Anne Cutler †

Publications

Displaying 1 - 11 of 11
  • Bruggeman, L., & Cutler, A. (2016). Lexical manipulation as a discovery tool for psycholinguistic research. In C. Carignan, & M. D. Tyler (Eds.), Proceedings of the 16th Australasian International Conference on Speech Science and Technology (SST2016) (pp. 313-316).
  • Ip, M., & Cutler, A. (2016). Cross-language data on five types of prosodic focus. In J. Barnes, A. Brugos, S. Shattuck-Hufnagel, & N. Veilleux (Eds.), Proceedings of Speech Prosody 2016 (pp. 330-334).

    Abstract

    To examine the relative roles of language-specific and language-universal mechanisms in the production of prosodic focus, we compared production of five different types of focus by native speakers of English and Mandarin. Two comparable dialogues were constructed for each language, with the same words appearing in focused and unfocused position; 24 speakers recorded each dialogue in each language. Duration, F0 (mean, maximum, range), and rms-intensity (mean, maximum) of all critical word tokens were measured. Across the different types of focus, cross-language differences were observed in the degree to which English versus Mandarin speakers use the different prosodic parameters to mark focus, suggesting that while prosody may be universally available for expressing focus, the means of its employment may be considerably language-specific
  • Jeske, J., Kember, H., & Cutler, A. (2016). Native and non-native English speakers' use of prosody to predict sentence endings. In Proceedings of the 16th Australasian International Conference on Speech Science and Technology (SST2016).
  • Kember, H., Choi, J., & Cutler, A. (2016). Processing advantages for focused words in Korean. In J. Barnes, A. Brugos, S. Shattuck-Hufnagel, & N. Veilleux (Eds.), Proceedings of Speech Prosody 2016 (pp. 702-705).

    Abstract

    In Korean, focus is expressed in accentual phrasing. To ascertain whether words focused in this manner enjoy a processing advantage analogous to that conferred by focus as expressed in, e.g, English and Dutch, we devised sentences with target words in one of four conditions: prosodic focus, syntactic focus, prosodic + syntactic focus, and no focus as a control. 32 native speakers of Korean listened to blocks of 10 sentences, then were presented visually with words and asked whether or not they had heard them. Overall, words with focus were recognised significantly faster and more accurately than unfocused words. In addition, words with syntactic focus or syntactic + prosodic focus were recognised faster than words with prosodic focus alone. As for other languages, Korean focus confers processing advantage on the words carrying it. While prosodic focus does provide an advantage, however, syntactic focus appears to provide the greater beneficial effect for recognition memory
  • Choi, J., Broersma, M., & Cutler, A. (2015). Enhanced processing of a lost language: Linguistic knowledge or linguistic skill? In Proceedings of Interspeech 2015: 16th Annual Conference of the International Speech Communication Association (pp. 3110-3114).

    Abstract

    Same-different discrimination judgments for pairs of Korean stop consonants, or of Japanese syllables differing in phonetic segment length, were made by adult Korean adoptees in the Netherlands, by matched Dutch controls, and Korean controls. The adoptees did not outdo either control group on either task, although the same individuals had performed significantly better than matched controls on an identification learning task. This suggests that early exposure to multiple phonetic systems does not specifically improve acoustic-phonetic skills; rather, enhanced performance suggests retained language knowledge.
  • Warner, N. L., McQueen, J. M., Liu, P. Z., Hoffmann, M., & Cutler, A. (2012). Timing of perception for all English diphones [Abstract]. Program abstracts from the 164th Meeting of the Acoustical Society of America published in the Journal of the Acoustical Society of America, 132(3), 1967.

    Abstract

    Information in speech does not unfold discretely over time; perceptual cues are gradient and overlapped. However, this varies greatly across segments and environments: listeners cannot identify the affricate in /ptS/ until the frication, but information about the vowel in /li/ begins early. Unlike most prior studies, which have concentrated on subsets of language sounds, this study tests perception of every English segment in every phonetic environment, sampling perceptual identification at six points in time (13,470 stimuli/listener; 20 listeners). Results show that information about consonants after another segment is most localized for affricates (almost entirely in the release), and most gradual for voiced stops. In comparison to stressed vowels, unstressed vowels have less information spreading to
    neighboring segments and are less well identified. Indeed, many vowels,
    especially lax ones, are poorly identified even by the end of the following segment. This may partly reflect listeners’ familiarity with English vowels’ dialectal variability. Diphthongs and diphthongal tense vowels show the most sudden improvement in identification, similar to affricates among the consonants, suggesting that information about segments defined by acoustic change is highly localized. This large dataset provides insights into speech perception and data for probabilistic modeling of spoken word recognition.
  • Cutler, A. (1987). Components of prosodic effects in speech recognition. In Proceedings of the Eleventh International Congress of Phonetic Sciences: Vol. 1 (pp. 84-87). Tallinn: Academy of Sciences of the Estonian SSR, Institute of Language and Literature.

    Abstract

    Previous research has shown that listeners use the prosodic structure of utterances in a predictive fashion in sentence comprehension, to direct attention to accented words. Acoustically identical words spliced into sentence contexts arc responded to differently if the prosodic structure of the context is \ aricd: when the preceding prosody indicates that the word will he accented, responses are faster than when the preceding prosodv is inconsistent with accent occurring on that word. In the present series of experiments speech hybridisation techniques were first used to interchange the timing patterns within pairs of prosodic variants of utterances, independently of the pitch and intensity contours. The time-adjusted utterances could then serve as a basis lor the orthogonal manipulation of the three prosodic dimensions of pilch, intensity and rhythm. The overall pattern of results showed that when listeners use prosody to predict accent location, they do not simply rely on a single prosodic dimension, hut exploit the interaction between pitch, intensity and rhythm.
  • Cutler, A., & Carter, D. (1987). The prosodic structure of initial syllables in English. In J. Laver, & M. Jack (Eds.), Proceedings of the European Conference on Speech Technology: Vol. 1 (pp. 207-210). Edinburgh: IEE.
  • Scott, D. R., & Cutler, A. (1982). Segmental cues to syntactic structure. In Proceedings of the Institute of Acoustics 'Spectral Analysis and its Use in Underwater Acoustics' (pp. E3.1-E3.4). London: Institute of Acoustics.
  • Cutler, A. (1977). The context-dependence of "intonational meanings". In W. Beach, S. Fox, & S. Philosoph (Eds.), Papers from the Thirteenth Regional Meeting, Chicago Linguistic Society (pp. 104-115). Chicago, Ill.: CLS.
  • Cutler, A. (1977). The psychological reality of word formation and lexical stress rules. In E. Fischer-Jørgensen, J. Rischel, & N. Thorsen (Eds.), Proceedings of the Ninth International Congress of Phonetic Sciences: Vol. 2 (pp. 79-85). Copenhagen: Institute of Phonetics, University of Copenhagen.

Share this page