Anne Cutler †

Publications

Displaying 1 - 50 of 50
  • Cutler, A. (2001). De baby in je hoofd: luisteren naar eigen en andermans taal [Speech at the Catholic University's 78th Dies Natalis]. Nijmegen, The Netherlands: Nijmegen University Press.
  • Cutler, A. (2001). Entries on: Acquisition of language by non-human primates; bilingualism; compound (linguistic); development of language-specific phonology; gender (linguistic); grammar; infant speech perception; language; lexicon; morphology; motor theory of speech perception; perception of second languages; phoneme; phonological store; phonology; prosody; sign language; slips of the tongue; speech perception; speech production; stress (linguistic); syntax; word recognition; words. In P. Winn (Ed.), Dictionary of biological psychology. London: Routledge.
  • Cutler, A. (2001). Listening to a second language through the ears of a first. Interpreting, 5, 1-23.
  • Cutler, A., McQueen, J. M., Norris, D., & Somejuan, A. (2001). The roll of the silly ball. In E. Dupoux (Ed.), Language, brain and cognitive development: Essays in honor of Jacques Mehler (pp. 181-194). Cambridge, MA: MIT Press.
  • Cutler, A., & Van Donselaar, W. (2001). Voornaam is not a homophone: Lexical prosody and lexical access in Dutch. Language and Speech, 44, 171-195. doi:10.1177/00238309010440020301.

    Abstract

    Four experiments examined Dutch listeners’ use of suprasegmental information in spoken-word recognition. Isolated syllables excised from minimal stress pairs such as VOORnaam/voorNAAM could be reliably assigned to their source words. In lexical decision, no priming was observed from one member of minimal stress pairs to the other, suggesting that the pairs’ segmental ambiguity was removed by suprasegmental information.Words embedded in nonsense strings were harder to detect if the nonsense string itself formed the beginning of a competing word, but a suprasegmental mismatch to the competing word significantly reduced this inhibition. The same nonsense strings facilitated recognition of the longer words of which they constituted the beginning, butagain the facilitation was significantly reduced by suprasegmental mismatch. Together these results indicate that Dutch listeners effectively exploit suprasegmental cues in recognizing spoken words. Nonetheless, suprasegmental mismatch appears to be somewhat less effective in constraining activation than segmental mismatch.
  • McQueen, J. M., Norris, D., & Cutler, A. (2001). Can lexical knowledge modulate prelexical representations over time? In R. Smits, J. Kingston, T. Neary, & R. Zondervan (Eds.), Proceedings of the workshop on Speech Recognition as Pattern Classification (SPRAAC) (pp. 145-150). Nijmegen: Max Planck Institute for Psycholinguistics.

    Abstract

    The results of a study on perceptual learning are reported. Dutch subjects made lexical decisions on a list of words and nonwords. Embedded in the list were either [f]- or [s]-final words in which the final fricative had been replaced by an ambiguous sound, midway between [f] and [s]. One group of listeners heard ambiguous [f]- final Dutch words like [kara?] (based on karaf, carafe) and unambiguous [s]-final words (e.g., karkas, carcase). A second group heard the reverse (e.g., ambiguous [karka?] and unambiguous karaf). After this training phase, listeners labelled ambiguous fricatives on an [f]- [s] continuum. The subjects who had heard [?] in [f]- final words categorised these fricatives as [f] reliably more often than those who had heard [?] in [s]-final words. These results suggest that speech recognition is dynamic: the system adjusts to the constraints of each particular listening situation. The lexicon can provide this adjustment process with a training signal.
  • McQueen, J. M., & Cutler, A. (Eds.). (2001). Spoken word access processes. Hove, UK: Psychology Press.
  • McQueen, J. M., & Cutler, A. (2001). Spoken word access processes: An introduction. Language and Cognitive Processes, 16, 469-490. doi:10.1080/01690960143000209.

    Abstract

    We introduce the papers in this special issue by summarising the current major issues in spoken word recognition. We argue that a full understanding of the process of lexical access during speech comprehension will depend on resolving several key representational issues: what is the form of the representations used for lexical access; how is phonological information coded in the mental lexicon; and how is the morphological and semantic information about each word stored? We then discuss a number of distinct access processes: competition between lexical hypotheses; the computation of goodness-of-fit between the signal and stored lexical knowledge; segmentation of continuous speech; whether the lexicon influences prelexical processing through feedback; and the relationship of form-based processing to the processes responsible for deriving an interpretation of a complete utterance. We conclude that further progress may well be made by swapping ideas among the different sub-domains of the discipline.
  • McQueen, J. M., Otake, T., & Cutler, A. (2001). Rhythmic cues and possible-word constraints in Japanese speech segmentation. Journal of Memory and Language, 45, 103-132. doi:10.1006/jmla.2000.2763.

    Abstract

    In two word-spotting experiments, Japanese listeners detected Japanese words faster in vowel contexts (e.g., agura, to sit cross-legged, in oagura) than in consonant contexts (e.g., tagura). In the same experiments, however, listeners spotted words in vowel contexts (e.g., saru, monkey, in sarua) no faster than in moraic nasal contexts (e.g., saruN). In a third word-spotting experiment, words like uni, sea urchin, followed contexts consisting of a consonant-consonant-vowel mora (e.g., gya) plus either a moraic nasal (gyaNuni), a vowel (gyaouni) or a consonant (gyabuni). Listeners spotted words as easily in the first as in the second context (where in each case the target words were aligned with mora boundaries), but found it almost impossible to spot words in the third (where there was a single consonant, such as the [b] in gyabuni, between the beginning of the word and the nearest preceding mora boundary). Three control experiments confirmed that these effects reflected the relative ease of segmentation of the words from their contexts.We argue that the listeners showed sensitivity to the viability of sound sequences as possible Japanese words in the way that they parsed the speech into words. Since single consonants are not possible Japanese words, the listeners avoided lexical parses including single consonants and thus had difficulty recognizing words in the consonant contexts. Even though moraic nasals are also impossible words, they were not difficult segmentation contexts because, as with the vowel contexts, the mora boundaries between the contexts and the target words signaled likely word boundaries. Moraic rhythm appears to provide Japanese listeners with important segmentation cues.
  • Moore, R. K., & Cutler, A. (2001). Constraints on theories of human vs. machine recognition of speech. In R. Smits, J. Kingston, T. Neary, & R. Zondervan (Eds.), Proceedings of the workshop on Speech Recognition as Pattern Classification (SPRAAC) (pp. 145-150). Nijmegen: Max Planck Institute for Psycholinguistics.

    Abstract

    The central issues in the study of speech recognition by human listeners (HSR) and of automatic speech recognition (ASR) are clearly comparable; nevertheless the research communities that concern themselves with ASR and HSR are largely distinct. This paper compares the research objectives of the two fields, and attempts to draw informative lessons from one to the other.
  • Norris, D., McQueen, J. M., Cutler, A., Butterfield, S., & Kearns, R. (2001). Language-universal constraints on speech segmentation. Language and Cognitive Processes, 16, 637-660. doi:10.1080/01690960143000119.

    Abstract

    Two word-spotting experiments are reported that examine whether the Possible-Word Constraint (PWC) is a language-specific or language-universal strategy for the segmentation of continuous speech. The PWC disfavours parses which leave an impossible residue between the end of a candidate word and any likely location of a word boundary, as cued in the speech signal. The experiments examined cases where the residue was either a CVC syllable with a schwa, or a CV syllable with a lax vowel. Although neither of these syllable contexts is a possible lexical word in English, word-spotting in both contexts was easier than in a context consisting of a single consonant. Two control lexical-decision experiments showed that the word-spotting results reflected the relative segmentation difficulty of the words in different contexts. The PWC appears to be language-universal rather than language-specific.
  • Otake, T., & Cutler, A. (2001). Recognition of (almost) spoken words: Evidence from word play in Japanese. In P. Dalsgaard (Ed.), Proceedings of EUROSPEECH 2001 (pp. 465-468).

    Abstract

    Current models of spoken-word recognition assume automatic activation of multiple candidate words fully or partially compatible with the speech input. We propose that listeners make use of this concurrent activation in word play such as punning. Distortion in punning should ideally involve no more than a minimal contrastive deviation between two words, namely a phoneme. Moreover, we propose that this metric of similarity does not presuppose phonemic awareness on the part of the punster. We support these claims with an analysis of modern and traditional puns in Japanese (in which phonemic awareness in language users is not encouraged by alphabetic orthography). For both data sets, the results support the predictions. Punning draws on basic processes of spokenword recognition, common across languages.
  • Soto-Faraco, S., Sebastian-Galles, N., & Cutler, A. (2001). Segmental and suprasegmental mismatch in lexical access. Journal of Memory and Language, 45, 412-432. doi:10.1006/jmla.2000.2783.

    Abstract

    Four cross-modal priming experiments in Spanish addressed the role of suprasegmental and segmental information in the activation of spoken words. Listeners heard neutral sentences ending with word fragments (e.g., princi-) and made lexical decisions on letter strings presented at fragment offset. Responses were compared for fragment primes that fully matched the spoken form of the initial portion of target words, versus primes that mismatched in a single element (stress pattern; one vowel; one consonant), versus control primes. Fully matching primes always facilitated lexical decision responses, in comparison to the control condition, while mismatching primes always produced inhibition. The respective strength of the contribution of stress, vowel, and consonant (one feature mismatch or more) information did not differ statistically. The results support a model of spoken-word recognition involving automatic activation of word forms and competition between activated words, in which the activation process is sensitive to all acoustic information relevant to the language’s phonology.
  • Warner, N., Jongman, A., Cutler, A., & Mücke, D. (2001). The phonological status of Dutch epenthetic schwa. Phonology, 18, 387-420. doi:10.1017/S0952675701004213.

    Abstract

    In this paper, we use articulatory measures to determine whether Dutch schwa epenthesis is an abstract phonological process or a concrete phonetic process depending on articulatory timing. We examine tongue position during /l/ before underlying schwa and epenthetic schwa and in coda position. We find greater tip raising before both types of schwa, indicating light /l/ before schwa and dark /l/ in coda position. We argue that the ability of epenthetic schwa to condition the /l/ alternation shows that Dutch schwa epenthesis is an abstract phonological process involving insertion of some unit, and cannot be accounted for within Articulatory Phonology.
  • Warner, N., Jongman, A., Mucke, D., & Cutler, A. (2001). The phonological status of schwa insertion in Dutch: An EMA study. In B. Maassen, W. Hulstijn, R. Kent, H. Peters, & P. v. Lieshout (Eds.), Speech motor control in normal and disordered speech: 4th International Speech Motor Conference (pp. 86-89). Nijmegen: Vantilt.

    Abstract

    Articulatory data are used to address the question of whether Dutch schwa insertion is a phonological or a phonetic process. By investigating tongue tip raising and dorsal lowering, we show that /l/ when it appears before inserted schwa is a light /l/, just as /l/ before an underlying schwa is, and unlike the dark /l/ before a consonant in non-insertion productions of the same words. The fact that inserted schwa can condition the light/dark /l/ alternation shows that schwa insertion involves the phonological insertion of a segment rather than phonetic adjustments to articulations.
  • Costa, A., Cutler, A., & Sebastian-Galles, N. (1998). Effects of phoneme repertoire on phoneme decision. Perception and Psychophysics, 60, 1022-1031.

    Abstract

    In three experiments, listeners detected vowel or consonant targets in lists of CV syllables constructed from five vowels and five consonants. Responses were faster in a predictable context (e.g., listening for a vowel target in a list of syllables all beginning with the same consonant) than in an unpredictable context (e.g., listening for a vowel target in a list of syllables beginning with different consonants). In Experiment 1, the listeners’ native language was Dutch, in which vowel and consonant repertoires are similar in size. The difference between predictable and unpredictable contexts was comparable for vowel and consonant targets. In Experiments 2 and 3, the listeners’ native language was Spanish, which has four times as many consonants as vowels; here effects of an unpredictable consonant context on vowel detection were significantly greater than effects of an unpredictable vowel context on consonant detection. This finding suggests that listeners’ processing of phonemes takes into account the constitution of their language’s phonemic repertoire and the implications that this has for contextual variability.
  • Cutler, A., & Otake, T. (1998). Assimilation of place in Japanese and Dutch. In R. Mannell, & J. Robert-Ribes (Eds.), Proceedings of the Fifth International Conference on Spoken Language Processing: vol. 5 (pp. 1751-1754). Sydney: ICLSP.

    Abstract

    Assimilation of place of articulation across a nasal and a following stop consonant is obligatory in Japanese, but not in Dutch. In four experiments the processing of assimilated forms by speakers of Japanese and Dutch was compared, using a task in which listeners blended pseudo-word pairs such as ranga-serupa. An assimilated blend of this pair would be rampa, an unassimilated blend rangpa. Japanese listeners produced significantly more assimilated than unassimilated forms, both with pseudo-Japanese and pseudo-Dutch materials, while Dutch listeners produced significantly more unassimilated than assimilated forms in each materials set. This suggests that Japanese listeners, whose native-language phonology involves obligatory assimilation constraints, represent the assimilated nasals in nasal-stop sequences as unmarked for place of articulation, while Dutch listeners, who are accustomed to hearing unassimilated forms, represent the same nasal segments as marked for place of articulation.
  • Cutler, A. (1998). How listeners find the right words. In Proceedings of the Sixteenth International Congress on Acoustics: Vol. 2 (pp. 1377-1380). Melville, NY: Acoustical Society of America.

    Abstract

    Languages contain tens of thousands of words, but these are constructed from a tiny handful of phonetic elements. Consequently, words resemble one another, or can be embedded within one another, a coup stick snot with standing. me process of spoken-word recognition by human listeners involves activation of multiple word candidates consistent with the input, and direct competition between activated candidate words. Further, human listeners are sensitive, at an early, prelexical, stage of speeeh processing, to constraints on what could potentially be a word of the language.
  • Cutler, A., Treiman, R., & Van Ooijen, B. (1998). Orthografik inkoncistensy ephekts in foneme detektion? In R. Mannell, & J. Robert-Ribes (Eds.), Proceedings of the Fifth International Conference on Spoken Language Processing: Vol. 6 (pp. 2783-2786). Sydney: ICSLP.

    Abstract

    The phoneme detection task is widely used in spoken word recognition research. Alphabetically literate participants, however, are more used to explicit representations of letters than of phonemes. The present study explored whether phoneme detection is sensitive to how target phonemes are, or may be, orthographically realised. Listeners detected the target sounds [b,m,t,f,s,k] in word-initial position in sequences of isolated English words. Response times were faster to the targets [b,m,t], which have consistent word-initial spelling, than to the targets [f,s,k], which are inconsistently spelled, but only when listeners’ attention was drawn to spelling by the presence in the experiment of many irregularly spelled fillers. Within the inconsistent targets [f,s,k], there was no significant difference between responses to targets in words with majority and minority spellings. We conclude that performance in the phoneme detection task is not necessarily sensitive to orthographic effects, but that salient orthographic manipulation can induce such sensitivity.
  • Cutler, A. (1998). Prosodic structure and word recognition. In A. D. Friederici (Ed.), Language comprehension: A biological perspective (pp. 41-70). Heidelberg: Springer.
  • Cutler, A. (1998). The recognition of spoken words with variable representations. In D. Duez (Ed.), Proceedings of the ESCA Workshop on Sound Patterns of Spontaneous Speech (pp. 83-92). Aix-en-Provence: Université de Aix-en-Provence.
  • Kuijpers, C. T., Coolen, R., Houston, D., & Cutler, A. (1998). Using the head-turning technique to explore cross-linguistic performance differences. In C. Rovee-Collier, L. Lipsitt, & H. Hayne (Eds.), Advances in infancy research: Vol. 12 (pp. 205-220). Stamford: Ablex.
  • McQueen, J. M., & Cutler, A. (1998). Morphology in word recognition. In A. M. Zwicky, & A. Spencer (Eds.), The handbook of morphology (pp. 406-427). Oxford: Blackwell.
  • McQueen, J. M., & Cutler, A. (1998). Spotting (different kinds of) words in (different kinds of) context. In R. Mannell, & J. Robert-Ribes (Eds.), Proceedings of the Fifth International Conference on Spoken Language Processing: Vol. 6 (pp. 2791-2794). Sydney: ICSLP.

    Abstract

    The results of a word-spotting experiment are presented in which Dutch listeners tried to spot different types of bisyllabic Dutch words embedded in different types of nonsense contexts. Embedded verbs were not reliably harder to spot than embedded nouns; this suggests that nouns and verbs are recognised via the same basic processes. Iambic words were no harder to spot than trochaic words, suggesting that trochaic words are not in principle easier to recognise than iambic words. Words were harder to spot in consonantal contexts (i.e., contexts which themselves could not be words) than in longer contexts which contained at least one vowel (i.e., contexts which, though not words, were possible words of Dutch). A control experiment showed that this difference was not due to acoustic differences between the words in each context. The results support the claim that spoken-word recognition is sensitive to the viability of sound sequences as possible words.
  • Allerhand, M., Butterfield, S., Cutler, A., & Patterson, R. (1992). Assessing syllable strength via an auditory model. In Proceedings of the Institute of Acoustics: Vol. 14 Part 6 (pp. 297-304). St. Albans, Herts: Institute of Acoustics.
  • Cutler, A. (1992). Cross-linguistic differences in speech segmentation. MRC News, 56, 8-9.
  • Cutler, A., & Norris, D. (1992). Detection of vowels and consonants with minimal acoustic variation. Speech Communication, 11, 101-108. doi:10.1016/0167-6393(92)90004-Q.

    Abstract

    Previous research has shown that, in a phoneme detection task, vowels produce longer reaction times than consonants, suggesting that they are harder to perceive. One possible explanation for this difference is based upon their respective acoustic/articulatory characteristics. Another way of accounting for the findings would be to relate them to the differential functioning of vowels and consonants in the syllabic structure of words. In this experiment, we examined the second possibility. Targets were two pairs of phonemes, each containing a vowel and a consonant with similar phonetic characteristics. Subjects heard lists of English words had to press a response key upon detecting the occurrence of a pre-specified target. This time, the phonemes which functioned as vowels in syllabic structure yielded shorter reaction times than those which functioned as consonants. This rules out an explanation for response time difference between vowels and consonants in terms of function in syllable structure. Instead, we propose that consonantal and vocalic segments differ with respect to variability of tokens, both in the acoustic realisation of targets and in the representation of targets by listeners.
  • Cutler, A., Kearns, R., Norris, D., & Scott, D. (1992). Listeners’ responses to extraneous signals coincident with English and French speech. In J. Pittam (Ed.), Proceedings of the 4th Australian International Conference on Speech Science and Technology (pp. 666-671). Canberra: Australian Speech Science and Technology Association.

    Abstract

    English and French listeners performed two tasks - click location and speeded click detection - with both English and French sentences, closely matched for syntactic and phonological structure. Clicks were located more accurately in open- than in closed-class words in both English and French; they were detected more rapidly in open- than in closed-class words in English, but not in French. The two listener groups produced the same pattern of responses, suggesting that higher-level linguistic processing was not involved in these tasks.
  • Cutler, A. (1992). Proceedings with confidence. New Scientist, (1825), 54.
  • Cutler, A. (1992). Processing constraints of the native phonological repertoire on the native language. In Y. Tohkura, E. Vatikiotis-Bateson, & Y. Sagisaka (Eds.), Speech perception, production and linguistic structure (pp. 275-278). Tokyo: Ohmsha.
  • Cutler, A. (1992). Psychology and the segment. In G. Docherty, & D. Ladd (Eds.), Papers in laboratory phonology II: Gesture, segment, prosody (pp. 290-295). Cambridge: Cambridge University Press.
  • Cutler, A., & Robinson, T. (1992). Response time as a metric for comparison of speech recognition by humans and machines. In J. Ohala, T. Neary, & B. Derwing (Eds.), Proceedings of the Second International Conference on Spoken Language Processing: Vol. 1 (pp. 189-192). Alberta: University of Alberta.

    Abstract

    The performance of automatic speech recognition systems is usually assessed in terms of error rate. Human speech recognition produces few errors, but relative difficulty of processing can be assessed via response time techniques. We report the construction of a measure analogous to response time in a machine recognition system. This measure may be compared directly with human response times. We conducted a trial comparison of this type at the phoneme level, including both tense and lax vowels and a variety of consonant classes. The results suggested similarities between human and machine processing in the case of consonants, but differences in the case of vowels.
  • Cutler, A., & Butterfield, S. (1992). Rhythmic cues to speech segmentation: Evidence from juncture misperception. Journal of Memory and Language, 31, 218-236. doi:10.1016/0749-596X(92)90012-M.

    Abstract

    Segmentation of continuous speech into its component words is a nontrivial task for listeners. Previous work has suggested that listeners develop heuristic segmentation procedures based on experience with the structure of their language; for English, the heuristic is that strong syllables (containing full vowels) are most likely to be the initial syllables of lexical words, whereas weak syllables (containing central, or reduced, vowels) are nonword-initial, or, if word-initial, are grammatical words. This hypothesis is here tested against natural and laboratory-induced missegmentations of continuous speech. Precisely the expected pattern is found: listeners erroneously insert boundaries before strong syllables but delete them before weak syllables; boundaries inserted before strong syllables produce lexical words, while boundaries inserted before weak syllables produce grammatical words.
  • Cutler, A. (1992). The perception of speech: Psycholinguistic aspects. In W. Bright (Ed.), International encyclopedia of language: Vol. 3 (pp. 181-183). New York: Oxford University Press.
  • Cutler, A. (1992). The production and perception of word boundaries. In Y. Tohkura, E. Vatikiotis-Bateson, & Y. Sagisaka (Eds.), Speech perception, production and linguistic structure (pp. 419-425). Tokyo: Ohsma.
  • Cutler, A., Mehler, J., Norris, D., & Segui, J. (1992). The monolingual nature of speech segmentation by bilinguals. Cognitive Psychology, 24, 381-410.

    Abstract

    Monolingual French speakers employ a syllable-based procedure in speech segmentation; monolingual English speakers use a stress-based segmentation procedure and do not use the syllable-based procedure. In the present study French-English bilinguals participated in segmentation experiments with English and French materials. Their results as a group did not simply mimic the performance of English monolinguals with English language materials and of French monolinguals with French language materials. Instead, the bilinguals formed two groups, defined by forced choice of a dominant language. Only the French-dominant group showed syllabic segmentation and only with French language materials. The English-dominant group showed no syllabic segmentation in either language. However, the English-dominant group showed stress-based segmentation with English language materials; the French-dominant group did not. We argue that rhythmically based segmentation procedures are mutually exclusive, as a consequence of which speech segmentation by bilinguals is, in one respect at least, functionally monolingual.
  • Cutler, A. (1992). Why not abolish psycholinguistics? In W. Dressler, H. Luschützky, O. Pfeiffer, & J. Rennison (Eds.), Phonologica 1988 (pp. 77-87). Cambridge: Cambridge University Press.
  • McQueen, J. M., & Cutler, A. (1992). Words within words: Lexical statistics and lexical access. In J. Ohala, T. Neary, & B. Derwing (Eds.), Proceedings of the Second International Conference on Spoken Language Processing: Vol. 1 (pp. 221-224). Alberta: University of Alberta.

    Abstract

    This paper presents lexical statistics on the pattern of occurrence of words embedded in other words. We report the results of an analysis of 25000 words, varying in length from two to six syllables, extracted from a phonetically-coded English dictionary (The Longman Dictionary of Contemporary English). Each syllable, and each string of syllables within each word was checked against the dictionary. Two analyses are presented: the first used a complete list of polysyllables, with look-up on the entire dictionary; the second used a sublist of content words, counting only embedded words which were themselves content words. The results have important implications for models of human speech recognition. The efficiency of these models depends, in different ways, on the number and location of words within words.
  • Norris, D., Van Ooijen, B., & Cutler, A. (1992). Speeded detection of vowels and steady-state consonants. In J. Ohala, T. Neary, & B. Derwing (Eds.), Proceedings of the Second International Conference on Spoken Language Processing; Vol. 2 (pp. 1055-1058). Alberta: University of Alberta.

    Abstract

    We report two experiments in which vowels and steady-state consonants served as targets in a speeded detection task. In the first experiment, two vowels were compared with one voiced and once unvoiced fricative. Response times (RTs) to the vowels were longer than to the fricatives. The error rate was higher for the consonants. Consonants in word-final position produced the shortest RTs, For the vowels, RT correlated negatively with target duration. In the second experiment, the same two vowel targets were compared with two nasals. This time there was no significant difference in RTs, but the error rate was still significantly higher for the consonants. Error rate and length correlated negatively for the vowels only. We conclude that RT differences between phonemes are independent of vocalic or consonantal status. Instead, we argue that the process of phoneme detection reflects more finely grained differences in acoustic/articulatory structure within the phonemic repertoire.
  • Beattie, G. W., Cutler, A., & Pearson, M. (1982). Why is Mrs Thatcher interrupted so often? [Letters to Nature]. Nature, 300, 744-747. doi:10.1038/300744a0.

    Abstract

    If a conversation is to proceed smoothly, the participants have to take turns to speak. Studies of conversation have shown that there are signals which speakers give to inform listeners that they are willing to hand over the conversational turn1−4. Some of these signals are part of the text (for example, completion of syntactic segments), some are non-verbal (such as completion of a gesture), but most are carried by the pitch, timing and intensity pattern of the speech; for example, both pitch and loudness tend to drop particularly low at the end of a speaker's turn. When one speaker interrupts another, the two can be said to be disputing who has the turn. Interruptions can occur because one participant tries to dominate or disrupt the conversation. But it could also be the case that mistakes occur in the way these subtle turn-yielding signals are transmitted and received. We demonstrate here that many interruptions in an interview with Mrs Margaret Thatcher, the British Prime Minister, occur at points where independent judges agree that her turn appears to have finished. It is suggested that she is unconsciously displaying turn-yielding cues at certain inappropriate points. The turn-yielding cues responsible are identified.
  • Cutler, A. (1982). Idioms: the older the colder. Linguistic Inquiry, 13(2), 317-320. Retrieved from http://www.jstor.org/stable/4178278?origin=JSTOR-pdf.
  • Cutler, A., & Fay, D. A. (1982). One mental lexicon, phonologically arranged: Comments on Hurford’s comments. Linguistic Inquiry, 13, 107-113. Retrieved from http://www.jstor.org/stable/4178262.
  • Cutler, A. (1982). Prosody and sentence perception in English. In J. Mehler, E. C. Walker, & M. Garrett (Eds.), Perspectives on mental representation: Experimental and theoretical studies of cognitive processes and capacities (pp. 201-216). Hillsdale, N.J: Erlbaum.
  • Cutler, A. (Ed.). (1982). Slips of the tongue and language production. The Hague: Mouton.
  • Cutler, A. (1982). Speech errors: A classified bibliography. Bloomington: Indiana University Linguistics Club.
  • Scott, D. R., & Cutler, A. (1982). Segmental cues to syntactic structure. In Proceedings of the Institute of Acoustics 'Spectral Analysis and its Use in Underwater Acoustics' (pp. E3.1-E3.4). London: Institute of Acoustics.
  • Cutler, A., & Foss, D. (1977). On the role of sentence stress in sentence processing. Language and Speech, 20, 1-10.
  • Cutler, A. (1977). The context-dependence of "intonational meanings". In W. Beach, S. Fox, & S. Philosoph (Eds.), Papers from the Thirteenth Regional Meeting, Chicago Linguistic Society (pp. 104-115). Chicago, Ill.: CLS.
  • Cutler, A. (1977). The psychological reality of word formation and lexical stress rules. In E. Fischer-Jørgensen, J. Rischel, & N. Thorsen (Eds.), Proceedings of the Ninth International Congress of Phonetic Sciences: Vol. 2 (pp. 79-85). Copenhagen: Institute of Phonetics, University of Copenhagen.
  • Fay, D., & Cutler, A. (1977). Malapropisms and the structure of the mental lexicon. Linguistic Inquiry, 8, 505-520. Retrieved from http://www.jstor.org/stable/4177997.

Share this page