Anne Cutler

Publications

Displaying 1 - 32 of 32
  • Choi, J., Broersma, M., & Cutler, A. (2018). Phonetic learning is not enhanced by sequential exposure to more than one language. Linguistic Research, 35(3), 567-581. doi:10.17250/khisli.35.3.201812.006.

    Abstract

    Several studies have documented that international adoptees, who in early years have experienced a change from a language used in their birth country to a new language in an adoptive country, benefit from the limited early exposure to the birth language when relearning that language’s sounds later in life. The adoptees’ relearning advantages have been argued to be conferred by lasting birth-language knowledge obtained from the early exposure. However, it is also plausible to assume that the advantages may arise from adoptees’ superior ability to learn language sounds in general, as a result of their unusual linguistic experience, i.e., exposure to multiple languages in sequence early in life. If this is the case, then the adoptees’ relearning benefits should generalize to previously unheard language sounds, rather than be limited to their birth-language sounds. In the present study, adult Korean adoptees in the Netherlands and matched Dutch-native controls were trained on identifying a Japanese length distinction to which they had never been exposed before. The adoptees and Dutch controls did not differ on any test carried out before, during, or after the training, indicating that observed adoptee advantages for birth-language relearning do not generalize to novel, previously unheard language sounds. The finding thus fails to support the suggestion that birth-language relearning advantages may arise from enhanced ability to learn language sounds in general conferred by early experience in multiple languages. Rather, our finding supports the original contention that such advantages involve memory traces obtained before adoption
  • Cutler, A., & Farrell, J. (2018). Listening in first and second language. In J. I. Liontas (Ed.), The TESOL encyclopedia of language teaching. New York: Wiley. doi:10.1002/9781118784235.eelt0583.

    Abstract

    Listeners' recognition of spoken language involves complex decoding processes: The continuous speech stream must be segmented into its component words, and words must be recognized despite great variability in their pronunciation (due to talker differences, or to influence of phonetic context, or to speech register) and despite competition from many spuriously present forms supported by the speech signal. L1 listeners deal more readily with all levels of this complexity than L2 listeners. Fortunately, the decoding processes necessary for competent L2 listening can be taught in the classroom. Evidence-based methodologies targeted at the development of efficient speech decoding include teaching of minimal pairs, of phonotactic constraints, and of reduction processes, as well as the use of dictation and L2 video captions.
  • Johnson, E. K., Bruggeman, L., & Cutler, A. (2018). Abstraction and the (misnamed) language familiarity effect. Cognitive Science, 42, 633-645. doi:10.1111/cogs.12520.

    Abstract

    Talkers are recognized more accurately if they are speaking the listeners’ native language rather than an unfamiliar language. This “language familiarity effect” has been shown not to depend upon comprehension and must instead involve language sound patterns. We further examine the level of sound-pattern processing involved, by comparing talker recognition in foreign languages versus two varieties of English, by (a) English speakers of one variety, (b) English speakers of the other variety, and (c) non-native listeners (more familiar with one of the varieties). All listener groups performed better with native than foreign speech, but no effect of language variety appeared: Native listeners discriminated talkers equally well in each, with the native variety never outdoing the other variety, and non-native listeners discriminated talkers equally poorly in each, irrespective of the variety's familiarity. The results suggest that this talker recognition effect rests not on simple familiarity, but on an abstract level of phonological processing
  • Kidd, E., Junge, C., Spokes, T., Morrison, L., & Cutler, A. (2018). Individual differences in infant speech segmentation: Achieving the lexical shift. Infancy, 23(6), 770-794. doi:10.1111/infa.12256.

    Abstract

    We report a large‐scale electrophysiological study of infant speech segmentation, in which over 100 English‐acquiring 9‐month‐olds were exposed to unfamiliar bisyllabic words embedded in sentences (e.g., He saw a wild eagle up there), after which their brain responses to either the just‐familiarized word (eagle) or a control word (coral) were recorded. When initial exposure occurs in continuous speech, as here, past studies have reported that even somewhat older infants do not reliably recognize target words, but that successful segmentation varies across children. Here, we both confirm and further uncover the nature of this variation. The segmentation response systematically varied across individuals and was related to their vocabulary development. About one‐third of the group showed a left‐frontally located relative negativity in response to familiar versus control targets, which has previously been described as a mature response. Another third showed a similarly located positive‐going reaction (a previously described immature response), and the remaining third formed an intermediate grouping that was primarily characterized by an initial response delay. A fine‐grained group‐level analysis suggested that a developmental shift to a lexical mode of processing occurs toward the end of the first year, with variation across individual infants in the exact timing of this shift.

    Additional information

    supporting information
  • Norris, D., McQueen, J. M., & Cutler, A. (2018). Commentary on “Interaction in spoken word recognition models". Frontiers in Psychology, 9: 1568. doi:10.3389/fpsyg.2018.01568.
  • Cutler, A., & Norris, D. (2016). Bottoms up! How top-down pitfalls ensnare speech perception researchers too. Commentary on C. Firestone & B. Scholl: Cognition does not affect perception: Evaluating the evidence for 'top-down' effects. Behavioral and Brain Sciences, e236. doi:10.1017/S0140525X15002745.

    Abstract

    Not only can the pitfalls that Firestone & Scholl (F&S) identify be generalised across multiple studies within the field of visual perception, but also they have general application outside the field wherever perceptual and cognitive processing are compared. We call attention to the widespread susceptibility of research on the perception of speech to versions of the same pitfalls.
  • Norris, D., McQueen, J. M., & Cutler, A. (2016). Prediction, Bayesian inference and feedback in speech recognition. Language, Cognition and Neuroscience, 31(1), 4-18. doi:10.1080/23273798.2015.1081703.

    Abstract

    Speech perception involves prediction, but how is that prediction implemented? In cognitive models prediction has often been taken to imply that there is feedback of activation from lexical to pre-lexical processes as implemented in interactive-activation models (IAMs). We show that simple activation feedback does not actually improve speech recognition. However, other forms of feedback can be beneficial. In particular, feedback can enable the listener to adapt to changing input, and can potentially help the listener to recognise unusual input, or recognise speech in the presence of competing sounds. The common feature of these helpful forms of feedback is that they are all ways of optimising the performance of speech recognition using Bayesian inference. That is, listeners make predictions about speech because speech recognition is optimal in the sense captured in Bayesian models.
  • Cutler, A. (2009). Greater sensitivity to prosodic goodness in non-native than in native listeners. Journal of the Acoustical Society of America, 125, 3522-3525. doi:10.1121/1.3117434.

    Abstract

    English listeners largely disregard suprasegmental cues to stress in recognizing words. Evidence for this includes the demonstration of Fear et al. [J. Acoust. Soc. Am. 97, 1893–1904 (1995)] that cross-splicings are tolerated between stressed and unstressed full vowels (e.g., au- of autumn, automata). Dutch listeners, however, do exploit suprasegmental stress cues in recognizing native-language words. In this study, Dutch listeners were presented with English materials from the study of Fear et al. Acceptability ratings by these listeners revealed sensitivity to suprasegmental mismatch, in particular, in replacements of unstressed full vowels by higher-stressed vowels, thus evincing greater sensitivity to prosodic goodness than had been shown by the original native listener group.
  • Cutler, A. (2009). Psycholinguistics in our time. In P. Rabbitt (Ed.), Inside psychology: A science over 50 years (pp. 91-101). Oxford: Oxford University Press.
  • Cutler, A., Otake, T., & McQueen, J. M. (2009). Vowel devoicing and the perception of spoken Japanese words. Journal of the Acoustical Society of America, 125(3), 1693-1703. doi:10.1121/1.3075556.

    Abstract

    Three experiments, in which Japanese listeners detected Japanese words embedded in nonsense sequences, examined the perceptual consequences of vowel devoicing in that language. Since vowelless sequences disrupt speech segmentation [Norris et al. (1997). Cognit. Psychol. 34, 191– 243], devoicing is potentially problematic for perception. Words in initial position in nonsense sequences were detected more easily when followed by a sequence containing a vowel than by a vowelless segment (with or without further context), and vowelless segments that were potential devoicing environments were no easier than those not allowing devoicing. Thus asa, “morning,” was easier in asau or asazu than in all of asap, asapdo, asaf, or asafte, despite the fact that the /f/ in the latter two is a possible realization of fu, with devoiced [u]. Japanese listeners thus do not treat devoicing contexts as if they always contain vowels. Words in final position in nonsense sequences, however, produced a different pattern: here, preceding vowelless contexts allowing devoicing impeded word detection less strongly (so, sake was detected less accurately, but not less rapidly, in nyaksake—possibly arising from nyakusake—than in nyagusake). This is consistent with listeners treating consonant sequences as potential realizations of parts of existing lexical candidates wherever possible.
  • Kooijman, V., Hagoort, P., & Cutler, A. (2009). Prosodic structure in early word segmentation: ERP evidence from Dutch ten-month-olds. Infancy, 14, 591 -612. doi:10.1080/15250000903263957.

    Abstract

    Recognizing word boundaries in continuous speech requires detailed knowledge of the native language. In the first year of life, infants acquire considerable word segmentation abilities. Infants at this early stage in word segmentation rely to a large extent on the metrical pattern of their native language, at least in stress-based languages. In Dutch and English (both languages with a preferred trochaic stress pattern), segmentation of strong-weak words develops rapidly between 7 and 10 months of age. Nevertheless, trochaic languages contain not only strong-weak words but also words with a weak-strong stress pattern. In this article, we present electrophysiological evidence of the beginnings of weak-strong word segmentation in Dutch 10-month-olds. At this age, the ability to combine different cues for efficient word segmentation does not yet seem to be completely developed. We provide evidence that Dutch infants still largely rely on strong syllables, even for the segmentation of weak-strong words.
  • Tyler, M., & Cutler, A. (2009). Cross-language differences in cue use for speech segmentation. Journal of the Acoustical Society of America, 126, 367-376. doi:10.1121/1.3129127.

    Abstract

    Two artificial-language learning experiments directly compared English, French, and Dutch listeners’ use of suprasegmental cues for continuous-speech segmentation. In both experiments, listeners heard unbroken sequences of consonant-vowel syllables, composed of recurring three- and four-syllable “words.” These words were demarcated by(a) no cue other than transitional probabilities induced by their recurrence, (b) a consistent left-edge cue, or (c) a consistent right-edge cue. Experiment 1 examined a vowel lengthening cue. All three listener groups benefited from this cue in right-edge position; none benefited from it in left-edge position. Experiment 2 examined a pitch-movement cue. English listeners used this cue in left-edge position, French listeners used it in right-edge position, and Dutch listeners used it in both positions. These findings are interpreted as evidence of both language-universal and language-specific effects. Final lengthening is a language-universal effect expressing a more general (non-linguistic) mechanism. Pitch movement expresses prominence which has characteristically different placements across languages: typically at right edges in French, but at left edges in English and Dutch. Finally, stress realization in English versus Dutch encourages greater attention to suprasegmental variation by Dutch than by English listeners, allowing Dutch listeners to benefit from an informative pitch-movement cue even in an uncharacteristic position.
  • Broersma, M., & Cutler, A. (2008). Phantom word activation in L2. System, 36(1), 22-34. doi:10.1016/j.system.2007.11.003.

    Abstract

    L2 listening can involve the phantom activation of words which are not actually in the input. All spoken-word recognition involves multiple concurrent activation of word candidates, with selection of the correct words achieved by a process of competition between them. L2 listening involves more such activation than L1 listening, and we report two studies illustrating this. First, in a lexical decision study, L2 listeners accepted (but L1 listeners did not accept) spoken non-words such as groof or flide as real English words. Second, a priming study demonstrated that the same spoken non-words made recognition of the real words groove, flight easier for L2 (but not L1) listeners, suggesting that, for the L2 listeners only, these real words had been activated by the spoken non-word input. We propose that further understanding of the activation and competition process in L2 lexical processing could lead to new understanding of L2 listening difficulty.
  • Cutler, A., Garcia Lecumberri, M. L., & Cooke, M. (2008). Consonant identification in noise by native and non-native listeners: Effects of local context. Journal of the Acoustical Society of America, 124(2), 1264-1268. doi:10.1121/1.2946707.

    Abstract

    Speech recognition in noise is harder in second (L2) than first languages (L1). This could be because noise disrupts speech processing more in L2 than L1, or because L1 listeners recover better though disruption is equivalent. Two similar prior studies produced discrepant results: Equivalent noise effects for L1 and L2 (Dutch) listeners, versus larger effects for L2 (Spanish) than L1. To explain this, the latter experiment was presented to listeners from the former population. Larger noise effects on consonant identification emerged for L2 (Dutch) than L1 listeners, suggesting that task factors rather than L2 population differences underlie the results discrepancy.
  • Cutler, A. (2008). The abstract representations in speech processing. Quarterly Journal of Experimental Psychology, 61(11), 1601-1619. doi:10.1080/13803390802218542.

    Abstract

    Speech processing by human listeners derives meaning from acoustic input via intermediate steps involving abstract representations of what has been heard. Recent results from several lines of research are here brought together to shed light on the nature and role of these representations. In spoken-word recognition, representations of phonological form and of conceptual content are dissociable. This follows from the independence of patterns of priming for a word's form and its meaning. The nature of the phonological-form representations is determined not only by acoustic-phonetic input but also by other sources of information, including metalinguistic knowledge. This follows from evidence that listeners can store two forms as different without showing any evidence of being able to detect the difference in question when they listen to speech. The lexical representations are in turn separate from prelexical representations, which are also abstract in nature. This follows from evidence that perceptual learning about speaker-specific phoneme realization, induced on the basis of a few words, generalizes across the whole lexicon to inform the recognition of all words containing the same phoneme. The efficiency of human speech processing has its basis in the rapid execution of operations over abstract representations.
  • Goudbeek, M., Cutler, A., & Smits, R. (2008). Supervised and unsupervised learning of multidimensionally varying nonnative speech categories. Speech Communication, 50(2), 109-125. doi:10.1016/j.specom.2007.07.003.

    Abstract

    The acquisition of novel phonetic categories is hypothesized to be affected by the distributional properties of the input, the relation of the new categories to the native phonology, and the availability of supervision (feedback). These factors were examined in four experiments in which listeners were presented with novel categories based on vowels of Dutch. Distribution was varied such that the categorization depended on the single dimension duration, the single dimension frequency, or both dimensions at once. Listeners were clearly sensitive to the distributional information, but unidimensional contrasts proved easier to learn than multidimensional. The native phonology was varied by comparing Spanish versus American English listeners. Spanish listeners found categorization by frequency easier than categorization by duration, but this was not true of American listeners, whose native vowel system makes more use of duration-based distinctions. Finally, feedback was either available or not; this comparison showed supervised learning to be significantly superior to unsupervised learning.
  • Kim, J., Davis, C., & Cutler, A. (2008). Perceptual tests of rhythmic similarity: II. Syllable rhythm. Language and Speech, 51(4), 343-359. doi:10.1177/0023830908099069.

    Abstract

    To segment continuous speech into its component words, listeners make use of language rhythm; because rhythm differs across languages, so do the segmentation procedures which listeners use. For each of stress-, syllable-and mora-based rhythmic structure, perceptual experiments have led to the discovery of corresponding segmentation procedures. In the case of mora-based rhythm, similar segmentation has been demonstrated in the otherwise unrelated languages Japanese and Telugu; segmentation based on syllable rhythm, however, has been previously demonstrated only for European languages from the Romance family. We here report two target detection experiments in which Korean listeners, presented with speech in Korean and in French, displayed patterns of segmentation like those previously observed in analogous experiments with French listeners. The Korean listeners' accuracy in detecting word-initial target fragments in either language was significantly higher when the fragments corresponded exactly to a syllable in the input than when the fragments were smaller or larger than a syllable. We conclude that Korean and French listeners can call on similar procedures for segmenting speech, and we further propose that perceptual tests of speech segmentation provide a valuable accompaniment to acoustic analyses for establishing languages' rhythmic class membership.
  • Kooijman, V., Johnson, E. K., & Cutler, A. (2008). Reflections on reflections of infant word recognition. In A. D. Friederici, & G. Thierry (Eds.), Early language development: Bridging brain and behaviour (pp. 91-114). Amsterdam: Benjamins.
  • Cutler, A., Norris, D., & McQueen, J. M. (1996). Lexical access in continuous speech: Language-specific realisations of a universal model. In T. Otake, & A. Cutler (Eds.), Phonological structure and language processing: Cross-linguistic studies (pp. 227-242). Berlin: Mouton de Gruyter.
  • Cutler, A., & Otake, T. (1996). Phonological structure and its role in language processing. In T. Otake, & A. Cutler (Eds.), Phonological structure and language processing: Cross-linguistic studies (pp. 1-12). Berlin: Mouton de Gruyter.
  • Cutler, A. (1996). Prosody and the word boundary problem. In J. L. Morgan, & K. Demuth (Eds.), Signal to syntax: Bootstrapping from speech to grammar in early acquisition (pp. 87-99). Mahwah, NJ: Erlbaum.
  • Cutler, A., Van Ooijen, B., Norris, D., & Sanchez-Casas, R. (1996). Speeded detection of vowels: A cross-linguistic study. Perception and Psychophysics, 58, 807-822. Retrieved from http://www.psychonomic.org/search/view.cgi?id=430.

    Abstract

    In four experiments, listeners’ response times to detect vowel targets in spoken input were measured. The first three experiments were conducted in English. In two, one using real words and the other, nonwords, detection accuracy was low, targets in initial syllables were detected more slowly than targets in final syllables, and both response time and missed-response rate were inversely correlated with vowel duration. In a third experiment, the speech context for some subjects included all English vowels, while for others, only five relatively distinct vowels occurred. This manipulation had essentially no effect, and the same response pattern was again observed. A fourth experiment, conducted in Spanish, replicated the results in the first three experiments, except that miss rate was here unrelated to vowel duration. We propose that listeners’ responses to vowel targets in naturally spoken input are effectively cautious, reflecting realistic appreciation of vowel variability in natural context.
  • Otake, T., Yoneyama, K., Cutler, A., & van der Lugt, A. (1996). The representation of Japanese moraic nasals. Journal of the Acoustical Society of America, 100, 3831-3842. doi:10.1121/1.417239.

    Abstract

    Nasal consonants in syllabic coda position in Japanese assimilate to the place of articulation of a following consonant. The resulting forms may be perceived as different realizations of a single underlying unit, and indeed the kana orthographies represent them with a single character. In the present study, Japanese listeners' response time to detect nasal consonants was measured. Nasals in coda position, i.e., moraic nasals, were detected faster and more accurately than nonmoraic nasals, as reported in previous studies. The place of articulation with which moraic nasals were realized affected neither response time nor accuracy. Non-native subjects who knew no Japanese, given the same materials with the same instructions, simply failed to respond to moraic nasals which were realized bilabially. When the nasals were cross-spliced across place of articulation contexts the Japanese listeners still showed no significant place of articulation effects, although responses were faster and more accurate to unspliced than to cross-spliced nasals. When asked to detect the phoneme following the (cross-spliced) moraic nasal, Japanese listeners showed effects of mismatch between nasal and context, but non-native listeners did not. Together, these results suggest that Japanese listeners are capable of very rapid abstraction from phonetic realization to a unitary representation of moraic nasals; but they can also use the phonetic realization of a moraic nasal effectively to obtain anticipatory information about following phonemes.
  • Connine, C. M., Clifton, Jr., C., & Cutler, A. (1987). Effects of lexical stress on phonetic categorization. Phonetica, 44, 133-146.
  • Cutler, A., Norris, D., & Williams, J. (1987). A note on the role of phonological expectations in speech segmentation. Journal of Memory and Language, 26, 480-487. doi:10.1016/0749-596X(87)90103-3.

    Abstract

    Word-initial CVC syllables are detected faster in words beginning consonant-vowel-consonant-vowel (CVCV-) than in words beginning consonant-vowel-consonant-consonant (CVCC-). This effect was reported independently by M. Taft and G. Hambly (1985, Journal of Memory and Language, 24, 320–335) and by A. Cutler, J. Mehler, D. Norris, and J. Segui (1986, Journal of Memory and Language, 25, 385–400). Taft and Hambly explained the effect in terms of lexical factors. This explanation cannot account for Cutler et al.'s results, in which the effect also appeared with nonwords and foreign words. Cutler et al. suggested that CVCV-sequences might simply be easier to perceive than CVCC-sequences. The present study confirms this suggestion, and explains it as a reflection of listener expectations constructed on the basis of distributional characteristics of the language.
  • Cutler, A., Mehler, J., Norris, D., & Segui, J. (1987). Phoneme identification and the lexicon. Cognitive Psychology, 19, 141-177. doi:10.1016/0010-0285(87)90010-7.
  • Cutler, A. (1987). Speaking for listening. In A. Allport, D. MacKay, W. Prinz, & E. Scheerer (Eds.), Language perception and production: Relationships between listening, speaking, reading and writing (pp. 23-40). London: Academic Press.

    Abstract

    Speech production is constrained at all levels by the demands of speech perception. The speaker's primary aim is successful communication, and to this end semantic, syntactic and lexical choices are directed by the needs of the listener. Even at the articulatory level, some aspects of production appear to be perceptually constrained, for example the blocking of phonological distortions under certain conditions. An apparent exception to this pattern is word boundary information, which ought to be extremely useful to listeners, but which is not reliably coded in speech. It is argued that the solution to this apparent problem lies in rethinking the concept of the boundary of the lexical access unit. Speech rhythm provides clear information about the location of stressed syllables, and listeners do make use of this information. If stressed syllables can serve as the determinants of word lexical access codes, then once again speakers are providing precisely the necessary form of speech information to facilitate perception.
  • Cutler, A., Butterfield, S., & Williams, J. (1987). The perceptual integrity of syllabic onsets. Journal of Memory and Language, 26, 406-418. doi:10.1016/0749-596X(87)90099-4.
  • Cutler, A., & Carter, D. (1987). The predominance of strong initial syllables in the English vocabulary. Computer Speech and Language, 2, 133-142. doi:10.1016/0885-2308(87)90004-0.

    Abstract

    Studies of human speech processing have provided evidence for a segmentation strategy in the perception of continuous speech, whereby a word boundary is postulated, and a lexical access procedure initiated, at each metrically strong syllable. The likely success of this strategy was here estimated against the characteristics of the English vocabulary. Two computerized dictionaries were found to list approximately three times as many words beginning with strong syllables (i.e. syllables containing a full vowel) as beginning with weak syllables (i.e. syllables containing a reduced vowel). Consideration of frequency of lexical word occurrence reveals that words beginning with strong syllables occur on average more often than words beginning with weak syllables. Together, these findings motivate an estimate for everyday speech recognition that approximately 85% of lexical words (i.e. excluding function words) will begin with strong syllables. This estimate was tested against a corpus of 190 000 words of spontaneous British English conversion. In this corpus, 90% of lexical words were found to begin with strong syllables. This suggests that a strategy of postulating word boundaries at the onset of strong syllables would have a high success rate in that few actual lexical word onsets would be missed.
  • Cutler, A. (1987). The task of the speaker and the task of the hearer [Commentary/Sperber & Wilson: Relevance]. Behavioral and Brain Sciences, 10, 715-716.
  • Cutler, A., & Foss, D. (1977). On the role of sentence stress in sentence processing. Language and Speech, 20, 1-10.
  • Fay, D., & Cutler, A. (1977). Malapropisms and the structure of the mental lexicon. Linguistic Inquiry, 8, 505-520. Retrieved from http://www.jstor.org/stable/4177997.

Share this page