Anne Cutler †

Publications

Displaying 1 - 18 of 18
  • Bruggeman, L., & Cutler, A. (2019). The dynamics of lexical activation and competition in bilinguals’ first versus second language. In S. Calhoun, P. Escudero, M. Tabain, & P. Warren (Eds.), Proceedings of the 19th International Congress of Phonetic Sciences (ICPhS 20195) (pp. 1342-1346). Canberra, Australia: Australasian Speech Science and Technology Association Inc.

    Abstract

    Speech input causes listeners to activate multiple
    candidate words which then compete with one
    another. These include onset competitors, that share a
    beginning (bumper, butter), but also, counterintuitively,
    rhyme competitors, sharing an ending
    (bumper, jumper). In L1, competition is typically
    stronger for onset than for rhyme. In L2, onset
    competition has been attested but rhyme competition
    has heretofore remained largely unexamined. We
    assessed L1 (Dutch) and L2 (English) word
    recognition by the same late-bilingual individuals. In
    each language, eye gaze was recorded as listeners
    heard sentences and viewed sets of drawings: three
    unrelated, one depicting an onset or rhyme competitor
    of a word in the input. Activation patterns revealed
    substantial onset competition but no significant
    rhyme competition in either L1 or L2. Rhyme
    competition may thus be a “luxury” feature of
    maximally efficient listening, to be abandoned when
    resources are scarcer, as in listening by late
    bilinguals, in either language.
  • Cutler, A., Burchfield, A., & Antoniou, M. (2019). A criterial interlocutor tally for successful talker adaptation? In S. Calhoun, P. Escudero, M. Tabain, & P. Warren (Eds.), Proceedings of the 19th International Congress of Phonetic Sciences (ICPhS 20195) (pp. 1485-1489). Canberra, Australia: Australasian Speech Science and Technology Association Inc.

    Abstract

    Part of the remarkable efficiency of listening is
    accommodation to unfamiliar talkers’ specific
    pronunciations by retuning of phonemic intercategory
    boundaries. Such retuning occurs in second
    (L2) as well as first language (L1); however, recent
    research with emigrés revealed successful adaptation
    in the environmental L2 but, unprecedentedly, not in
    L1 despite continuing L1 use. A possible explanation
    involving relative exposure to novel talkers is here
    tested in heritage language users with Mandarin as
    family L1 and English as environmental language. In
    English, exposure to an ambiguous sound in
    disambiguating word contexts prompted the expected
    adjustment of phonemic boundaries in subsequent
    categorisation. However, no adjustment occurred in
    Mandarin, again despite regular use. Participants
    reported highly asymmetric interlocutor counts in the
    two languages. We conclude that successful retuning
    ability requires regular exposure to novel talkers in
    the language in question, a criterion not met for the
    emigrés’ or for these heritage users’ L1.
  • Joo, H., Jang, J., Kim, S., Cho, T., & Cutler, A. (2019). Prosodic structural effects on coarticulatory vowel nasalization in Australian English in comparison to American English. In S. Calhoun, P. Escudero, M. Tabain, & P. Warren (Eds.), Proceedings of the 19th International Congress of Phonetic Sciences (ICPhS 20195) (pp. 835-839). Canberra, Australia: Australasian Speech Science and Technology Association Inc.

    Abstract

    This study investigates effects of prosodic factors (prominence, boundary) on coarticulatory Vnasalization in Australian English (AusE) in CVN and NVC in comparison to those in American English
    (AmE). As in AmE, prominence was found to
    lengthen N, but to reduce V-nasalization, enhancing N’s nasality and V’s orality, respectively (paradigmatic contrast enhancement). But the prominence effect in CVN was more robust than that in AmE. Again similar to findings in AmE, boundary
    induced a reduction of N-duration and V-nasalization phrase-initially (syntagmatic contrast enhancement), and increased the nasality of both C and V phrasefinally.
    But AusE showed some differences in terms
    of the magnitude of V nasalization and N duration. The results suggest that the linguistic contrast enhancements underlie prosodic-structure modulation of coarticulatory V-nasalization in
    comparable ways across dialects, while the fine phonetic detail indicates that the phonetics-prosody interplay is internalized in the individual dialect’s phonetic grammar.
  • Nazzi, T., & Cutler, A. (2019). How consonants and vowels shape spoken-language recognition. Annual Review of Linguistics, 5, 25-47. doi:10.1146/annurev-linguistics-011718-011919.

    Abstract

    All languages instantiate a consonant/vowel contrast. This contrast has processing consequences at different levels of spoken-language recognition throughout the lifespan. In adulthood, lexical processing is more strongly associated with consonant than with vowel processing; this has been demonstrated across 13 languages from seven language families and in a variety of auditory lexical-level tasks (deciding whether a spoken input is a word, spotting a real word embedded in a minimal context, reconstructing a word minimally altered into a pseudoword, learning new words or the “words” of a made-up language), as well as in written-word tasks involving phonological processing. In infancy, a consonant advantage in word learning and recognition is found to emerge during development in some languages, though possibly not in others, revealing that the stronger lexicon–consonant association found in adulthood is learned. Current research is evaluating the relative contribution of the early acquisition of the acoustic/phonetic and lexical properties of the native language in the emergence of this association
  • Costa, A., Cutler, A., & Sebastian-Galles, N. (1998). Effects of phoneme repertoire on phoneme decision. Perception and Psychophysics, 60, 1022-1031.

    Abstract

    In three experiments, listeners detected vowel or consonant targets in lists of CV syllables constructed from five vowels and five consonants. Responses were faster in a predictable context (e.g., listening for a vowel target in a list of syllables all beginning with the same consonant) than in an unpredictable context (e.g., listening for a vowel target in a list of syllables beginning with different consonants). In Experiment 1, the listeners’ native language was Dutch, in which vowel and consonant repertoires are similar in size. The difference between predictable and unpredictable contexts was comparable for vowel and consonant targets. In Experiments 2 and 3, the listeners’ native language was Spanish, which has four times as many consonants as vowels; here effects of an unpredictable consonant context on vowel detection were significantly greater than effects of an unpredictable vowel context on consonant detection. This finding suggests that listeners’ processing of phonemes takes into account the constitution of their language’s phonemic repertoire and the implications that this has for contextual variability.
  • Cutler, A., & Otake, T. (1998). Assimilation of place in Japanese and Dutch. In R. Mannell, & J. Robert-Ribes (Eds.), Proceedings of the Fifth International Conference on Spoken Language Processing: vol. 5 (pp. 1751-1754). Sydney: ICLSP.

    Abstract

    Assimilation of place of articulation across a nasal and a following stop consonant is obligatory in Japanese, but not in Dutch. In four experiments the processing of assimilated forms by speakers of Japanese and Dutch was compared, using a task in which listeners blended pseudo-word pairs such as ranga-serupa. An assimilated blend of this pair would be rampa, an unassimilated blend rangpa. Japanese listeners produced significantly more assimilated than unassimilated forms, both with pseudo-Japanese and pseudo-Dutch materials, while Dutch listeners produced significantly more unassimilated than assimilated forms in each materials set. This suggests that Japanese listeners, whose native-language phonology involves obligatory assimilation constraints, represent the assimilated nasals in nasal-stop sequences as unmarked for place of articulation, while Dutch listeners, who are accustomed to hearing unassimilated forms, represent the same nasal segments as marked for place of articulation.
  • Cutler, A. (1998). How listeners find the right words. In Proceedings of the Sixteenth International Congress on Acoustics: Vol. 2 (pp. 1377-1380). Melville, NY: Acoustical Society of America.

    Abstract

    Languages contain tens of thousands of words, but these are constructed from a tiny handful of phonetic elements. Consequently, words resemble one another, or can be embedded within one another, a coup stick snot with standing. me process of spoken-word recognition by human listeners involves activation of multiple word candidates consistent with the input, and direct competition between activated candidate words. Further, human listeners are sensitive, at an early, prelexical, stage of speeeh processing, to constraints on what could potentially be a word of the language.
  • Cutler, A., Treiman, R., & Van Ooijen, B. (1998). Orthografik inkoncistensy ephekts in foneme detektion? In R. Mannell, & J. Robert-Ribes (Eds.), Proceedings of the Fifth International Conference on Spoken Language Processing: Vol. 6 (pp. 2783-2786). Sydney: ICSLP.

    Abstract

    The phoneme detection task is widely used in spoken word recognition research. Alphabetically literate participants, however, are more used to explicit representations of letters than of phonemes. The present study explored whether phoneme detection is sensitive to how target phonemes are, or may be, orthographically realised. Listeners detected the target sounds [b,m,t,f,s,k] in word-initial position in sequences of isolated English words. Response times were faster to the targets [b,m,t], which have consistent word-initial spelling, than to the targets [f,s,k], which are inconsistently spelled, but only when listeners’ attention was drawn to spelling by the presence in the experiment of many irregularly spelled fillers. Within the inconsistent targets [f,s,k], there was no significant difference between responses to targets in words with majority and minority spellings. We conclude that performance in the phoneme detection task is not necessarily sensitive to orthographic effects, but that salient orthographic manipulation can induce such sensitivity.
  • Cutler, A. (1998). The recognition of spoken words with variable representations. In D. Duez (Ed.), Proceedings of the ESCA Workshop on Sound Patterns of Spontaneous Speech (pp. 83-92). Aix-en-Provence: Université de Aix-en-Provence.
  • McQueen, J. M., & Cutler, A. (1998). Spotting (different kinds of) words in (different kinds of) context. In R. Mannell, & J. Robert-Ribes (Eds.), Proceedings of the Fifth International Conference on Spoken Language Processing: Vol. 6 (pp. 2791-2794). Sydney: ICSLP.

    Abstract

    The results of a word-spotting experiment are presented in which Dutch listeners tried to spot different types of bisyllabic Dutch words embedded in different types of nonsense contexts. Embedded verbs were not reliably harder to spot than embedded nouns; this suggests that nouns and verbs are recognised via the same basic processes. Iambic words were no harder to spot than trochaic words, suggesting that trochaic words are not in principle easier to recognise than iambic words. Words were harder to spot in consonantal contexts (i.e., contexts which themselves could not be words) than in longer contexts which contained at least one vowel (i.e., contexts which, though not words, were possible words of Dutch). A control experiment showed that this difference was not due to acoustic differences between the words in each context. The results support the claim that spoken-word recognition is sensitive to the viability of sound sequences as possible words.
  • Cutler, A. (1986). Forbear is a homophone: Lexical prosody does not constrain lexical access. Language and Speech, 29, 201-220.

    Abstract

    Because stress can occur in any position within an Eglish word, lexical prosody could serve as a minimal distinguishing feature between pairs of words. However, most pairs of English words with stress pattern opposition also differ vocalically: OBject an obJECT, CONtent and content have different vowels in their first syllables an well as different stress patters. To test whether prosodic information is made use in auditory word recognition independently of segmental phonetic information, it is necessary to examine pairs like FORbear – forBEAR of TRUSty – trusTEE, semantically unrelated words which echbit stress pattern opposition but no segmental difference. In a cross-modal priming task, such words produce the priming effects characteristic of homophones, indicating that lexical prosody is not used in the same was as segmental structure to constrain lexical access.
  • Cutler, A. (1986). Phonological structure in speech recognition. Phonology Yearbook, 3, 161-178. Retrieved from http://www.jstor.org/stable/4615397.

    Abstract

    Two bodies of recent research from experimental psycholinguistics are summarised, each of which is centred upon a concept from phonology: LEXICAL STRESS and the SYLLABLE. The evidence indicates that neither construct plays a role in prelexical representations during speech recog- nition. Both constructs, however, are well supported by other performance evidence. Testing phonological claims against performance evidence from psycholinguistics can be difficult, since the results of studies designed to test processing models are often of limited relevance to phonological theory.
  • Cutler, A., & Swinney, D. A. (1986). Prosody and the development of comprehension. Journal of Child Language, 14, 145-167.

    Abstract

    Four studies are reported in which young children’s response time to detect word targets was measured. Children under about six years of age did not show response time advantage for accented target words which adult listeners show. When semantic focus of the target word was manipulated independently of accent, children of about five years of age showed an adult-like response time advantage for focussed targets, but children younger than five did not. Id is argued that the processing advantage for accented words reflect the semantic role of accent as an expression of sentence focus. Processing advantages for accented words depend on the prior development of representations of sentence semantic structure, including the concept of focus. The previous literature on the development of prosodic competence shows an apparent anomaly in that young children’s productive skills appear to outstrip their receptive skills; however, this anomaly disappears if very young children’s prosody is assumed to be produced without an underlying representation of the relationship between prosody and semantics.
  • Cutler, A., & Butterfield, S. (1986). The perceptual integrity of initial consonant clusters. In R. Lawrence (Ed.), Speech and Hearing: Proceedings of the Institute of Acoustics (pp. 31-36). Edinburgh: Institute of Acoustics.
  • Cutler, A., Mehler, J., Norris, D., & Segui, J. (1986). The syllable’s differing role in the segmentation of French and English. Journal of Memory and Language, 25, 385-400. doi:10.1016/0749-596X(86)90033-1.

    Abstract

    Speech segmentation procedures may differ in speakers of different languages. Earlier work based on French speakers listening to French words suggested that the syllable functions as a segmentation unit in speech processing. However, while French has relatively regular and clearly bounded syllables, other languages, such as English, do not. No trace of syllabifying segmentation was found in English listeners listening to English words, French words, or nonsense words. French listeners, however, showed evidence of syllabification even when they were listening to English words. We conclude that alternative segmentation routines are available to the human language processor. In some cases speech segmentation may involve the operation of more than one procedure
  • Cutler, A. (1986). Why readers of this newsletter should run cross-linguistic experiments. European Psycholinguistics Association Newsletter, 13, 4-8.
  • Cutler, A. (1976). High-stress words are easier to perceive than low-stress words, even when they are equally stressed. Texas Linguistic Forum, 2, 53-57.
  • Cutler, A. (1976). Phoneme-monitoring reaction time as a function of preceding intonation contour. Perception and Psychophysics, 20, 55-60. Retrieved from http://www.psychonomic.org/search/view.cgi?id=18194.

    Abstract

    An acoustically invariant one-word segment occurred in two versions of one syntactic context. In one version, the preceding intonation contour indicated that a stress would fall at the point where this word occurred. In the other version, the preceding contour predicted reduced stress at that point. Reaction time to the initial phoneme of the word was faster in the former case, despite the fact that no acoustic correlates of stress were present. It is concluded that a part of the sentence comprehension process is the prediction of upcoming sentence accents.

Share this page