Anne Cutler †

Publications

Displaying 1 - 34 of 34
  • Broersma, M., & Cutler, A. (2011). Competition dynamics of second-language listening. Quarterly Journal of Experimental Psychology, 64, 74-95. doi:10.1080/17470218.2010.499174.

    Abstract

    Spoken-word recognition in a nonnative language is particularly difficult where it depends on discrimination between confusable phonemes. Four experiments here examine whether this difficulty is in part due to phantom competition from “near-words” in speech. Dutch listeners confuse English /aelig/ and /ε/, which could lead to the sequence daf being interpreted as deaf, or lemp being interpreted as lamp. In auditory lexical decision, Dutch listeners indeed accepted such near-words as real English words more often than English listeners did. In cross-modal priming, near-words extracted from word or phrase contexts (daf from DAFfodil, lemp from eviL EMPire) induced activation of corresponding real words (deaf; lamp) for Dutch, but again not for English, listeners. Finally, by the end of untruncated carrier words containing embedded words or near-words (definite; daffodil) no activation of the real embedded forms (deaf in definite) remained for English or Dutch listeners, but activation of embedded near-words (deaf in daffodil) did still remain, for Dutch listeners only. Misinterpretation of the initial vowel here favoured the phantom competitor and disfavoured the carrier (lexically represented as containing a different vowel). Thus, near-words compete for recognition and continue competing for longer than actually embedded words; nonnative listening indeed involves phantom competition.
  • Cutler, A. (2011). Listening to REAL second language. AATSEEL Newsletter, 54(3), 14.
  • Johnson, E. K., Westrek, E., Nazzi, T., & Cutler, A. (2011). Infant ability to tell voices apart rests on language experience. Developmental Science, 14(5), 1002-1011. doi:10.1111/j.1467-7687.2011.01052.x.

    Abstract

    A visual fixation study tested whether seven-month-olds can discriminate between different talkers. The infants were first habituated to talkers producing sentences in either a familiar or unfamiliar language, then heard test sentences from previously unheard speakers, either in the language used for habituation, or in another language. When the language at test mismatched that in habituation, infants always noticed the change. When language remained constant and only talker altered, however, infants detected the change only if the language was the native tongue. Adult listeners with a different native tongue than the infants did not reproduce the discriminability patterns shown by the infants, and infants detected neither voice nor language changes in reversed speech; both these results argue against explanation of the native-language voice discrimination in terms of acoustic properties of the stimuli. The ability to identify talkers is, like many other perceptual abilities, strongly influenced by early life experience.
  • Tuinman, A., & Cutler, A. (2011). L1 knowledge and the perception of casual speech processes in L2. In M. Wrembel, M. Kul, & K. Dziubalska-Kolaczyk (Eds.), Achievements and perspectives in SLA of speech: New Sounds 2010. Volume I (pp. 289-301). Frankfurt am Main: Peter Lang.

    Abstract

    Every language manifests casual speech processes, and hence every second language too. This study examined how listeners deal with second-language casual speech processes, as a function of the processes in their native language. We compared a match case, where a second-language process t/-reduction) is also operative in native speech, with a mismatch case, where a second-language process (/r/-insertion) is absent from native speech. In each case native and non-native listeners judged stimuli in which a given phoneme (in sentence context) varied along a continuum from absent to present. Second-language listeners in general mimicked native performance in the match case, but deviated significantly from native performance in the mismatch case. Together these results make it clear that the mapping from first to second language is as important in the interpretation of casual speech processes as in other dimensions of speech perception. Unfamiliar casual speech processes are difficult to adapt to in a second language. Casual speech processes that are already familiar from native speech, however, are easy to adapt to; indeed, our results even suggest that it is possible for subtle difference in their occurrence patterns across the two languages to be detected,and to be accommodated to in second-language listening
  • Tuinman, A., Mitterer, H., & Cutler, A. (2011). Perception of intrusive /r/ in English by native, cross-language and cross-dialect listeners. Journal of the Acoustical Society of America, 130, 1643-1652. doi:10.1121/1.3619793.

    Abstract

    In sequences such as law and order, speakers of British English often insert /r/ between law and and. Acoustic analyses revealed such “intrusive” /r/ to be significantly shorter than canonical /r/. In a 2AFC experiment, native listeners heard British English sentences in which /r/ duration was manipulated across a word boundary [e.g., saw (r)ice], and orthographic and semantic factors were varied. These listeners responded categorically on the basis of acoustic evidence for /r/ alone, reporting ice after short /r/s, rice after long /r/s; orthographic and semantic factors had no effect. Dutch listeners proficient in English who heard the same materials relied less on durational cues than the native listeners, and were affected by both orthography and semantic bias. American English listeners produced intermediate responses to the same materials, being sensitive to duration (less so than native, more so than Dutch listeners), and to orthography (less so than the Dutch), but insensitive to the semantic manipulation. Listeners from language communities without common use of intrusive /r/ may thus interpret intrusive /r/ as canonical /r/, with a language difference increasing this propensity more than a dialect difference. Native listeners, however, efficiently distinguish intrusive from canonical /r/ by exploiting the relevant acoustic variation.
  • Cutler, A., & Broersma, M. (2005). Phonetic precision in listening. In W. J. Hardcastle, & J. M. Beck (Eds.), A figure of speech: A Festschrift for John Laver (pp. 63-91). Mahwah, NJ: Erlbaum.
  • Cutler, A., Klein, W., & Levinson, S. C. (2005). The cornerstones of twenty-first century psycholinguistics. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 1-20). Mahwah, NJ: Erlbaum.
  • Cutler, A., Smits, R., & Cooper, N. (2005). Vowel perception: Effects of non-native language vs. non-native dialect. Speech Communication, 47(1-2), 32-42. doi:10.1016/j.specom.2005.02.001.

    Abstract

    Three groups of listeners identified the vowel in CV and VC syllables produced by an American English talker. The listeners were (a) native speakers of American English, (b) native speakers of Australian English (different dialect), and (c) native speakers of Dutch (different language). The syllables were embedded in multispeaker babble at three signal-to-noise ratios (0 dB, 8 dB, and 16 dB). The identification performance of native listeners was significantly better than that of listeners with another language but did not significantly differ from the performance of listeners with another dialect. Dialect differences did however affect the type of perceptual confusions which listeners made; in particular, the Australian listeners’ judgements of vowel tenseness were more variable than the American listeners’ judgements, which may be ascribed to cross-dialectal differences in this vocalic feature. Although listening difficulty can result when speech input mismatches the native dialect in terms of the precise cues for and boundaries of phonetic categories, the difficulty is very much less than that which arises when speech input mismatches the native language in terms of the repertoire of phonemic categories available.
  • Cutler, A. (2005). Why is it so hard to understand a second language in noise? Newsletter, American Association of Teachers of Slavic and East European Languages, 48, 16-16.
  • Cutler, A. (2005). Lexical stress. In D. B. Pisoni, & R. E. Remez (Eds.), The handbook of speech perception (pp. 264-289). Oxford: Blackwell.
  • Goudbeek, M., Smits, R., Cutler, A., & Swingley, D. (2005). Acquiring auditory and phonetic categories. In H. Cohen, & C. Lefebvre (Eds.), Handbook of categorization in cognitive science (pp. 497-513). Amsterdam: Elsevier.
  • Kooijman, V., Hagoort, P., & Cutler, A. (2005). Electrophysiological evidence for prelinguistic infants' word recognition in continuous speech. Cognitive Brain Research, 24(1), 109-116. doi:10.1016/j.cogbrainres.2004.12.009.

    Abstract

    Children begin to talk at about age one. The vocabulary they need to do so must be built on perceptual evidence and, indeed, infants begin to recognize spoken words long before they talk. Most of the utterances infants hear, however, are continuous, without pauses between words, so constructing a vocabulary requires them to decompose continuous speech in order to extract the individual words. Here, we present electrophysiological evidence that 10-month-old infants recognize two-syllable words they have previously heard only in isolation when these words are presented anew in continuous speech. Moreover, they only need roughly the first syllable of the word to begin doing this. Thus, prelinguistic infants command a highly efficient procedure for segmentation and recognition of spoken words in the absence of an existing vocabulary, allowing them to tackle effectively the problem of bootstrapping a lexicon out of the highly variable, continuous speech signals in their environment.
  • Sharp, D. J., Scott, S. K., Cutler, A., & Wise, R. J. S. (2005). Lexical retrieval constrained by sound structure: The role of the left inferior frontal gyrus. Brain and Language, 92(3), 309-319. doi:10.1016/j.bandl.2004.07.002.

    Abstract

    Positron emission tomography was used to investigate two competing hypotheses about the role of the left inferior frontal gyrus (IFG) in word generation. One proposes a domain-specific organization, with neural activation dependent on the type of information being processed, i.e., surface sound structure or semantic. The other proposes a process-specific organization, with activation dependent on processing demands, such as the amount of selection needed to decide between competing lexical alternatives. In a novel word retrieval task, word reconstruction (WR), subjects generated real words from heard non-words by the substitution of either a vowel or consonant. Both types of lexical retrieval, informed by sound structure alone, produced activation within anterior and posterior left IFG regions. Within these regions there was greater activity for consonant WR, which is more difficult and imposes greater processing demands. These results support a process-specific organization of the anterior left IFG.
  • Van Donselaar, W., Koster, M., & Cutler, A. (2005). Exploring the role of lexical stress in lexical recognition. Quarterly Journal of Experimental Psychology, 58A(2), 251-273. doi:10.1080/02724980343000927.

    Abstract

    Three cross-modal priming experiments examined the role of suprasegmental information in the processing of spoken words. All primes consisted of truncated spoken Dutch words. Recognition of visually presented word targets was facilitated by prior auditory presentation of the first two syllables of the same words as primes, but only if they were appropriately stressed (e.g., OKTOBER preceded by okTO-); inappropriate stress, compatible with another word (e.g., OKTOBER preceded by OCto-, the beginning of octopus), produced inhibition. Monosyllabic fragments (e.g., OC-) also produced facilitation when appropriately stressed; if inappropriately stressed, they produced neither facilitation nor inhibition. The bisyllabic fragments that were compatible with only one word produced facilitation to semantically associated words, but inappropriate stress caused no inhibition of associates. The results are explained within a model of spoken-word recognition involving competition between simultaneously activated phonological representations followed by activation of separate conceptual representations for strongly supported lexical candidates; at the level of the phonological representations, activation is modulated by both segmental and suprasegmental information.
  • Warner, N., Smits, R., McQueen, J. M., & Cutler, A. (2005). Phonological and statistical effects on timing of speech perception: Insights from a database of Dutch diphone perception. Speech Communication, 46(1), 53-72. doi:10.1016/j.specom.2005.01.003.

    Abstract

    We report detailed analyses of a very large database on timing of speech perception collected by Smits et al. (Smits, R., Warner, N., McQueen, J.M., Cutler, A., 2003. Unfolding of phonetic information over time: A database of Dutch diphone perception. J. Acoust. Soc. Am. 113, 563–574). Eighteen listeners heard all possible diphones of Dutch, gated in portions of varying size and presented without background noise. The present report analyzes listeners’ responses across gates in terms of phonological features (voicing, place, and manner for consonants; height, backness, and length for vowels). The resulting patterns for feature perception differ from patterns reported when speech is presented in noise. The data are also analyzed for effects of stress and of phonological context (neighboring vowel vs. consonant); effects of these factors are observed to be surprisingly limited. Finally, statistical effects, such as overall phoneme frequency and transitional probabilities, along with response biases, are examined; these too exercise only limited effects on response patterns. The results suggest highly accurate speech perception on the basis of acoustic information alone.
  • Warner, N., Kim, J., Davis, C., & Cutler, A. (2005). Use of complex phonological patterns in speech processing: Evidence from Korean. Journal of Linguistics, 41(2), 353-387. doi:10.1017/S0022226705003294.

    Abstract

    Korean has a very complex phonology, with many interacting alternations. In a coronal-/i/ sequence, depending on the type of phonological boundary present, alternations such as palatalization, nasal insertion, nasal assimilation, coda neutralization, and intervocalic voicing can apply. This paper investigates how the phonological patterns of Korean affect processing of morphemes and words. Past research on languages such as English, German, Dutch, and Finnish has shown that listeners exploit syllable structure constraints in processing speech and segmenting it into words. The current study shows that in parsing speech, listeners also use much more complex patterns that relate the surface phonological string to various boundaries.
  • Costa, A., Cutler, A., & Sebastian-Galles, N. (1998). Effects of phoneme repertoire on phoneme decision. Perception and Psychophysics, 60, 1022-1031.

    Abstract

    In three experiments, listeners detected vowel or consonant targets in lists of CV syllables constructed from five vowels and five consonants. Responses were faster in a predictable context (e.g., listening for a vowel target in a list of syllables all beginning with the same consonant) than in an unpredictable context (e.g., listening for a vowel target in a list of syllables beginning with different consonants). In Experiment 1, the listeners’ native language was Dutch, in which vowel and consonant repertoires are similar in size. The difference between predictable and unpredictable contexts was comparable for vowel and consonant targets. In Experiments 2 and 3, the listeners’ native language was Spanish, which has four times as many consonants as vowels; here effects of an unpredictable consonant context on vowel detection were significantly greater than effects of an unpredictable vowel context on consonant detection. This finding suggests that listeners’ processing of phonemes takes into account the constitution of their language’s phonemic repertoire and the implications that this has for contextual variability.
  • Cutler, A. (1998). Prosodic structure and word recognition. In A. D. Friederici (Ed.), Language comprehension: A biological perspective (pp. 41-70). Heidelberg: Springer.
  • Kuijpers, C. T., Coolen, R., Houston, D., & Cutler, A. (1998). Using the head-turning technique to explore cross-linguistic performance differences. In C. Rovee-Collier, L. Lipsitt, & H. Hayne (Eds.), Advances in infancy research: Vol. 12 (pp. 205-220). Stamford: Ablex.
  • McQueen, J. M., & Cutler, A. (1998). Morphology in word recognition. In A. M. Zwicky, & A. Spencer (Eds.), The handbook of morphology (pp. 406-427). Oxford: Blackwell.
  • Cutler, A., & Butterfield, S. (1990). Durational cues to word boundaries in clear speech. Speech Communication, 9, 485-495.

    Abstract

    One of a listener’s major tasks in understanding continuous speech in segmenting the speech signal into separate words. When listening conditions are difficult, speakers can help listeners by deliberately clear speech. We found that speakers do indeed attempt to makr word boundaries; moreover, they differentiate between word boundaries in a way which suggest they are sensitive to listener needs. Application of heuristic segmentation strategies makes word boundaries before strong syllables easiest for listeners to perceive; but under difficult listening conditions speakers pay more attention to marking word boundaries before weak syllables, i.e. they mark those boundaries which are otherwise particularly hard to perceive.
  • Cutler, A., McQueen, J. M., & Robinson, K. (1990). Elizabeth and John: Sound patterns of men’s and women’s names. Journal of Linguistics, 26, 471-482. doi:10.1017/S0022226700014754.
  • Cutler, A. (1990). From performance to phonology: Comments on Beckman and Edwards's paper. In J. Kingston, & M. Beckman (Eds.), Papers in laboratory phonology I: Between the grammar and physics of speech (pp. 208-214). Cambridge: Cambridge University Press.
  • Cutler, A. (1990). Exploiting prosodic probabilities in speech segmentation. In G. Altmann (Ed.), Cognitive models of speech processing: Psycholinguistic and computational perspectives (pp. 105-121). Cambridge, MA: MIT Press.
  • Cutler, A., & Scott, D. R. (1990). Speaker sex and perceived apportionment of talk. Applied Psycholinguistics, 11, 253-272. doi:10.1017/S0142716400008882.

    Abstract

    It is a widely held belief that women talk more than men; but experimental evidence has suggested that this belief is mistaken. The present study investigated whether listener bias contributes to this mistake. Dialogues were recorded in mixed-sex and single-sex versions, and male and female listeners judged the proportions of talk contributed to the dialogues by each participant. Female contributions to mixed-sex dialogues were rated as greater than male contributions by both male and female listeners. Female contributions were more likely to be overestimated when they were speaking a dialogue part perceived as probably female than when they were speaking a dialogue part perceived as probably male. It is suggested that the misestimates are due to a complex of factors that may involve both perceptual effects such as misjudgment of rates of speech and sociological effects such as attitudes to social roles and perception of power relations.
  • Mehler, J., & Cutler, A. (1990). Psycholinguistic implications of phonological diversity among languages. In M. Piattelli-Palmerini (Ed.), Cognitive science in Europe: Issues and trends (pp. 119-134). Rome: Golem.
  • Beattie, G. W., Cutler, A., & Pearson, M. (1982). Why is Mrs Thatcher interrupted so often? [Letters to Nature]. Nature, 300, 744-747. doi:10.1038/300744a0.

    Abstract

    If a conversation is to proceed smoothly, the participants have to take turns to speak. Studies of conversation have shown that there are signals which speakers give to inform listeners that they are willing to hand over the conversational turn1−4. Some of these signals are part of the text (for example, completion of syntactic segments), some are non-verbal (such as completion of a gesture), but most are carried by the pitch, timing and intensity pattern of the speech; for example, both pitch and loudness tend to drop particularly low at the end of a speaker's turn. When one speaker interrupts another, the two can be said to be disputing who has the turn. Interruptions can occur because one participant tries to dominate or disrupt the conversation. But it could also be the case that mistakes occur in the way these subtle turn-yielding signals are transmitted and received. We demonstrate here that many interruptions in an interview with Mrs Margaret Thatcher, the British Prime Minister, occur at points where independent judges agree that her turn appears to have finished. It is suggested that she is unconsciously displaying turn-yielding cues at certain inappropriate points. The turn-yielding cues responsible are identified.
  • Cutler, A. (1982). Idioms: the older the colder. Linguistic Inquiry, 13(2), 317-320. Retrieved from http://www.jstor.org/stable/4178278?origin=JSTOR-pdf.
  • Cutler, A., & Fay, D. A. (1982). One mental lexicon, phonologically arranged: Comments on Hurford’s comments. Linguistic Inquiry, 13, 107-113. Retrieved from http://www.jstor.org/stable/4178262.
  • Cutler, A. (1982). Prosody and sentence perception in English. In J. Mehler, E. C. Walker, & M. Garrett (Eds.), Perspectives on mental representation: Experimental and theoretical studies of cognitive processes and capacities (pp. 201-216). Hillsdale, N.J: Erlbaum.
  • Cutler, A., & Foss, D. (1977). On the role of sentence stress in sentence processing. Language and Speech, 20, 1-10.
  • Fay, D., & Cutler, A. (1977). Malapropisms and the structure of the mental lexicon. Linguistic Inquiry, 8, 505-520. Retrieved from http://www.jstor.org/stable/4177997.
  • Cutler, A. (1976). High-stress words are easier to perceive than low-stress words, even when they are equally stressed. Texas Linguistic Forum, 2, 53-57.
  • Cutler, A. (1976). Phoneme-monitoring reaction time as a function of preceding intonation contour. Perception and Psychophysics, 20, 55-60. Retrieved from http://www.psychonomic.org/search/view.cgi?id=18194.

    Abstract

    An acoustically invariant one-word segment occurred in two versions of one syntactic context. In one version, the preceding intonation contour indicated that a stress would fall at the point where this word occurred. In the other version, the preceding contour predicted reduced stress at that point. Reaction time to the initial phoneme of the word was faster in the former case, despite the fact that no acoustic correlates of stress were present. It is concluded that a part of the sentence comprehension process is the prediction of upcoming sentence accents.

Share this page