Anne Cutler †

Publications

Displaying 1 - 21 of 21
  • Bruggeman, L., & Cutler, A. (2019). The dynamics of lexical activation and competition in bilinguals’ first versus second language. In S. Calhoun, P. Escudero, M. Tabain, & P. Warren (Eds.), Proceedings of the 19th International Congress of Phonetic Sciences (ICPhS 20195) (pp. 1342-1346). Canberra, Australia: Australasian Speech Science and Technology Association Inc.

    Abstract

    Speech input causes listeners to activate multiple
    candidate words which then compete with one
    another. These include onset competitors, that share a
    beginning (bumper, butter), but also, counterintuitively,
    rhyme competitors, sharing an ending
    (bumper, jumper). In L1, competition is typically
    stronger for onset than for rhyme. In L2, onset
    competition has been attested but rhyme competition
    has heretofore remained largely unexamined. We
    assessed L1 (Dutch) and L2 (English) word
    recognition by the same late-bilingual individuals. In
    each language, eye gaze was recorded as listeners
    heard sentences and viewed sets of drawings: three
    unrelated, one depicting an onset or rhyme competitor
    of a word in the input. Activation patterns revealed
    substantial onset competition but no significant
    rhyme competition in either L1 or L2. Rhyme
    competition may thus be a “luxury” feature of
    maximally efficient listening, to be abandoned when
    resources are scarcer, as in listening by late
    bilinguals, in either language.
  • Cutler, A., Burchfield, A., & Antoniou, M. (2019). A criterial interlocutor tally for successful talker adaptation? In S. Calhoun, P. Escudero, M. Tabain, & P. Warren (Eds.), Proceedings of the 19th International Congress of Phonetic Sciences (ICPhS 20195) (pp. 1485-1489). Canberra, Australia: Australasian Speech Science and Technology Association Inc.

    Abstract

    Part of the remarkable efficiency of listening is
    accommodation to unfamiliar talkers’ specific
    pronunciations by retuning of phonemic intercategory
    boundaries. Such retuning occurs in second
    (L2) as well as first language (L1); however, recent
    research with emigrés revealed successful adaptation
    in the environmental L2 but, unprecedentedly, not in
    L1 despite continuing L1 use. A possible explanation
    involving relative exposure to novel talkers is here
    tested in heritage language users with Mandarin as
    family L1 and English as environmental language. In
    English, exposure to an ambiguous sound in
    disambiguating word contexts prompted the expected
    adjustment of phonemic boundaries in subsequent
    categorisation. However, no adjustment occurred in
    Mandarin, again despite regular use. Participants
    reported highly asymmetric interlocutor counts in the
    two languages. We conclude that successful retuning
    ability requires regular exposure to novel talkers in
    the language in question, a criterion not met for the
    emigrés’ or for these heritage users’ L1.
  • Joo, H., Jang, J., Kim, S., Cho, T., & Cutler, A. (2019). Prosodic structural effects on coarticulatory vowel nasalization in Australian English in comparison to American English. In S. Calhoun, P. Escudero, M. Tabain, & P. Warren (Eds.), Proceedings of the 19th International Congress of Phonetic Sciences (ICPhS 20195) (pp. 835-839). Canberra, Australia: Australasian Speech Science and Technology Association Inc.

    Abstract

    This study investigates effects of prosodic factors (prominence, boundary) on coarticulatory Vnasalization in Australian English (AusE) in CVN and NVC in comparison to those in American English
    (AmE). As in AmE, prominence was found to
    lengthen N, but to reduce V-nasalization, enhancing N’s nasality and V’s orality, respectively (paradigmatic contrast enhancement). But the prominence effect in CVN was more robust than that in AmE. Again similar to findings in AmE, boundary
    induced a reduction of N-duration and V-nasalization phrase-initially (syntagmatic contrast enhancement), and increased the nasality of both C and V phrasefinally.
    But AusE showed some differences in terms
    of the magnitude of V nasalization and N duration. The results suggest that the linguistic contrast enhancements underlie prosodic-structure modulation of coarticulatory V-nasalization in
    comparable ways across dialects, while the fine phonetic detail indicates that the phonetics-prosody interplay is internalized in the individual dialect’s phonetic grammar.
  • Nazzi, T., & Cutler, A. (2019). How consonants and vowels shape spoken-language recognition. Annual Review of Linguistics, 5, 25-47. doi:10.1146/annurev-linguistics-011718-011919.

    Abstract

    All languages instantiate a consonant/vowel contrast. This contrast has processing consequences at different levels of spoken-language recognition throughout the lifespan. In adulthood, lexical processing is more strongly associated with consonant than with vowel processing; this has been demonstrated across 13 languages from seven language families and in a variety of auditory lexical-level tasks (deciding whether a spoken input is a word, spotting a real word embedded in a minimal context, reconstructing a word minimally altered into a pseudoword, learning new words or the “words” of a made-up language), as well as in written-word tasks involving phonological processing. In infancy, a consonant advantage in word learning and recognition is found to emerge during development in some languages, though possibly not in others, revealing that the stronger lexicon–consonant association found in adulthood is learned. Current research is evaluating the relative contribution of the early acquisition of the acoustic/phonetic and lexical properties of the native language in the emergence of this association
  • Cutler, A., & Broersma, M. (2005). Phonetic precision in listening. In W. J. Hardcastle, & J. M. Beck (Eds.), A figure of speech: A Festschrift for John Laver (pp. 63-91). Mahwah, NJ: Erlbaum.
  • Cutler, A., Klein, W., & Levinson, S. C. (2005). The cornerstones of twenty-first century psycholinguistics. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 1-20). Mahwah, NJ: Erlbaum.
  • Cutler, A. (2005). The lexical statistics of word recognition problems caused by L2 phonetic confusion. In Proceedings of the 9th European Conference on Speech Communication and Technology (pp. 413-416).
  • Cutler, A., McQueen, J. M., & Norris, D. (2005). The lexical utility of phoneme-category plasticity. In Proceedings of the ISCA Workshop on Plasticity in Speech Perception (PSP2005) (pp. 103-107).
  • Cutler, A. (Ed.). (2005). Twenty-first century psycholinguistics: Four cornerstones. Mahwah, NJ: Erlbaum.
  • Cutler, A., Smits, R., & Cooper, N. (2005). Vowel perception: Effects of non-native language vs. non-native dialect. Speech Communication, 47(1-2), 32-42. doi:10.1016/j.specom.2005.02.001.

    Abstract

    Three groups of listeners identified the vowel in CV and VC syllables produced by an American English talker. The listeners were (a) native speakers of American English, (b) native speakers of Australian English (different dialect), and (c) native speakers of Dutch (different language). The syllables were embedded in multispeaker babble at three signal-to-noise ratios (0 dB, 8 dB, and 16 dB). The identification performance of native listeners was significantly better than that of listeners with another language but did not significantly differ from the performance of listeners with another dialect. Dialect differences did however affect the type of perceptual confusions which listeners made; in particular, the Australian listeners’ judgements of vowel tenseness were more variable than the American listeners’ judgements, which may be ascribed to cross-dialectal differences in this vocalic feature. Although listening difficulty can result when speech input mismatches the native dialect in terms of the precise cues for and boundaries of phonetic categories, the difficulty is very much less than that which arises when speech input mismatches the native language in terms of the repertoire of phonemic categories available.
  • Cutler, A. (2005). Why is it so hard to understand a second language in noise? Newsletter, American Association of Teachers of Slavic and East European Languages, 48, 16-16.
  • Cutler, A. (2005). Lexical stress. In D. B. Pisoni, & R. E. Remez (Eds.), The handbook of speech perception (pp. 264-289). Oxford: Blackwell.
  • Cutler, A. (Ed.). (2005). Twenty-first century psycholinguistics: Four cornerstones. Hillsdale, NJ: Erlbaum.
  • Goudbeek, M., Smits, R., Cutler, A., & Swingley, D. (2005). Acquiring auditory and phonetic categories. In H. Cohen, & C. Lefebvre (Eds.), Handbook of categorization in cognitive science (pp. 497-513). Amsterdam: Elsevier.
  • Kooijman, V., Hagoort, P., & Cutler, A. (2005). Electrophysiological evidence for prelinguistic infants' word recognition in continuous speech. Cognitive Brain Research, 24(1), 109-116. doi:10.1016/j.cogbrainres.2004.12.009.

    Abstract

    Children begin to talk at about age one. The vocabulary they need to do so must be built on perceptual evidence and, indeed, infants begin to recognize spoken words long before they talk. Most of the utterances infants hear, however, are continuous, without pauses between words, so constructing a vocabulary requires them to decompose continuous speech in order to extract the individual words. Here, we present electrophysiological evidence that 10-month-old infants recognize two-syllable words they have previously heard only in isolation when these words are presented anew in continuous speech. Moreover, they only need roughly the first syllable of the word to begin doing this. Thus, prelinguistic infants command a highly efficient procedure for segmentation and recognition of spoken words in the absence of an existing vocabulary, allowing them to tackle effectively the problem of bootstrapping a lexicon out of the highly variable, continuous speech signals in their environment.
  • Sharp, D. J., Scott, S. K., Cutler, A., & Wise, R. J. S. (2005). Lexical retrieval constrained by sound structure: The role of the left inferior frontal gyrus. Brain and Language, 92(3), 309-319. doi:10.1016/j.bandl.2004.07.002.

    Abstract

    Positron emission tomography was used to investigate two competing hypotheses about the role of the left inferior frontal gyrus (IFG) in word generation. One proposes a domain-specific organization, with neural activation dependent on the type of information being processed, i.e., surface sound structure or semantic. The other proposes a process-specific organization, with activation dependent on processing demands, such as the amount of selection needed to decide between competing lexical alternatives. In a novel word retrieval task, word reconstruction (WR), subjects generated real words from heard non-words by the substitution of either a vowel or consonant. Both types of lexical retrieval, informed by sound structure alone, produced activation within anterior and posterior left IFG regions. Within these regions there was greater activity for consonant WR, which is more difficult and imposes greater processing demands. These results support a process-specific organization of the anterior left IFG.
  • Van Donselaar, W., Koster, M., & Cutler, A. (2005). Exploring the role of lexical stress in lexical recognition. Quarterly Journal of Experimental Psychology, 58A(2), 251-273. doi:10.1080/02724980343000927.

    Abstract

    Three cross-modal priming experiments examined the role of suprasegmental information in the processing of spoken words. All primes consisted of truncated spoken Dutch words. Recognition of visually presented word targets was facilitated by prior auditory presentation of the first two syllables of the same words as primes, but only if they were appropriately stressed (e.g., OKTOBER preceded by okTO-); inappropriate stress, compatible with another word (e.g., OKTOBER preceded by OCto-, the beginning of octopus), produced inhibition. Monosyllabic fragments (e.g., OC-) also produced facilitation when appropriately stressed; if inappropriately stressed, they produced neither facilitation nor inhibition. The bisyllabic fragments that were compatible with only one word produced facilitation to semantically associated words, but inappropriate stress caused no inhibition of associates. The results are explained within a model of spoken-word recognition involving competition between simultaneously activated phonological representations followed by activation of separate conceptual representations for strongly supported lexical candidates; at the level of the phonological representations, activation is modulated by both segmental and suprasegmental information.
  • Warner, N., Smits, R., McQueen, J. M., & Cutler, A. (2005). Phonological and statistical effects on timing of speech perception: Insights from a database of Dutch diphone perception. Speech Communication, 46(1), 53-72. doi:10.1016/j.specom.2005.01.003.

    Abstract

    We report detailed analyses of a very large database on timing of speech perception collected by Smits et al. (Smits, R., Warner, N., McQueen, J.M., Cutler, A., 2003. Unfolding of phonetic information over time: A database of Dutch diphone perception. J. Acoust. Soc. Am. 113, 563–574). Eighteen listeners heard all possible diphones of Dutch, gated in portions of varying size and presented without background noise. The present report analyzes listeners’ responses across gates in terms of phonological features (voicing, place, and manner for consonants; height, backness, and length for vowels). The resulting patterns for feature perception differ from patterns reported when speech is presented in noise. The data are also analyzed for effects of stress and of phonological context (neighboring vowel vs. consonant); effects of these factors are observed to be surprisingly limited. Finally, statistical effects, such as overall phoneme frequency and transitional probabilities, along with response biases, are examined; these too exercise only limited effects on response patterns. The results suggest highly accurate speech perception on the basis of acoustic information alone.
  • Warner, N., Kim, J., Davis, C., & Cutler, A. (2005). Use of complex phonological patterns in speech processing: Evidence from Korean. Journal of Linguistics, 41(2), 353-387. doi:10.1017/S0022226705003294.

    Abstract

    Korean has a very complex phonology, with many interacting alternations. In a coronal-/i/ sequence, depending on the type of phonological boundary present, alternations such as palatalization, nasal insertion, nasal assimilation, coda neutralization, and intervocalic voicing can apply. This paper investigates how the phonological patterns of Korean affect processing of morphemes and words. Past research on languages such as English, German, Dutch, and Finnish has shown that listeners exploit syllable structure constraints in processing speech and segmenting it into words. The current study shows that in parsing speech, listeners also use much more complex patterns that relate the surface phonological string to various boundaries.
  • Cutler, A. (1976). High-stress words are easier to perceive than low-stress words, even when they are equally stressed. Texas Linguistic Forum, 2, 53-57.
  • Cutler, A. (1976). Phoneme-monitoring reaction time as a function of preceding intonation contour. Perception and Psychophysics, 20, 55-60. Retrieved from http://www.psychonomic.org/search/view.cgi?id=18194.

    Abstract

    An acoustically invariant one-word segment occurred in two versions of one syntactic context. In one version, the preceding intonation contour indicated that a stress would fall at the point where this word occurred. In the other version, the preceding contour predicted reduced stress at that point. Reaction time to the initial phoneme of the word was faster in the former case, despite the fact that no acoustic correlates of stress were present. It is concluded that a part of the sentence comprehension process is the prediction of upcoming sentence accents.

Share this page