Anne Cutler †

Publications

Displaying 1 - 9 of 9
  • Cutler, A. (2015). Lexical stress in English pronunciation. In M. Reed, & J. M. Levis (Eds.), The Handbook of English Pronunciation (pp. 106-124). Chichester: Wiley.
  • Cutler, A. (2009). Psycholinguistics in our time. In P. Rabbitt (Ed.), Inside psychology: A science over 50 years (pp. 91-101). Oxford: Oxford University Press.
  • Cutler, A. (2001). Entries on: Acquisition of language by non-human primates; bilingualism; compound (linguistic); development of language-specific phonology; gender (linguistic); grammar; infant speech perception; language; lexicon; morphology; motor theory of speech perception; perception of second languages; phoneme; phonological store; phonology; prosody; sign language; slips of the tongue; speech perception; speech production; stress (linguistic); syntax; word recognition; words. In P. Winn (Ed.), Dictionary of biological psychology. London: Routledge.
  • Cutler, A., McQueen, J. M., Norris, D., & Somejuan, A. (2001). The roll of the silly ball. In E. Dupoux (Ed.), Language, brain and cognitive development: Essays in honor of Jacques Mehler (pp. 181-194). Cambridge, MA: MIT Press.
  • Cutler, A. (1989). Auditory lexical access: Where do we start? In W. Marslen-Wilson (Ed.), Lexical representation and process (pp. 342-356). Cambridge, MA: MIT Press.

    Abstract

    The lexicon, considered as a component of the process of recognizing speech, is a device that accepts a sound image as input and outputs meaning. Lexical access is the process of formulating an appropriate input and mapping it onto an entry in the lexicon's store of sound images matched with their meanings. This chapter addresses the problems of auditory lexical access from continuous speech. The central argument to be proposed is that utterance prosody plays a crucial role in the access process. Continuous listening faces problems that are not present in visual recognition (reading) or in noncontinuous recognition (understanding isolated words). Aspects of utterance prosody offer a solution to these particular problems.
  • Patterson, R. D., & Cutler, A. (1989). Auditory preprocessing and recognition of speech. In A. Baddeley, & N. Bernsen (Eds.), Research directions in cognitive science: A european perspective: Vol. 1. Cognitive psychology (pp. 23-60). London: Erlbaum.
  • Cutler, A. (1984). Stress and accent in language production and understanding. In D. Gibbon, & H. Richter (Eds.), Intonation, accent and rhythm: Studies in discourse phonology (pp. 77-90). Berlin: de Gruyter.
  • Cutler, A., & Clifton Jr., C. (1984). The use of prosodic information in word recognition. In H. Bouma, & D. Bouwhuis (Eds.), Attention and Performance X: Control of Language Processes (pp. 183-196). Hillsdale, NJ: Erlbaum.
  • Cutler, A., & Clifton, Jr., C. (1984). The use of prosodic information in word recognition. In H. Bouma, & D. G. Bouwhuis (Eds.), Attention and performance X: Control of language processes (pp. 183-196). London: Erlbaum.

    Abstract

    In languages with variable stress placement, lexical stress patterns can convey information about word identity. The experiments reported here address the question of whether lexical stress information can be used in word recognition. The results allow the following conclusions: 1. Prior information as to the number of syllables and lexical stress patterns of words and nonwords does not facilitate lexical decision responses (Experiment 1). 2. The strong correspondences between grammatical category membership and stress pattern in bisyllabic English words (strong-weak stress being associated primarily with nouns, weak-strong with verbs) are not exploited in the recognition of isolated words (Experiment 2). 3. When a change in lexical stress also involves a change in vowel quality, i.e., a segmental as well as a suprasegmental alteration, effects on word recognition are greater when no segmental correlates of suprasegmental changes are involved (Experiments 2 and 3). 4. Despite the above finding, when all other factors are controlled, lexical stress information per se can indeed be shown to play a part in word-recognition process (Experiment 3).

Share this page