Sciences: Vol. 3 (pp. 2053-2056). Berkeley: University of California.

    Abstract

    Two lexical decision studies examined the effects of single-phoneme mismatches on lexical activation in spoken-word recognition. One study was carried out in English, and involved spoken primes and visually presented lexical decision targets. The other study was carried out in Dutch, and primes and targets were both presented auditorily. Facilitation was found only for spoken targets preceded immediately by spoken primes; no facilitation occurred when targets were presented visually, or when intervening input occurred between prime and target. The effects of vowel mismatches and consonant mismatches were equivalent.
  • Shattuck-Hufnagel, S., & Cutler, A. (1999). The prosody of speech error corrections revisited. In J. Ohala, Y. Hasegawa, M. Ohala, D. Granville, & A. Bailey (Eds.), Proceedings of the Fourteenth International Congress of Phonetic Sciences: Vol. 2 (pp. 1483-1486). Berkely: University of California.

    Abstract

    A corpus of digitized speech errors is used to compare the prosody of correction patterns for word-level vs. sound-level errors. Results for both peak F0 and perceived prosodic markedness confirm that speakers are more likely to mark corrections of word-level errors than corrections of sound-level errors, and that errors ambiguous between word-level and soundlevel (such as boat for moat) show correction patterns like those for sound level errors. This finding increases the plausibility of the claim that word-sound-ambiguous errors arise at the same level of processing as sound errors that do not form words.
  • Scott, D. R., & Cutler, A. (1982). Segmental cues to syntactic structure. In Proceedings of the Institute of Acoustics 'Spectral Analysis and its Use in Underwater Acoustics' (pp. E3.1-E3.4). London: Institute of Acoustics.

Share this page