Anne Cutler †

Publications

Displaying 1 - 14 of 14
  • Bruggeman, L., & Cutler, A. (2016). Lexical manipulation as a discovery tool for psycholinguistic research. In C. Carignan, & M. D. Tyler (Eds.), Proceedings of the 16th Australasian International Conference on Speech Science and Technology (SST2016) (pp. 313-316).
  • Ip, M., & Cutler, A. (2016). Cross-language data on five types of prosodic focus. In J. Barnes, A. Brugos, S. Shattuck-Hufnagel, & N. Veilleux (Eds.), Proceedings of Speech Prosody 2016 (pp. 330-334).

    Abstract

    To examine the relative roles of language-specific and language-universal mechanisms in the production of prosodic focus, we compared production of five different types of focus by native speakers of English and Mandarin. Two comparable dialogues were constructed for each language, with the same words appearing in focused and unfocused position; 24 speakers recorded each dialogue in each language. Duration, F0 (mean, maximum, range), and rms-intensity (mean, maximum) of all critical word tokens were measured. Across the different types of focus, cross-language differences were observed in the degree to which English versus Mandarin speakers use the different prosodic parameters to mark focus, suggesting that while prosody may be universally available for expressing focus, the means of its employment may be considerably language-specific
  • Jeske, J., Kember, H., & Cutler, A. (2016). Native and non-native English speakers' use of prosody to predict sentence endings. In Proceedings of the 16th Australasian International Conference on Speech Science and Technology (SST2016).
  • Kember, H., Choi, J., & Cutler, A. (2016). Processing advantages for focused words in Korean. In J. Barnes, A. Brugos, S. Shattuck-Hufnagel, & N. Veilleux (Eds.), Proceedings of Speech Prosody 2016 (pp. 702-705).

    Abstract

    In Korean, focus is expressed in accentual phrasing. To ascertain whether words focused in this manner enjoy a processing advantage analogous to that conferred by focus as expressed in, e.g, English and Dutch, we devised sentences with target words in one of four conditions: prosodic focus, syntactic focus, prosodic + syntactic focus, and no focus as a control. 32 native speakers of Korean listened to blocks of 10 sentences, then were presented visually with words and asked whether or not they had heard them. Overall, words with focus were recognised significantly faster and more accurately than unfocused words. In addition, words with syntactic focus or syntactic + prosodic focus were recognised faster than words with prosodic focus alone. As for other languages, Korean focus confers processing advantage on the words carrying it. While prosodic focus does provide an advantage, however, syntactic focus appears to provide the greater beneficial effect for recognition memory
  • Warner, N. L., McQueen, J. M., Liu, P. Z., Hoffmann, M., & Cutler, A. (2012). Timing of perception for all English diphones [Abstract]. Program abstracts from the 164th Meeting of the Acoustical Society of America published in the Journal of the Acoustical Society of America, 132(3), 1967.

    Abstract

    Information in speech does not unfold discretely over time; perceptual cues are gradient and overlapped. However, this varies greatly across segments and environments: listeners cannot identify the affricate in /ptS/ until the frication, but information about the vowel in /li/ begins early. Unlike most prior studies, which have concentrated on subsets of language sounds, this study tests perception of every English segment in every phonetic environment, sampling perceptual identification at six points in time (13,470 stimuli/listener; 20 listeners). Results show that information about consonants after another segment is most localized for affricates (almost entirely in the release), and most gradual for voiced stops. In comparison to stressed vowels, unstressed vowels have less information spreading to
    neighboring segments and are less well identified. Indeed, many vowels,
    especially lax ones, are poorly identified even by the end of the following segment. This may partly reflect listeners’ familiarity with English vowels’ dialectal variability. Diphthongs and diphthongal tense vowels show the most sudden improvement in identification, similar to affricates among the consonants, suggesting that information about segments defined by acoustic change is highly localized. This large dataset provides insights into speech perception and data for probabilistic modeling of spoken word recognition.
  • Burnham, D., Ambikairajah, E., Arciuli, J., Bennamoun, M., Best, C. T., Bird, S., Butcher, A. R., Cassidy, S., Chetty, G., Cox, F. M., Cutler, A., Dale, R., Epps, J. R., Fletcher, J. M., Goecke, R., Grayden, D. B., Hajek, J. T., Ingram, J. C., Ishihara, S., Kemp, N. and 10 moreBurnham, D., Ambikairajah, E., Arciuli, J., Bennamoun, M., Best, C. T., Bird, S., Butcher, A. R., Cassidy, S., Chetty, G., Cox, F. M., Cutler, A., Dale, R., Epps, J. R., Fletcher, J. M., Goecke, R., Grayden, D. B., Hajek, J. T., Ingram, J. C., Ishihara, S., Kemp, N., Kinoshita, Y., Kuratate, T., Lewis, T. W., Loakes, D. E., Onslow, M., Powers, D. M., Rose, P., Togneri, R., Tran, D., & Wagner, M. (2009). A blueprint for a comprehensive Australian English auditory-visual speech corpus. In M. Haugh, K. Burridge, J. Mulder, & P. Peters (Eds.), Selected proceedings of the 2008 HCSNet Workshop on Designing the Australian National Corpus (pp. 96-107). Somerville, MA: Cascadilla Proceedings Project.

    Abstract

    Large auditory-visual (AV) speech corpora are the grist of modern research in speech science, but no such corpus exists for Australian English. This is unfortunate, for speech science is the brains behind speech technology and applications such as text-to-speech (TTS) synthesis, automatic speech recognition (ASR), speaker recognition and forensic identification, talking heads, and hearing prostheses. Advances in these research areas in Australia require a large corpus of Australian English. Here the authors describe a blueprint for building the Big Australian Speech Corpus (the Big ASC), a corpus of over 1,100 speakers from urban and rural Australia, including speakers of non-indigenous, indigenous, ethnocultural, and disordered forms of Australian English, each of whom would be sampled on three occasions in a range of speech tasks designed by the researchers who would be using the corpus.
  • Cutler, A., Davis, C., & Kim, J. (2009). Non-automaticity of use of orthographic knowledge in phoneme evaluation. In Proceedings of the 10th Annual Conference of the International Speech Communication Association (Interspeech 2009) (pp. 380-383). Causal Productions Pty Ltd.

    Abstract

    Two phoneme goodness rating experiments addressed the role of orthographic knowledge in the evaluation of speech sounds. Ratings for the best tokens of /s/ were higher in words spelled with S (e.g., bless) than in words where /s/ was spelled with C (e.g., voice). This difference did not appear for analogous nonwords for which every lexical neighbour had either S or C spelling (pless, floice). Models of phonemic processing incorporating obligatory influence of lexical information in phonemic processing cannot explain this dissociation; the data are consistent with models in which phonemic decisions are not subject to necessary top-down lexical influence.
  • Cutler, A., Kim, J., & Otake, T. (2006). On the limits of L1 influence on non-L1 listening: Evidence from Japanese perception of Korean. In P. Warren, & C. I. Watson (Eds.), Proceedings of the 11th Australian International Conference on Speech Science & Technology (pp. 106-111).

    Abstract

    Language-specific procedures which are efficient for listening to the L1 may be applied to non-native spoken input, often to the detriment of successful listening. However, such misapplications of L1-based listening do not always happen. We propose, based on the results from two experiments in which Japanese listeners detected target sequences in spoken Korean, that an L1 procedure is only triggered if requisite L1 features are present in the input.
  • Cutler, A., & Pasveer, D. (2006). Explaining cross-linguistic differences in effects of lexical stress on spoken-word recognition. In R. Hoffmann, & H. Mixdorff (Eds.), Speech Prosody 2006. Dresden: TUD press.

    Abstract

    Experiments have revealed differences across languages in listeners’ use of stress information in recognising spoken words. Previous comparisons of the vocabulary of Spanish and English had suggested that the explanation of this asymmetry might lie in the extent to which considering stress in spokenword recognition allows rejection of unwanted competition from words embedded in other words. This hypothesis was tested on the vocabularies of Dutch and German, for which word recognition results resemble those from Spanish more than those from English. The vocabulary statistics likewise revealed that in each language, the reduction of embeddings resulting from taking stress into account is more similar to the reduction achieved in Spanish than in English.
  • Cutler, A., Eisner, F., McQueen, J. M., & Norris, D. (2006). Coping with speaker-related variation via abstract phonemic categories. In Variation, detail and representation: 10th Conference on Laboratory Phonology (pp. 31-32).
  • Kuzla, C., Mitterer, H., Ernestus, M., & Cutler, A. (2006). Perceptual compensation for voice assimilation of German fricatives. In P. Warren, & I. Watson (Eds.), Proceedings of the 11th Australasian International Conference on Speech Science and Technology (pp. 394-399).

    Abstract

    In German, word-initial lax fricatives may be produced with substantially reduced glottal vibration after voiceless obstruents. This assimilation occurs more frequently and to a larger extent across prosodic word boundaries than across phrase boundaries. Assimilatory devoicing makes the fricatives more similar to their tense counterparts and could thus hinder word recognition. The present study investigates how listeners cope with assimilatory devoicing. Results of a cross-modal priming experiment indicate that listeners compensate for assimilation in appropriate contexts. Prosodic structure moderates compensation for assimilation: Compensation occurs especially after phrase boundaries, where devoiced fricatives are sufficiently long to be confused with their tense counterparts.
  • Scott, D. R., & Cutler, A. (1982). Segmental cues to syntactic structure. In Proceedings of the Institute of Acoustics 'Spectral Analysis and its Use in Underwater Acoustics' (pp. E3.1-E3.4). London: Institute of Acoustics.
  • Cutler, A. (1977). The context-dependence of "intonational meanings". In W. Beach, S. Fox, & S. Philosoph (Eds.), Papers from the Thirteenth Regional Meeting, Chicago Linguistic Society (pp. 104-115). Chicago, Ill.: CLS.
  • Cutler, A. (1977). The psychological reality of word formation and lexical stress rules. In E. Fischer-Jørgensen, J. Rischel, & N. Thorsen (Eds.), Proceedings of the Ninth International Congress of Phonetic Sciences: Vol. 2 (pp. 79-85). Copenhagen: Institute of Phonetics, University of Copenhagen.

Share this page