Anne Cutler †

Publications

Displaying 1 - 68 of 68
  • Bruggeman, L., & Cutler, A. (2016). Lexical manipulation as a discovery tool for psycholinguistic research. In C. Carignan, & M. D. Tyler (Eds.), Proceedings of the 16th Australasian International Conference on Speech Science and Technology (SST2016) (pp. 313-316).
  • Cutler, A., & Norris, D. (2016). Bottoms up! How top-down pitfalls ensnare speech perception researchers too. Commentary on C. Firestone & B. Scholl: Cognition does not affect perception: Evaluating the evidence for 'top-down' effects. Behavioral and Brain Sciences, e236. doi:10.1017/S0140525X15002745.

    Abstract

    Not only can the pitfalls that Firestone & Scholl (F&S) identify be generalised across multiple studies within the field of visual perception, but also they have general application outside the field wherever perceptual and cognitive processing are compared. We call attention to the widespread susceptibility of research on the perception of speech to versions of the same pitfalls.
  • Ip, M., & Cutler, A. (2016). Cross-language data on five types of prosodic focus. In J. Barnes, A. Brugos, S. Shattuck-Hufnagel, & N. Veilleux (Eds.), Proceedings of Speech Prosody 2016 (pp. 330-334).

    Abstract

    To examine the relative roles of language-specific and language-universal mechanisms in the production of prosodic focus, we compared production of five different types of focus by native speakers of English and Mandarin. Two comparable dialogues were constructed for each language, with the same words appearing in focused and unfocused position; 24 speakers recorded each dialogue in each language. Duration, F0 (mean, maximum, range), and rms-intensity (mean, maximum) of all critical word tokens were measured. Across the different types of focus, cross-language differences were observed in the degree to which English versus Mandarin speakers use the different prosodic parameters to mark focus, suggesting that while prosody may be universally available for expressing focus, the means of its employment may be considerably language-specific
  • Jeske, J., Kember, H., & Cutler, A. (2016). Native and non-native English speakers' use of prosody to predict sentence endings. In Proceedings of the 16th Australasian International Conference on Speech Science and Technology (SST2016).
  • Kember, H., Choi, J., & Cutler, A. (2016). Processing advantages for focused words in Korean. In J. Barnes, A. Brugos, S. Shattuck-Hufnagel, & N. Veilleux (Eds.), Proceedings of Speech Prosody 2016 (pp. 702-705).

    Abstract

    In Korean, focus is expressed in accentual phrasing. To ascertain whether words focused in this manner enjoy a processing advantage analogous to that conferred by focus as expressed in, e.g, English and Dutch, we devised sentences with target words in one of four conditions: prosodic focus, syntactic focus, prosodic + syntactic focus, and no focus as a control. 32 native speakers of Korean listened to blocks of 10 sentences, then were presented visually with words and asked whether or not they had heard them. Overall, words with focus were recognised significantly faster and more accurately than unfocused words. In addition, words with syntactic focus or syntactic + prosodic focus were recognised faster than words with prosodic focus alone. As for other languages, Korean focus confers processing advantage on the words carrying it. While prosodic focus does provide an advantage, however, syntactic focus appears to provide the greater beneficial effect for recognition memory
  • Norris, D., McQueen, J. M., & Cutler, A. (2016). Prediction, Bayesian inference and feedback in speech recognition. Language, Cognition and Neuroscience, 31(1), 4-18. doi:10.1080/23273798.2015.1081703.

    Abstract

    Speech perception involves prediction, but how is that prediction implemented? In cognitive models prediction has often been taken to imply that there is feedback of activation from lexical to pre-lexical processes as implemented in interactive-activation models (IAMs). We show that simple activation feedback does not actually improve speech recognition. However, other forms of feedback can be beneficial. In particular, feedback can enable the listener to adapt to changing input, and can potentially help the listener to recognise unusual input, or recognise speech in the presence of competing sounds. The common feature of these helpful forms of feedback is that they are all ways of optimising the performance of speech recognition using Bayesian inference. That is, listeners make predictions about speech because speech recognition is optimal in the sense captured in Bayesian models.
  • Cutler, A. (2010). Abstraction-based efficiency in the lexicon. Laboratory Phonology, 1(2), 301-318. doi:10.1515/LABPHON.2010.016.

    Abstract

    Listeners learn from their past experience of listening to spoken words, and use this learning to maximise the efficiency of future word recognition. This paper summarises evidence that the facilitatory effects of drawing on past experience are mediated by abstraction, enabling learning to be generalised across new words and new listening situations. Phoneme category retuning, which allows adaptation to speaker-specific articulatory characteristics, is generalised on the basis of relatively brief experience to words previously unheard from that speaker. Abstract knowledge of prosodic regularities is applied to recognition even of novel words for which these regularities were violated. Prosodic word-boundary regularities drive segmentation of speech into words independently of the membership of the lexical candidate set resulting from the segmentation operation. Each of these different cases illustrates how abstraction from past listening experience has contributed to the efficiency of lexical recognition.
  • Cutler, A., El Aissati, A., Hanulikova, A., & McQueen, J. M. (2010). Effects on speech parsing of vowelless words in the phonology. In Abstracts of Laboratory Phonology 12 (pp. 115-116).
  • Cutler, A., Eisner, F., McQueen, J. M., & Norris, D. (2010). How abstract phonemic categories are necessary for coping with speaker-related variation. In C. Fougeron, B. Kühnert, M. D'Imperio, & N. Vallée (Eds.), Laboratory phonology 10 (pp. 91-111). Berlin: de Gruyter.
  • Cutler, A., Mitterer, H., Brouwer, S., & Tuinman, A. (2010). Phonological competition in casual speech. In Proceedings of DiSS-LPSS Joint Workshop 2010 (pp. 43-46).
  • Cutler, A., Treiman, R., & Van Ooijen, B. (2010). Strategic deployment of orthographic knowledge in phoneme detection. Language and Speech, 53(3), 307 -320. doi:10.1177/0023830910371445.

    Abstract

    The phoneme detection task is widely used in spoken-word recognition research. Alphabetically literate participants, however, are more used to explicit representations of letters than of phonemes. The present study explored whether phoneme detection is sensitive to how target phonemes are, or may be, orthographically realized. Listeners detected the target sounds [b, m, t, f, s, k] in word-initial position in sequences of isolated English words. Response times were faster to the targets [b, m, t], which have consistent word-initial spelling, than to the targets [f, s, k], which are inconsistently spelled, but only when spelling was rendered salient by the presence in the experiment of many irregularly spelled filler words. Within the inconsistent targets [f, s, k], there was no significant difference between responses to targets in words with more usual (foam, seed, cattle) versus less usual (phone, cede, kettle) spellings. Phoneme detection is thus not necessarily sensitive to orthographic effects; knowledge of spelling stored in the lexical representations of words does not automatically become available as word candidates are activated. However, salient orthographic manipulations in experimental input can induce such sensitivity. We attribute this to listeners' experience of the value of spelling in everyday situations that encourage phonemic decisions (such as learning new names)
  • Cutler, A., Cooke, M., & Lecumberri, M. L. G. (2010). Preface. Speech Communication, 52, 863. doi:10.1016/j.specom.2010.11.003.

    Abstract

    Adverse listening conditions always make the perception of speech harder, but their deleterious effect is far greater if the speech we are trying to understand is in a non-native language. An imperfect signal can be coped with by recourse to the extensive knowledge one has of a native language, and imperfect knowledge of a non-native language can still support useful communication when speech signals are high-quality. But the combination of imperfect signal and imperfect knowledge leads rapidly to communication breakdown. This phenomenon is undoubtedly well known to every reader of Speech Communication from personal experience. Many readers will also have a professional interest in explaining, or remedying, the problems it produces. The journal’s readership being a decidedly interdisciplinary one, this interest will involve quite varied scientific approaches, including (but not limited to) modelling the interaction of first and second language vocabularies and phonemic repertoires, developing targeted listening training for language learners, and redesigning the acoustics of classrooms and conference halls. In other words, the phenomenon that this special issue deals with is a well-known one, that raises important scientific and practical questions across a range of speech communication disciplines, and Speech Communication is arguably the ideal vehicle for presentation of such a breadth of approaches in a single volume. The call for papers for this issue elicited a large number of submissions from across the full range of the journal’s interdisciplinary scope, requiring the guest editors to apply very strict criteria to the final selection. Perhaps unique in the history of treatments of this topic is the combination represented by the guest editors for this issue: a phonetician whose primary research interest is in second-language speech (MLGL), an engineer whose primary research field is the acoustics of masking in speech processing (MC), and a psychologist whose primary research topic is the recognition of spoken words (AC). In the opening article of the issue, these three authors together review the existing literature on listening to second-language speech under adverse conditions, bringing together these differing perspectives for the first time in a single contribution. The introductory review is followed by 13 new experimental reports of phonetic, acoustic and psychological studies of the topic. The guest editors thank Speech Communication editor Marc Swerts and the journal’s team at Elsevier, as well as all the reviewers who devoted time and expert efforts to perfecting the contributions to this issue.
  • Cutler, A., & Shanley, J. (2010). Validation of a training method for L2 continuous-speech segmentation. In Proceedings of the 11th Annual Conference of the International Speech Communication Association (Interspeech 2010), Makuhari, Japan (pp. 1844-1847).

    Abstract

    Recognising continuous speech in a second language is often unexpectedly difficult, as the operation of segmenting speech is so attuned to native-language structure. We report the initial steps in development of a novel training method for second-language listening, focusing on speech segmentation and employing a task designed for studying this: word-spotting. Listeners detect real words in sequences consisting of a word plus a minimal context. The present validation study shows that learners from varying non-English backgrounds successfully perform a version of this task in English, and display appropriate sensitivity to structural factors that also affect segmentation by native English listeners.
  • Junge, C., Hagoort, P., Kooijman, V., & Cutler, A. (2010). Brain potentials for word segmentation at seven months predict later language development. In K. Franich, K. M. Iserman, & L. L. Keil (Eds.), Proceedings of the 34th Annual Boston University Conference on Language Development. Volume 1 (pp. 209-220). Somerville, MA: Cascadilla Press.
  • Junge, C., Cutler, A., & Hagoort, P. (2010). Ability to segment words from speech as a precursor of later language development: Insights from electrophysiological responses in the infant brain. In M. Burgess, J. Davey, C. Don, & T. McMinn (Eds.), Proceedings of 20th International Congress on Acoustics, ICA 2010. Incorporating Proceedings of the 2010 annual conference of the Australian Acoustical Society (pp. 3727-3732). Australian Acoustical Society, NSW Division.
  • Lecumberri, M. L. G., Cooke, M., & Cutler, A. (Eds.). (2010). Non-native speech perception in adverse conditions [Special Issue]. Speech Communication, 52(11/12).
  • Lecumberri, M. L. G., Cooke, M., & Cutler, A. (2010). Non-native speech perception in adverse conditions: A review. Speech Communication, 52, 864-886. doi:10.1016/j.specom.2010.08.014.

    Abstract

    If listening in adverse conditions is hard, then listening in a foreign language is doubly so: non-native listeners have to cope with both imperfect signals and imperfect knowledge. Comparison of native and non-native listener performance in speech-in-noise tasks helps to clarify the role of prior linguistic experience in speech perception, and, more directly, contributes to an understanding of the problems faced by language learners in everyday listening situations. This article reviews experimental studies on non-native listening in adverse conditions, organised around three principal contributory factors: the task facing listeners, the effect of adverse conditions on speech, and the differences among listener populations. Based on a comprehensive tabulation of key studies, we identify robust findings, research trends and gaps in current knowledge.
  • McQueen, J. M., & Cutler, A. (2010). Cognitive processes in speech perception. In W. J. Hardcastle, J. Laver, & F. E. Gibbon (Eds.), The handbook of phonetic sciences (2nd ed., pp. 489-520). Oxford: Blackwell.
  • Otake, T., McQueen, J. M., & Cutler, A. (2010). Competition in the perception of spoken Japanese words. In Proceedings of the 11th Annual Conference of the International Speech Communication Association (Interspeech 2010), Makuhari, Japan (pp. 114-117).

    Abstract

    Japanese listeners detected Japanese words embedded at the end of nonsense sequences (e.g., kaba 'hippopotamus' in gyachikaba). When the final portion of the preceding context together with the initial portion of the word (e.g., here, the sequence chika) was compatible with many lexical competitors, recognition of the embedded word was more difficult than when such a sequence was compatible with few competitors. This clear effect of competition, established here for preceding context in Japanese, joins similar demonstrations, in other languages and for following contexts, to underline that the functional architecture of the human spoken-word recognition system is a universal one.
  • Tuinman, A., & Cutler, A. (2010). Casual speech processes: L1 knowledge and L2 speech perception. In K. Dziubalska-Kołaczyk, M. Wrembel, & M. Kul (Eds.), Proceedings of the 6th International Symposium on the Acquisition of Second Language Speech, New Sounds 2010, Poznań, Poland, 1-3 May 2010 (pp. 512-517). Poznan: Adama Mickiewicz University.

    Abstract

    Every language manifests casual speech processes, and hence every second language too. This study examined how listeners deal with second-language casual speech processes, as a function of the processes in their native language. We compared a match case, where a second-language process t/-reduction) is also operative in native speech, with a mismatch case, where a second-language process (/r/-insertion) is absent from native speech. In each case native and non-native listeners judged stimuli in which a given phoneme (in sentence context) varied along a continuum from absent to present. Second-language listeners in general mimicked native performance in the match case, but deviated significantly from native performance in the mismatch case. Together these results make it clear that the mapping from first to second language is as important in the interpretation of casual speech processes as in other dimensions of speech perception. Unfamiliar casual speech processes are difficult to adapt to in a second language. Casual speech processes that are already familiar from native speech, however, are easy to adapt to; indeed, our results even suggest that it is possible for subtle difference in their occurrence patterns across the two languages to be detected,and to be accommodated to in second-language listening.
  • Cutler, A., & Broersma, M. (2005). Phonetic precision in listening. In W. J. Hardcastle, & J. M. Beck (Eds.), A figure of speech: A Festschrift for John Laver (pp. 63-91). Mahwah, NJ: Erlbaum.
  • Cutler, A., Klein, W., & Levinson, S. C. (2005). The cornerstones of twenty-first century psycholinguistics. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 1-20). Mahwah, NJ: Erlbaum.
  • Cutler, A. (2005). The lexical statistics of word recognition problems caused by L2 phonetic confusion. In Proceedings of the 9th European Conference on Speech Communication and Technology (pp. 413-416).
  • Cutler, A., McQueen, J. M., & Norris, D. (2005). The lexical utility of phoneme-category plasticity. In Proceedings of the ISCA Workshop on Plasticity in Speech Perception (PSP2005) (pp. 103-107).
  • Cutler, A. (Ed.). (2005). Twenty-first century psycholinguistics: Four cornerstones. Mahwah, NJ: Erlbaum.
  • Cutler, A., Smits, R., & Cooper, N. (2005). Vowel perception: Effects of non-native language vs. non-native dialect. Speech Communication, 47(1-2), 32-42. doi:10.1016/j.specom.2005.02.001.

    Abstract

    Three groups of listeners identified the vowel in CV and VC syllables produced by an American English talker. The listeners were (a) native speakers of American English, (b) native speakers of Australian English (different dialect), and (c) native speakers of Dutch (different language). The syllables were embedded in multispeaker babble at three signal-to-noise ratios (0 dB, 8 dB, and 16 dB). The identification performance of native listeners was significantly better than that of listeners with another language but did not significantly differ from the performance of listeners with another dialect. Dialect differences did however affect the type of perceptual confusions which listeners made; in particular, the Australian listeners’ judgements of vowel tenseness were more variable than the American listeners’ judgements, which may be ascribed to cross-dialectal differences in this vocalic feature. Although listening difficulty can result when speech input mismatches the native dialect in terms of the precise cues for and boundaries of phonetic categories, the difficulty is very much less than that which arises when speech input mismatches the native language in terms of the repertoire of phonemic categories available.
  • Cutler, A. (2005). Why is it so hard to understand a second language in noise? Newsletter, American Association of Teachers of Slavic and East European Languages, 48, 16-16.
  • Cutler, A. (2005). Lexical stress. In D. B. Pisoni, & R. E. Remez (Eds.), The handbook of speech perception (pp. 264-289). Oxford: Blackwell.
  • Cutler, A. (Ed.). (2005). Twenty-first century psycholinguistics: Four cornerstones. Hillsdale, NJ: Erlbaum.
  • Goudbeek, M., Smits, R., Cutler, A., & Swingley, D. (2005). Acquiring auditory and phonetic categories. In H. Cohen, & C. Lefebvre (Eds.), Handbook of categorization in cognitive science (pp. 497-513). Amsterdam: Elsevier.
  • Kooijman, V., Hagoort, P., & Cutler, A. (2005). Electrophysiological evidence for prelinguistic infants' word recognition in continuous speech. Cognitive Brain Research, 24(1), 109-116. doi:10.1016/j.cogbrainres.2004.12.009.

    Abstract

    Children begin to talk at about age one. The vocabulary they need to do so must be built on perceptual evidence and, indeed, infants begin to recognize spoken words long before they talk. Most of the utterances infants hear, however, are continuous, without pauses between words, so constructing a vocabulary requires them to decompose continuous speech in order to extract the individual words. Here, we present electrophysiological evidence that 10-month-old infants recognize two-syllable words they have previously heard only in isolation when these words are presented anew in continuous speech. Moreover, they only need roughly the first syllable of the word to begin doing this. Thus, prelinguistic infants command a highly efficient procedure for segmentation and recognition of spoken words in the absence of an existing vocabulary, allowing them to tackle effectively the problem of bootstrapping a lexicon out of the highly variable, continuous speech signals in their environment.
  • Sharp, D. J., Scott, S. K., Cutler, A., & Wise, R. J. S. (2005). Lexical retrieval constrained by sound structure: The role of the left inferior frontal gyrus. Brain and Language, 92(3), 309-319. doi:10.1016/j.bandl.2004.07.002.

    Abstract

    Positron emission tomography was used to investigate two competing hypotheses about the role of the left inferior frontal gyrus (IFG) in word generation. One proposes a domain-specific organization, with neural activation dependent on the type of information being processed, i.e., surface sound structure or semantic. The other proposes a process-specific organization, with activation dependent on processing demands, such as the amount of selection needed to decide between competing lexical alternatives. In a novel word retrieval task, word reconstruction (WR), subjects generated real words from heard non-words by the substitution of either a vowel or consonant. Both types of lexical retrieval, informed by sound structure alone, produced activation within anterior and posterior left IFG regions. Within these regions there was greater activity for consonant WR, which is more difficult and imposes greater processing demands. These results support a process-specific organization of the anterior left IFG.
  • Van Donselaar, W., Koster, M., & Cutler, A. (2005). Exploring the role of lexical stress in lexical recognition. Quarterly Journal of Experimental Psychology, 58A(2), 251-273. doi:10.1080/02724980343000927.

    Abstract

    Three cross-modal priming experiments examined the role of suprasegmental information in the processing of spoken words. All primes consisted of truncated spoken Dutch words. Recognition of visually presented word targets was facilitated by prior auditory presentation of the first two syllables of the same words as primes, but only if they were appropriately stressed (e.g., OKTOBER preceded by okTO-); inappropriate stress, compatible with another word (e.g., OKTOBER preceded by OCto-, the beginning of octopus), produced inhibition. Monosyllabic fragments (e.g., OC-) also produced facilitation when appropriately stressed; if inappropriately stressed, they produced neither facilitation nor inhibition. The bisyllabic fragments that were compatible with only one word produced facilitation to semantically associated words, but inappropriate stress caused no inhibition of associates. The results are explained within a model of spoken-word recognition involving competition between simultaneously activated phonological representations followed by activation of separate conceptual representations for strongly supported lexical candidates; at the level of the phonological representations, activation is modulated by both segmental and suprasegmental information.
  • Warner, N., Smits, R., McQueen, J. M., & Cutler, A. (2005). Phonological and statistical effects on timing of speech perception: Insights from a database of Dutch diphone perception. Speech Communication, 46(1), 53-72. doi:10.1016/j.specom.2005.01.003.

    Abstract

    We report detailed analyses of a very large database on timing of speech perception collected by Smits et al. (Smits, R., Warner, N., McQueen, J.M., Cutler, A., 2003. Unfolding of phonetic information over time: A database of Dutch diphone perception. J. Acoust. Soc. Am. 113, 563–574). Eighteen listeners heard all possible diphones of Dutch, gated in portions of varying size and presented without background noise. The present report analyzes listeners’ responses across gates in terms of phonological features (voicing, place, and manner for consonants; height, backness, and length for vowels). The resulting patterns for feature perception differ from patterns reported when speech is presented in noise. The data are also analyzed for effects of stress and of phonological context (neighboring vowel vs. consonant); effects of these factors are observed to be surprisingly limited. Finally, statistical effects, such as overall phoneme frequency and transitional probabilities, along with response biases, are examined; these too exercise only limited effects on response patterns. The results suggest highly accurate speech perception on the basis of acoustic information alone.
  • Warner, N., Kim, J., Davis, C., & Cutler, A. (2005). Use of complex phonological patterns in speech processing: Evidence from Korean. Journal of Linguistics, 41(2), 353-387. doi:10.1017/S0022226705003294.

    Abstract

    Korean has a very complex phonology, with many interacting alternations. In a coronal-/i/ sequence, depending on the type of phonological boundary present, alternations such as palatalization, nasal insertion, nasal assimilation, coda neutralization, and intervocalic voicing can apply. This paper investigates how the phonological patterns of Korean affect processing of morphemes and words. Past research on languages such as English, German, Dutch, and Finnish has shown that listeners exploit syllable structure constraints in processing speech and segmenting it into words. The current study shows that in parsing speech, listeners also use much more complex patterns that relate the surface phonological string to various boundaries.
  • Akker, E., & Cutler, A. (2003). Prosodic cues to semantic structure in native and nonnative listening. Bilingualism: Language and Cognition, 6(2), 81-96. doi:10.1017/S1366728903001056.

    Abstract

    Listeners efficiently exploit sentence prosody to direct attention to words bearing sentence accent. This effect has been explained as a search for focus, furthering rapid apprehension of semantic structure. A first experiment supported this explanation: English listeners detected phoneme targets in sentences more rapidly when the target-bearing words were in accented position or in focussed position, but the two effects interacted, consistent with the claim that the effects serve a common cause. In a second experiment a similar asymmetry was observed with Dutch listeners and Dutch sentences. In a third and a fourth experiment, proficient Dutch users of English heard English sentences; here, however, the two effects did not interact. The results suggest that less efficient mapping of prosody to semantics may be one way in which nonnative listening fails to equal native listening.
  • Blumstein, S., & Cutler, A. (2003). Speech perception: Phonetic aspects. In W. Frawley (Ed.), International encyclopaedia of linguistics (pp. 151-154). Oxford: Oxford University Press.
  • Cutler, A., & Butterfield, S. (2003). Rhythmic cues to speech segmentation: Evidence from juncture misperception. In J. Field (Ed.), Psycholinguistics: A resource book for students. (pp. 185-189). London: Routledge.
  • Cutler, A., Murty, L., & Otake, T. (2003). Rhythmic similarity effects in non-native listening? In Proceedings of the 15th International Congress of Phonetic Sciences (PCPhS 2003) (pp. 329-332). Adelaide: Causal Productions.

    Abstract

    Listeners rely on native-language rhythm in segmenting speech; in different languages, stress-, syllable- or mora-based rhythm is exploited. This language-specificity affects listening to non- native speech, if native procedures are applied even though inefficient for the non-native language. However, speakers of two languages with similar rhythmic interpretation should segment their own and the other language similarly. This was observed to date only for related languages (English-Dutch; French-Spanish). We now report experiments in which Japanese listeners heard Telugu, a Dravidian language unrelated to Japanese, and Telugu listeners heard Japanese. In both cases detection of target sequences in speech was harder when target boundaries mismatched mora boundaries, exactly the pattern that Japanese listeners earlier exhibited with Japanese and other languages. These results suggest that Telugu and Japanese listeners use similar procedures in segmenting speech, and support the idea that languages fall into rhythmic classes, with aspects of phonological structure affecting listeners' speech segmentation.
  • Cutler, A. (2003). The perception of speech: Psycholinguistic aspects. In W. Frawley (Ed.), International encyclopaedia of linguistics (pp. 154-157). Oxford: Oxford University Press.
  • Johnson, E. K., Jusczyk, P. W., Cutler, A., & Norris, D. (2003). Lexical viability constraints on speech segmentation by infants. Cognitive Psychology, 46(1), 65-97. doi:10.1016/S0010-0285(02)00507-8.

    Abstract

    The Possible Word Constraint limits the number of lexical candidates considered in speech recognition by stipulating that input should be parsed into a string of lexically viable chunks. For instance, an isolated single consonant is not a feasible word candidate. Any segmentation containing such a chunk is disfavored. Five experiments using the head-turn preference procedure investigated whether, like adults, 12-month-olds observe this constraint in word recognition. In Experiments 1 and 2, infants were familiarized with target words (e.g., rush), then tested on lists of nonsense items containing these words in “possible” (e.g., “niprush” [nip + rush]) or “impossible” positions (e.g., “prush” [p + rush]). The infants listened significantly longer to targets in “possible” versus “impossible” contexts when targets occurred at the end of nonsense items (rush in “prush”), but not when they occurred at the beginning (tan in “tance”). In Experiments 3 and 4, 12-month-olds were similarly familiarized with target words, but test items were real words in sentential contexts (win in “wind” versus “window”). The infants listened significantly longer to words in the “possible” condition regardless of target location. Experiment 5 with targets at the beginning of isolated real words (e.g., win in “wind”) replicated Experiment 2 in showing no evidence of viability effects in beginning position. Taken together, the findings suggest that, in situations in which 12-month-olds are required to rely on their word segmentation abilities, they give evidence of observing lexical viability constraints in the way that they parse fluent speech.
  • McQueen, J. M., Dahan, D., & Cutler, A. (2003). Continuity and gradedness in speech processing. In N. O. Schiller, & A. S. Meyer (Eds.), Phonetics and phonology in language comprehension and production: Differences and similarities (pp. 39-78). Berlin: Mouton de Gruyter.
  • McQueen, J. M., Cutler, A., & Norris, D. (2003). Flow of information in the spoken word recognition system. Speech Communication, 41(1), 257-270. doi:10.1016/S0167-6393(02)00108-5.

    Abstract

    Spoken word recognition consists of two major component processes. First, at the prelexical stage, an abstract description of the utterance is generated from the information in the speech signal. Second, at the lexical stage, this description is used to activate all the words stored in the mental lexicon which match the input. These multiple candidate words then compete with each other. We review evidence which suggests that positive (match) and negative (mismatch) information of both a segmental and a suprasegmental nature is used to constrain this activation and competition process. We then ask whether, in addition to the necessary influence of the prelexical stage on the lexical stage, there is also feedback from the lexicon to the prelexical level. In two phonetic categorization experiments, Dutch listeners were asked to label both syllable-initial and syllable-final ambiguous fricatives (e.g., sounds ranging from [f] to [s]) in the word–nonword series maf–mas, and the nonword–word series jaf–jas. They tended to label the sounds in a lexically consistent manner (i.e., consistent with the word endpoints of the series). These lexical effects became smaller in listeners’ slower responses, even when the listeners were put under pressure to respond as fast as possible. Our results challenge models of spoken word recognition in which feedback modulates the prelexical analysis of the component sounds of a word whenever that word is heard
  • Norris, D., McQueen, J. M., & Cutler, A. (2003). Perceptual learning in speech. Cognitive Psychology, 47(2), 204-238. doi:10.1016/S0010-0285(03)00006-9.

    Abstract

    This study demonstrates that listeners use lexical knowledge in perceptual learning of speech sounds. Dutch listeners first made lexical decisions on Dutch words and nonwords. The final fricative of 20 critical words had been replaced by an ambiguous sound, between [f] and [s]. One group of listeners heard ambiguous [f]-final words (e.g., [WI tlo?], from witlof, chicory) and unambiguous [s]-final words (e.g., naaldbos, pine forest). Another group heard the reverse (e.g., ambiguous [na:ldbo?], unambiguous witlof). Listeners who had heard [?] in [f]-final words were subsequently more likely to categorize ambiguous sounds on an [f]–[s] continuum as [f] than those who heard [?] in [s]-final words. Control conditions ruled out alternative explanations based on selective adaptation and contrast. Lexical information can thus be used to train categorization of speech. This use of lexical information differs from the on-line lexical feedback embodied in interactive models of speech perception. In contrast to on-line feedback, lexical feedback for learning is of benefit to spoken word recognition (e.g., in adapting to a newly encountered dialect).
  • Otake, T., & Cutler, A. (2003). Evidence against "units of perception". In S. Shohov (Ed.), Advances in psychology research (pp. 57-82). Hauppauge, NY: Nova Science.
  • Shi, R., Werker, J., & Cutler, A. (2003). Function words in early speech perception. In Proceedings of the 15th International Congress of Phonetic Sciences (pp. 3009-3012).

    Abstract

    Three experiments examined whether infants recognise functors in phrases, and whether their representations of functors are phonetically well specified. Eight- and 13- month-old English infants heard monosyllabic lexical words preceded by real functors (e.g., the, his) versus nonsense functors (e.g., kuh); the latter were minimally modified segmentally (but not prosodically) from real functors. Lexical words were constant across conditions; thus recognition of functors would appear as longer listening time to sequences with real functors. Eightmonth- olds' listening times to sequences with real versus nonsense functors did not significantly differ, suggesting that they did not recognise real functors, or functor representations lacked phonetic specification. However, 13-month-olds listened significantly longer to sequences with real functors. Thus, somewhere between 8 and 13 months of age infants learn familiar functors and represent them with segmental detail. We propose that accumulated frequency of functors in input in general passes a critical threshold during this time.
  • Smits, R., Warner, N., McQueen, J. M., & Cutler, A. (2003). Unfolding of phonetic information over time: A database of Dutch diphone perception. Journal of the Acoustical Society of America, 113(1), 563-574. doi:10.1121/1.1525287.

    Abstract

    We present the results of a large-scale study on speech perception, assessing the number and type of perceptual hypotheses which listeners entertain about possible phoneme sequences in their language. Dutch listeners were asked to identify gated fragments of all 1179 diphones of Dutch, providing a total of 488 520 phoneme categorizations. The results manifest orderly uptake of acoustic information in the signal. Differences across phonemes in the rate at which fully correct recognition was achieved arose as a result of whether or not potential confusions could occur with other phonemes of the language ~long with short vowels, affricates with their initial components, etc.!. These data can be used to improve models of how acoustic phonetic information is mapped onto the mental lexicon during speech comprehension.
  • Spinelli, E., McQueen, J. M., & Cutler, A. (2003). Processing resyllabified words in French. Journal of Memory and Language, 48(2), 233-254. doi:10.1016/S0749-596X(02)00513-2.
  • Weber, A., & Cutler, A. (2003). Perceptual similarity co-existing with lexical dissimilarity [Abstract]. Abstracts of the 146th Meeting of the Acoustical Society of America. Journal of the Acoustical Society of America, 114(4 Pt. 2), 2422. doi:10.1121/1.1601094.

    Abstract

    The extreme case of perceptual similarity is indiscriminability, as when two second‐language phonemes map to a single native category. An example is the English had‐head vowel contrast for Dutch listeners; Dutch has just one such central vowel, transcribed [E]. We examine whether the failure to discriminate in phonetic categorization implies indiscriminability in other—e.g., lexical—processing. Eyetracking experiments show that Dutch‐native listeners instructed in English to ‘‘click on the panda’’ look (significantly more than native listeners) at a pictured pencil, suggesting that pan‐ activates their lexical representation of pencil. The reverse, however, is not the case: ‘‘click on the pencil’’ does not induce looks to a panda, suggesting that pen‐ does not activate panda in the lexicon. Thus prelexically undiscriminated second‐language distinctions can nevertheless be maintained in stored lexical representations. The problem of mapping a resulting unitary input to two distinct categories in lexical representations is solved by allowing input to activate only one second‐language category. For Dutch listeners to English, this is English [E], as a result of which no vowels in the signal ever map to words containing [ae]. We suggest that the choice of category is here motivated by a more abstract, phonemic, metric of similarity.
  • Cutler, A., Sebastian-Galles, N., Soler-Vilageliu, O., & Van Ooijen, B. (2000). Constraints of vowels and consonants on lexical selection: Cross-linguistic comparisons. Memory & Cognition, 28, 746-755.

    Abstract

    Languages differ in the constitution of their phonemic repertoire and in the relative distinctiveness of phonemes within the repertoire. In the present study, we asked whether such differences constrain spoken-word recognition, via two word reconstruction experiments, in which listeners turned non-words into real words by changing single sounds. The experiments were carried out in Dutch (which has a relatively balanced vowel-consonant ratio and many similar vowels) and in Spanish (which has many more consonants than vowels and high distinctiveness among the vowels). Both Dutch and Spanish listeners responded significantly faster and more accurately when required to change vowels as opposed to consonants; when allowed to change any phoneme, they more often altered vowels than consonants. Vowel information thus appears to constrain lexical selection less tightly (allow more potential candidates) than does consonant information, independent of language-specific phoneme repertoire and of relative distinctiveness of vowels.
  • Cutler, A., & Van de Weijer, J. (2000). De ontdekking van de eerste woorden. Stem-, Spraak- en Taalpathologie, 9, 245-259.

    Abstract

    Spraak is continu, er zijn geen betrouwbare signalen waardoor de luisteraar weet waar het ene woord eindigt en het volgende begint. Voor volwassen luisteraars is het segmenteren van gesproken taal in afzonderlijke woorden dus niet onproblematisch, maar voor een kind dat nog geen woordenschat bezit, vormt de continuïteit van spraak een nog grotere uitdaging. Desalniettemin produceren de meeste kinderen hun eerste herkenbare woorden rond het begin van het tweede levensjaar. Aan deze vroege spraakproducties gaat een formidabele perceptuele prestatie vooraf. Tijdens het eerste levensjaar - met name gedurende de tweede helft - ontwikkelt de spraakperceptie zich van een algemeen fonetisch discriminatievermogen tot een selectieve gevoeligheid voor de fonologische contrasten die in de moedertaal voorkomen. Recent onderzoek heeft verder aangetoond dat kinderen, lang voordat ze ook maar een enkel woord kunnen zeggen, in staat zijn woorden die kenmerkend zijn voor hun moedertaal te onderscheiden van woorden die dat niet zijn. Bovendien kunnen ze woorden die eerst in isolatie werden aangeboden herkennen in een continue spraakcontext. Het dagelijkse taalaanbod aan een kind van deze leeftijd maakt het in zekere zin niet gemakkelijk, bijvoorbeeld doordat de meeste woorden niet in isolatie voorkomen. Toch wordt het kind ook wel houvast geboden, onder andere doordat het woordgebruik beperkt is.
  • Cutler, A. (2000). How the ear comes to hear. In New Trends in Modern Linguistics [Part of Annual catalogue series] (pp. 6-10). Tokyo, Japan: Maruzen Publishers.
  • Cutler, A. (2000). Hoe het woord het oor verovert. In Voordrachten uitgesproken tijdens de uitreiking van de SPINOZA-premies op 15 februari 2000 (pp. 29-41). The Hague, The Netherlands: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).
  • Cutler, A., McQueen, J. M., & Zondervan, R. (2000). Proceedings of SWAP (Workshop on Spoken Word Access Processes). Nijmegen: MPI for Psycholinguistics.
  • Cutler, A. (2000). Real words, phantom words and impossible words. In D. Burnham, S. Luksaneeyanawin, C. Davis, & M. Lafourcade (Eds.), Interdisciplinary approaches to language processing: The international conference on human and machine processing of language and speech (pp. 32-42). Bangkok: NECTEC.
  • Cutler, A., & Koster, M. (2000). Stress and lexical activation in Dutch. In B. Yuan, T. Huang, & X. Tang (Eds.), Proceedings of the Sixth International Conference on Spoken Language Processing: Vol. 1 (pp. 593-596). Beijing: China Military Friendship Publish.

    Abstract

    Dutch listeners were slower to make judgements about the semantic relatedness between a spoken target word (e.g. atLEET, 'athlete') and a previously presented visual prime word (e.g. SPORT 'sport') when the spoken word was mis-stressed. The adverse effect of mis-stressing confirms the role of stress information in lexical recognition in Dutch. However, although the erroneous stress pattern was always initially compatible with a competing word (e.g. ATlas, 'atlas'), mis-stressed words did not produced high false alarm rates in unrelated pairs (e.g. SPORT - atLAS). This suggests that stress information did not completely rule out segmentally matching but suprasegmentally mismatching words, a finding consistent with spoken-word recognition models involving multiple activation and inter-word competition.
  • Cutler, A., Norris, D., & McQueen, J. M. (2000). Tracking TRACE’s troubles. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 63-66). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    Simulations explored the inability of the TRACE model of spoken-word recognition to model the effects on human listening of acoustic-phonetic mismatches in word forms. The source of TRACE's failure lay not in its interactive connectivity, not in the presence of interword competition, and not in the use of phonemic representations, but in the need for continuously optimised interpretation of the input. When an analogue of TRACE was allowed to cycle to asymptote on every slice of input, an acceptable simulation of the subcategorical mismatch data was achieved. Even then, however, the simulation was not as close as that produced by the Merge model.
  • Houston, D. M., Jusczyk, P. W., Kuijpers, C., Coolen, R., & Cutler, A. (2000). Cross-language word segmentation by 9-month-olds. Psychonomic Bulletin & Review, 7, 504-509.

    Abstract

    Dutch-learning and English-learning 9-month-olds were tested, using the Headturn Preference Procedure, for their ability to segment Dutch words with strong/weak stress patterns from fluent Dutch speech. This prosodic pattern is highly typical for words of both languages. The infants were familiarized with pairs of words and then tested on four passages, two that included the familiarized words and two that did not. Both the Dutch- and the English-learning infants gave evidence of segmenting the targets from the passages, to an equivalent degree. Thus, English-learning infants are able to extract words from fluent speech in a language that is phonetically different from English. We discuss the possibility that this cross-language segmentation ability is aided by the similarity of the typical rhythmic structure of Dutch and English words.
  • Johnson, E. K., Jusczyk, P. W., Cutler, A., & Norris, D. (2000). The development of word recognition: The use of the possible-word constraint by 12-month-olds. In L. Gleitman, & A. Joshi (Eds.), Proceedings of CogSci 2000 (pp. 1034). London: Erlbaum.
  • McQueen, J. M., Cutler, A., & Norris, D. (2000). Positive and negative influences of the lexicon on phonemic decision-making. In B. Yuan, T. Huang, & X. Tang (Eds.), Proceedings of the Sixth International Conference on Spoken Language Processing: Vol. 3 (pp. 778-781). Beijing: China Military Friendship Publish.

    Abstract

    Lexical knowledge influences how human listeners make decisions about speech sounds. Positive lexical effects (faster responses to target sounds in words than in nonwords) are robust across several laboratory tasks, while negative effects (slower responses to targets in more word-like nonwords than in less word-like nonwords) have been found in phonetic decision tasks but not phoneme monitoring tasks. The present experiments tested whether negative lexical effects are therefore a task-specific consequence of the forced choice required in phonetic decision. We compared phoneme monitoring and phonetic decision performance using the same Dutch materials in each task. In both experiments there were positive lexical effects, but no negative lexical effects. We observe that in all studies showing negative lexical effects, the materials were made by cross-splicing, which meant that they contained perceptual evidence supporting the lexically-consistent phonemes. Lexical knowledge seems to influence phonemic decision-making only when there is evidence for the lexically-consistent phoneme in the speech signal.
  • McQueen, J. M., Cutler, A., & Norris, D. (2000). Why Merge really is autonomous and parsimonious. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 47-50). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    We briefly describe the Merge model of phonemic decision-making, and, in the light of general arguments about the possible role of feedback in spoken-word recognition, defend Merge's feedforward structure. Merge not only accounts adequately for the data, without invoking feedback connections, but does so in a parsimonious manner.
  • Norris, D., McQueen, J. M., & Cutler, A. (2000). Feedback on feedback on feedback: It’s feedforward. (Response to commentators). Behavioral and Brain Sciences, 23, 352-370.

    Abstract

    The central thesis of the target article was that feedback is never necessary in spoken word recognition. The commentaries present no new data and no new theoretical arguments which lead us to revise this position. In this response we begin by clarifying some terminological issues which have lead to a number of significant misunderstandings. We provide some new arguments to support our case that the feedforward model Merge is indeed more parsimonious than the interactive alternatives, and that it provides a more convincing account of the data than alternative models. Finally, we extend the arguments to deal with new issues raised by the commentators such as infant speech perception and neural architecture.
  • Norris, D., McQueen, J. M., & Cutler, A. (2000). Merging information in speech recognition: Feedback is never necessary. Behavioral and Brain Sciences, 23, 299-325.

    Abstract

    Top-down feedback does not benefit speech recognition; on the contrary, it can hinder it. No experimental data imply that feedback loops are required for speech recognition. Feedback is accordingly unnecessary and spoken word recognition is modular. To defend this thesis, we analyse lexical involvement in phonemic decision making. TRACE (McClelland & Elman 1986), a model with feedback from the lexicon to prelexical processes, is unable to account for all the available data on phonemic decision making. The modular Race model (Cutler & Norris 1979) is likewise challenged by some recent results, however. We therefore present a new modular model of phonemic decision making, the Merge model. In Merge, information flows from prelexical processes to the lexicon without feedback. Because phonemic decisions are based on the merging of prelexical and lexical information, Merge correctly predicts lexical involvement in phonemic decisions in both words and nonwords. Computer simulations show how Merge is able to account for the data through a process of competition between lexical hypotheses. We discuss the issue of feedback in other areas of language processing and conclude that modular models are particularly well suited to the problems and constraints of speech recognition.
  • Norris, D., Cutler, A., McQueen, J. M., Butterfield, S., & Kearns, R. K. (2000). Language-universal constraints on the segmentation of English. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 43-46). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    Two word-spotting experiments are reported that examine whether the Possible-Word Constraint (PWC) [1] is a language-specific or language-universal strategy for the segmentation of continuous speech. The PWC disfavours parses which leave an impossible residue between the end of a candidate word and a known boundary. The experiments examined cases where the residue was either a CV syllable with a lax vowel, or a CVC syllable with a schwa. Although neither syllable context is a possible word in English, word-spotting in both contexts was easier than with a context consisting of a single consonant. The PWC appears to be language-universal rather than language-specific.
  • Norris, D., Cutler, A., & McQueen, J. M. (2000). The optimal architecture for simulating spoken-word recognition. In C. Davis, T. Van Gelder, & R. Wales (Eds.), Cognitive Science in Australia, 2000: Proceedings of the Fifth Biennial Conference of the Australasian Cognitive Science Society. Adelaide: Causal Productions.

    Abstract

    Simulations explored the inability of the TRACE model of spoken-word recognition to model the effects on human listening of subcategorical mismatch in word forms. The source of TRACE's failure lay not in interactive connectivity, not in the presence of inter-word competition, and not in the use of phonemic representations, but in the need for continuously optimised interpretation of the input. When an analogue of TRACE was allowed to cycle to asymptote on every slice of input, an acceptable simulation of the subcategorical mismatch data was achieved. Even then, however, the simulation was not as close as that produced by the Merge model, which has inter-word competition, phonemic representations and continuous optimisation (but no interactive connectivity).
  • Otake, T., & Cutler, A. (2000). A set of Japanese word cohorts rated for relative familiarity. In B. Yuan, T. Huang, & X. Tang (Eds.), Proceedings of the Sixth International Conference on Spoken Language Processing: Vol. 3 (pp. 766-769). Beijing: China Military Friendship Publish.

    Abstract

    A database is presented of relative familiarity ratings for 24 sets of Japanese words, each set comprising words overlapping in the initial portions. These ratings are useful for the generation of material sets for research in the recognition of spoken words.
  • Cutler, A. (1976). High-stress words are easier to perceive than low-stress words, even when they are equally stressed. Texas Linguistic Forum, 2, 53-57.
  • Cutler, A. (1976). Phoneme-monitoring reaction time as a function of preceding intonation contour. Perception and Psychophysics, 20, 55-60. Retrieved from http://www.psychonomic.org/search/view.cgi?id=18194.

    Abstract

    An acoustically invariant one-word segment occurred in two versions of one syntactic context. In one version, the preceding intonation contour indicated that a stress would fall at the point where this word occurred. In the other version, the preceding contour predicted reduced stress at that point. Reaction time to the initial phoneme of the word was faster in the former case, despite the fact that no acoustic correlates of stress were present. It is concluded that a part of the sentence comprehension process is the prediction of upcoming sentence accents.

Share this page