Anne Cutler †

Publications

Displaying 1 - 17 of 17
  • Asano, Y., Yuan, C., Grohe, A.-K., Weber, A., Antoniou, M., & Cutler, A. (2020). Uptalk interpretation as a function of listening experience. In N. Minematsu, M. Kondo, T. Arai, & R. Hayashi (Eds.), Proceedings of Speech Prosody 2020 (pp. 735-739). Tokyo: ISCA. doi:10.21437/SpeechProsody.2020-150.

    Abstract

    The term “uptalk” describes utterance-final pitch rises that carry no sentence-structural information. Uptalk is usually dialectal or sociolectal, and Australian English (AusEng) is particularly known for this attribute. We ask here whether experience with an uptalk variety affects listeners’ ability to categorise rising pitch contours on the basis of the timing and height of their onset and offset. Listeners were two groups of English-speakers (AusEng, and American English), and three groups of listeners with L2 English: one group with Mandarin as L1 and experience of listening to AusEng, one with German as L1 and experience of listening to AusEng, and one with German as L1 but no AusEng experience. They heard nouns (e.g. flower, piano) in the framework “Got a NOUN”, each ending with a pitch rise artificially manipulated on three contrasts: low vs. high rise onset, low vs. high rise offset and early vs. late rise onset. Their task was to categorise the tokens as “question” or “statement”, and we analysed the effect of the pitch contrasts on their judgements. Only the native AusEng listeners were able to use the pitch contrasts systematically in making these categorisations.
  • Yu, J., Mailhammer, R., & Cutler, A. (2020). Vocabulary structure affects word recognition: Evidence from German listeners. In N. Minematsu, M. Kondo, T. Arai, & R. Hayashi (Eds.), Proceedings of Speech Prosody 2020 (pp. 474-478). Tokyo: ISCA. doi:10.21437/SpeechProsody.2020-97.

    Abstract

    Lexical stress is realised similarly in English, German, and
    Dutch. On a suprasegmental level, stressed syllables tend to be
    longer and more acoustically salient than unstressed syllables;
    segmentally, vowels in unstressed syllables are often reduced.
    The frequency of unreduced unstressed syllables (where only
    the suprasegmental cues indicate lack of stress) however,
    differs across the languages. The present studies test whether
    listener behaviour is affected by these vocabulary differences,
    by investigating German listeners’ use of suprasegmental cues
    to lexical stress in German and English word recognition. In a
    forced-choice identification task, German listeners correctly
    assigned single-syllable fragments (e.g., Kon-) to one of two
    words differing in stress (KONto, konZEPT). Thus, German
    listeners can exploit suprasegmental information for
    identifying words. German listeners also performed above
    chance in a similar task in English (with, e.g., DIver, diVERT),
    i.e., their sensitivity to these cues also transferred to a nonnative
    language. An English listener group, in contrast, failed
    in the English fragment task. These findings mirror vocabulary
    patterns: German has more words with unreduced unstressed
    syllables than English does.
  • Choi, J., Broersma, M., & Cutler, A. (2015). Enhanced processing of a lost language: Linguistic knowledge or linguistic skill? In Proceedings of Interspeech 2015: 16th Annual Conference of the International Speech Communication Association (pp. 3110-3114).

    Abstract

    Same-different discrimination judgments for pairs of Korean stop consonants, or of Japanese syllables differing in phonetic segment length, were made by adult Korean adoptees in the Netherlands, by matched Dutch controls, and Korean controls. The adoptees did not outdo either control group on either task, although the same individuals had performed significantly better than matched controls on an identification learning task. This suggests that early exposure to multiple phonetic systems does not specifically improve acoustic-phonetic skills; rather, enhanced performance suggests retained language knowledge.
  • Cutler, A. (2015). Lexical stress in English pronunciation. In M. Reed, & J. M. Levis (Eds.), The Handbook of English Pronunciation (pp. 106-124). Chichester: Wiley.
  • Cutler, A., & Bruggeman, L. (2013). Vocabulary structure and spoken-word recognition: Evidence from French reveals the source of embedding asymmetry. In Proceedings of INTERSPEECH: 14th Annual Conference of the International Speech Communication Association (pp. 2812-2816).

    Abstract

    Vocabularies contain hundreds of thousands of words built from only a handful of phonemes, so that inevitably longer words tend to contain shorter ones. In many languages (but not all) such embedded words occur more often word-initially than word-finally, and this asymmetry, if present, has farreaching consequences for spoken-word recognition. Prior research had ascribed the asymmetry to suffixing or to effects of stress (in particular, final syllables containing the vowel schwa). Analyses of the standard French vocabulary here reveal an effect of suffixing, as predicted by this account, and further analyses of an artificial variety of French reveal that extensive final schwa has an independent and additive effect in promoting the embedding asymmetry.
  • Cutler, A. (2001). Entries on: Acquisition of language by non-human primates; bilingualism; compound (linguistic); development of language-specific phonology; gender (linguistic); grammar; infant speech perception; language; lexicon; morphology; motor theory of speech perception; perception of second languages; phoneme; phonological store; phonology; prosody; sign language; slips of the tongue; speech perception; speech production; stress (linguistic); syntax; word recognition; words. In P. Winn (Ed.), Dictionary of biological psychology. London: Routledge.
  • Cutler, A., McQueen, J. M., Norris, D., & Somejuan, A. (2001). The roll of the silly ball. In E. Dupoux (Ed.), Language, brain and cognitive development: Essays in honor of Jacques Mehler (pp. 181-194). Cambridge, MA: MIT Press.
  • McQueen, J. M., Norris, D., & Cutler, A. (2001). Can lexical knowledge modulate prelexical representations over time? In R. Smits, J. Kingston, T. Neary, & R. Zondervan (Eds.), Proceedings of the workshop on Speech Recognition as Pattern Classification (SPRAAC) (pp. 145-150). Nijmegen: Max Planck Institute for Psycholinguistics.

    Abstract

    The results of a study on perceptual learning are reported. Dutch subjects made lexical decisions on a list of words and nonwords. Embedded in the list were either [f]- or [s]-final words in which the final fricative had been replaced by an ambiguous sound, midway between [f] and [s]. One group of listeners heard ambiguous [f]- final Dutch words like [kara?] (based on karaf, carafe) and unambiguous [s]-final words (e.g., karkas, carcase). A second group heard the reverse (e.g., ambiguous [karka?] and unambiguous karaf). After this training phase, listeners labelled ambiguous fricatives on an [f]- [s] continuum. The subjects who had heard [?] in [f]- final words categorised these fricatives as [f] reliably more often than those who had heard [?] in [s]-final words. These results suggest that speech recognition is dynamic: the system adjusts to the constraints of each particular listening situation. The lexicon can provide this adjustment process with a training signal.
  • Moore, R. K., & Cutler, A. (2001). Constraints on theories of human vs. machine recognition of speech. In R. Smits, J. Kingston, T. Neary, & R. Zondervan (Eds.), Proceedings of the workshop on Speech Recognition as Pattern Classification (SPRAAC) (pp. 145-150). Nijmegen: Max Planck Institute for Psycholinguistics.

    Abstract

    The central issues in the study of speech recognition by human listeners (HSR) and of automatic speech recognition (ASR) are clearly comparable; nevertheless the research communities that concern themselves with ASR and HSR are largely distinct. This paper compares the research objectives of the two fields, and attempts to draw informative lessons from one to the other.
  • Otake, T., & Cutler, A. (2001). Recognition of (almost) spoken words: Evidence from word play in Japanese. In P. Dalsgaard (Ed.), Proceedings of EUROSPEECH 2001 (pp. 465-468).

    Abstract

    Current models of spoken-word recognition assume automatic activation of multiple candidate words fully or partially compatible with the speech input. We propose that listeners make use of this concurrent activation in word play such as punning. Distortion in punning should ideally involve no more than a minimal contrastive deviation between two words, namely a phoneme. Moreover, we propose that this metric of similarity does not presuppose phonemic awareness on the part of the punster. We support these claims with an analysis of modern and traditional puns in Japanese (in which phonemic awareness in language users is not encouraged by alphabetic orthography). For both data sets, the results support the predictions. Punning draws on basic processes of spokenword recognition, common across languages.
  • Warner, N., Jongman, A., Mucke, D., & Cutler, A. (2001). The phonological status of schwa insertion in Dutch: An EMA study. In B. Maassen, W. Hulstijn, R. Kent, H. Peters, & P. v. Lieshout (Eds.), Speech motor control in normal and disordered speech: 4th International Speech Motor Conference (pp. 86-89). Nijmegen: Vantilt.

    Abstract

    Articulatory data are used to address the question of whether Dutch schwa insertion is a phonological or a phonetic process. By investigating tongue tip raising and dorsal lowering, we show that /l/ when it appears before inserted schwa is a light /l/, just as /l/ before an underlying schwa is, and unlike the dark /l/ before a consonant in non-insertion productions of the same words. The fact that inserted schwa can condition the light/dark /l/ alternation shows that schwa insertion involves the phonological insertion of a segment rather than phonetic adjustments to articulations.
  • Cutler, A. (1987). Components of prosodic effects in speech recognition. In Proceedings of the Eleventh International Congress of Phonetic Sciences: Vol. 1 (pp. 84-87). Tallinn: Academy of Sciences of the Estonian SSR, Institute of Language and Literature.

    Abstract

    Previous research has shown that listeners use the prosodic structure of utterances in a predictive fashion in sentence comprehension, to direct attention to accented words. Acoustically identical words spliced into sentence contexts arc responded to differently if the prosodic structure of the context is \ aricd: when the preceding prosody indicates that the word will he accented, responses are faster than when the preceding prosodv is inconsistent with accent occurring on that word. In the present series of experiments speech hybridisation techniques were first used to interchange the timing patterns within pairs of prosodic variants of utterances, independently of the pitch and intensity contours. The time-adjusted utterances could then serve as a basis lor the orthogonal manipulation of the three prosodic dimensions of pilch, intensity and rhythm. The overall pattern of results showed that when listeners use prosody to predict accent location, they do not simply rely on a single prosodic dimension, hut exploit the interaction between pitch, intensity and rhythm.
  • Cutler, A. (1987). Speaking for listening. In A. Allport, D. MacKay, W. Prinz, & E. Scheerer (Eds.), Language perception and production: Relationships between listening, speaking, reading and writing (pp. 23-40). London: Academic Press.

    Abstract

    Speech production is constrained at all levels by the demands of speech perception. The speaker's primary aim is successful communication, and to this end semantic, syntactic and lexical choices are directed by the needs of the listener. Even at the articulatory level, some aspects of production appear to be perceptually constrained, for example the blocking of phonological distortions under certain conditions. An apparent exception to this pattern is word boundary information, which ought to be extremely useful to listeners, but which is not reliably coded in speech. It is argued that the solution to this apparent problem lies in rethinking the concept of the boundary of the lexical access unit. Speech rhythm provides clear information about the location of stressed syllables, and listeners do make use of this information. If stressed syllables can serve as the determinants of word lexical access codes, then once again speakers are providing precisely the necessary form of speech information to facilitate perception.
  • Cutler, A., & Carter, D. (1987). The prosodic structure of initial syllables in English. In J. Laver, & M. Jack (Eds.), Proceedings of the European Conference on Speech Technology: Vol. 1 (pp. 207-210). Edinburgh: IEE.
  • Cutler, A. (1984). Stress and accent in language production and understanding. In D. Gibbon, & H. Richter (Eds.), Intonation, accent and rhythm: Studies in discourse phonology (pp. 77-90). Berlin: de Gruyter.
  • Cutler, A., & Clifton Jr., C. (1984). The use of prosodic information in word recognition. In H. Bouma, & D. Bouwhuis (Eds.), Attention and Performance X: Control of Language Processes (pp. 183-196). Hillsdale, NJ: Erlbaum.
  • Cutler, A., & Clifton, Jr., C. (1984). The use of prosodic information in word recognition. In H. Bouma, & D. G. Bouwhuis (Eds.), Attention and performance X: Control of language processes (pp. 183-196). London: Erlbaum.

    Abstract

    In languages with variable stress placement, lexical stress patterns can convey information about word identity. The experiments reported here address the question of whether lexical stress information can be used in word recognition. The results allow the following conclusions: 1. Prior information as to the number of syllables and lexical stress patterns of words and nonwords does not facilitate lexical decision responses (Experiment 1). 2. The strong correspondences between grammatical category membership and stress pattern in bisyllabic English words (strong-weak stress being associated primarily with nouns, weak-strong with verbs) are not exploited in the recognition of isolated words (Experiment 2). 3. When a change in lexical stress also involves a change in vowel quality, i.e., a segmental as well as a suprasegmental alteration, effects on word recognition are greater when no segmental correlates of suprasegmental changes are involved (Experiments 2 and 3). 4. Despite the above finding, when all other factors are controlled, lexical stress information per se can indeed be shown to play a part in word-recognition process (Experiment 3).

Share this page