Anne Cutler

Publications

Displaying 1 - 16 of 16
  • Choi, J., Broersma, M., & Cutler, A. (2018). Phonetic learning is not enhanced by sequential exposure to more than one language. Linguistic Research, 35(3), 567-581. doi:10.17250/khisli.35.3.201812.006.

    Abstract

    Several studies have documented that international adoptees, who in early years have experienced a change from a language used in their birth country to a new language in an adoptive country, benefit from the limited early exposure to the birth language when relearning that language’s sounds later in life. The adoptees’ relearning advantages have been argued to be conferred by lasting birth-language knowledge obtained from the early exposure. However, it is also plausible to assume that the advantages may arise from adoptees’ superior ability to learn language sounds in general, as a result of their unusual linguistic experience, i.e., exposure to multiple languages in sequence early in life. If this is the case, then the adoptees’ relearning benefits should generalize to previously unheard language sounds, rather than be limited to their birth-language sounds. In the present study, adult Korean adoptees in the Netherlands and matched Dutch-native controls were trained on identifying a Japanese length distinction to which they had never been exposed before. The adoptees and Dutch controls did not differ on any test carried out before, during, or after the training, indicating that observed adoptee advantages for birth-language relearning do not generalize to novel, previously unheard language sounds. The finding thus fails to support the suggestion that birth-language relearning advantages may arise from enhanced ability to learn language sounds in general conferred by early experience in multiple languages. Rather, our finding supports the original contention that such advantages involve memory traces obtained before adoption
  • Johnson, E. K., Bruggeman, L., & Cutler, A. (2018). Abstraction and the (misnamed) language familiarity effect. Cognitive Science, 42, 633-645. doi:10.1111/cogs.12520.

    Abstract

    Talkers are recognized more accurately if they are speaking the listeners’ native language rather than an unfamiliar language. This “language familiarity effect” has been shown not to depend upon comprehension and must instead involve language sound patterns. We further examine the level of sound-pattern processing involved, by comparing talker recognition in foreign languages versus two varieties of English, by (a) English speakers of one variety, (b) English speakers of the other variety, and (c) non-native listeners (more familiar with one of the varieties). All listener groups performed better with native than foreign speech, but no effect of language variety appeared: Native listeners discriminated talkers equally well in each, with the native variety never outdoing the other variety, and non-native listeners discriminated talkers equally poorly in each, irrespective of the variety's familiarity. The results suggest that this talker recognition effect rests not on simple familiarity, but on an abstract level of phonological processing
  • Kidd, E., Junge, C., Spokes, T., Morrison, L., & Cutler, A. (2018). Individual differences in infant speech segmentation: Achieving the lexical shift. Infancy, 23(6), 770-794. doi:10.1111/infa.12256.

    Abstract

    We report a large‐scale electrophysiological study of infant speech segmentation, in which over 100 English‐acquiring 9‐month‐olds were exposed to unfamiliar bisyllabic words embedded in sentences (e.g., He saw a wild eagle up there), after which their brain responses to either the just‐familiarized word (eagle) or a control word (coral) were recorded. When initial exposure occurs in continuous speech, as here, past studies have reported that even somewhat older infants do not reliably recognize target words, but that successful segmentation varies across children. Here, we both confirm and further uncover the nature of this variation. The segmentation response systematically varied across individuals and was related to their vocabulary development. About one‐third of the group showed a left‐frontally located relative negativity in response to familiar versus control targets, which has previously been described as a mature response. Another third showed a similarly located positive‐going reaction (a previously described immature response), and the remaining third formed an intermediate grouping that was primarily characterized by an initial response delay. A fine‐grained group‐level analysis suggested that a developmental shift to a lexical mode of processing occurs toward the end of the first year, with variation across individual infants in the exact timing of this shift.

    Additional information

    supporting information
  • Norris, D., McQueen, J. M., & Cutler, A. (2018). Commentary on “Interaction in spoken word recognition models". Frontiers in Psychology, 9: 1568. doi:10.3389/fpsyg.2018.01568.
  • Cutler, A., Norris, D., & McQueen, J. M. (1994). Modelling lexical access from continuous speech input. Dokkyo International Review, 7, 193-215.

    Abstract

    The recognition of speech involves the segmentation of continuous utterances into their component words. Cross-linguistic evidence is briefly reviewed which suggests that although there are language-specific solutions to this segmentation problem, they have one thing in common: they are all based on language rhythm. In English, segmentation is stress-based: strong syllables are postulated to be the onsets of words. Segmentation, however, can also be achieved by a process of competition between activated lexical hypotheses, as in the Shortlist model. A series of experiments is summarised showing that segmentation of continuous speech depends on both lexical competition and a metrically-guided procedure. In the final section, the implementation of metrical segmentation in the Shortlist model is described: the activation of lexical hypotheses matching strong syllables in the input is boosted and that of hypotheses mismatching strong syllables in the input is penalised.
  • Cutler, A., & Otake, T. (1994). Mora or phoneme? Further evidence for language-specific listening. Journal of Memory and Language, 33, 824-844. doi:10.1006/jmla.1994.1039.

    Abstract

    Japanese listeners detect speech sound targets which correspond precisely to a mora (a phonological unit which is the unit of rhythm in Japanese) more easily than targets which do not. English listeners detect medial vowel targets more slowly than consonants. Six phoneme detection experiments investigated these effects in both subject populations, presented with native- and foreign-language input. Japanese listeners produced faster and more accurate responses to moraic than to nonmoraic targets both in Japanese and, where possible, in English; English listeners responded differently. The detection disadvantage for medial vowels appeared with English listeners both in English and in Japanese; again, Japanese listeners responded differently. Some processing operations which listeners apply to speech input are language-specific; these language-specific procedures, appropriate for listening to input in the native language, may be applied to foreign-language input irrespective of whether they remain appropriate.
  • Cutler, A. (1994). The perception of rhythm in language. Cognition, 50, 79-81. doi:10.1016/0010-0277(94)90021-3.
  • McQueen, J. M., Norris, D., & Cutler, A. (1994). Competition in spoken word recognition: Spotting words in other words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 621-638.

    Abstract

    Although word boundaries are rarely clearly marked, listeners can rapidly recognize the individual words of spoken sentences. Some theories explain this in terms of competition between multiply activated lexical hypotheses; others invoke sensitivity to prosodic structure. We describe a connectionist model, SHORTLIST, in which recognition by activation and competition is successful with a realistically sized lexicon. Three experiments are then reported in which listeners detected real words embedded in nonsense strings, some of which were themselves the onsets of longer words. Effects both of competition between words and of prosodic structure were observed, suggesting that activation and competition alone are not sufficient to explain word recognition in continuous speech. However, the results can be accounted for by a version of SHORTLIST that is sensitive to prosodic structure.
  • Cutler, A., Mehler, J., Norris, D., & Segui, J. (1988). Limits on bilingualism [Letters to Nature]. Nature, 340, 229-230. doi:10.1038/340229a0.

    Abstract

    SPEECH, in any language, is continuous; speakers provide few reliable cues to the boundaries of words, phrases, or other meaningful units. To understand speech, listeners must divide the continuous speech stream into portions that correspond to such units. This segmentation process is so basic to human language comprehension that psycholinguists long assumed that all speakers would do it in the same way. In previous research1,2, however, we reported that segmentation routines can be language-specific: speakers of French process spoken words syllable by syllable, but speakers of English do not. French has relatively clear syllable boundaries and syllable-based timing patterns, whereas English has relatively unclear syllable boundaries and stress-based timing; thus syllabic segmentation would work more efficiently in the comprehension of French than in the comprehension of English. Our present study suggests that at this level of language processing, there are limits to bilingualism: a bilingual speaker has one and only one basic language.
  • Cutler, A., & Norris, D. (1988). The role of strong syllables in segmentation for lexical access. Journal of Experimental Psychology: Human Perception and Performance, 14, 113-121. doi:10.1037/0096-1523.14.1.113.

    Abstract

    A model of speech segmentation in a stress language is proposed, according to which the occurrence of a strong syllable triggers segmentation of the speech signal, whereas occurrence of a weak syllable does not trigger segmentation. We report experiments in which listeners detected words embedded in nonsense bisyllables more slowly when the bisyllable had two strong syllables than when it had a strong and a weak syllable; mint was detected more slowly in mintayve than in mintesh. According to our proposed model, this result is an effect of segmentation: When the second syllable is strong, it is segmented from the first syllable, and successful detection of the embedded word therefore requires assembly of speech material across a segmentation position. Speech recognition models involving phonemic or syllabic recoding, or based on strictly left-to-right processes, do not predict this result. It is argued that segmentation at strong syllables in continuous speech recognition serves the purpose of detecting the most efficient locations at which to initiate lexical access. (C) 1988 by the American Psychological Association
  • Henderson, L., Coltheart, M., Cutler, A., & Vincent, N. (1988). Preface. Linguistics, 26(4), 519-520. doi:10.1515/ling.1988.26.4.519.
  • Mehta, G., & Cutler, A. (1988). Detection of target phonemes in spontaneous and read speech. Language and Speech, 31, 135-156.

    Abstract

    Although spontaneous speech occurs more frequently in most listeners’ experience than read speech, laboratory studies of human speech recognition typically use carefully controlled materials read from a script. The phonological and prosodic characteristics of spontaneous and read speech differ considerably, however, which suggests that laboratory results may not generalize to the recognition of spontaneous and read speech materials, and their response time to detect word-initial target phonemes was measured. Response were, overall, equally fast in each speech mode. However analysis of effects previously reported in phoneme detection studies revealed significant differences between speech modes. In read speech but not in spontaneous speech, later targets were detected more rapidly than earlier targets, and targets preceded by long words were detected more rapidly than targets preceded by short words. In contrast, in spontaneous speech but not in read speech, targets were detected more rapidly in accented than unaccented words and in strong than in weak syllables. An explanation for this pattern is offered in terms of characteristic prosodic differences between spontaneous and read speech. The results support claim from previous work that listeners pay great attention to prosodic information in the process of recognizing speech.
  • Norris, D., & Cutler, A. (1988). Speech recognition in French and English. MRC News, 39, 30-31.
  • Norris, D., & Cutler, A. (1988). The relative accessibility of phonemes and syllables. Perception and Psychophysics, 43, 541-550. Retrieved from http://www.psychonomic.org/search/view.cgi?id=8530.

    Abstract

    Previous research comparing detection times for syllables and for phonemes has consistently found that syllables are responded to faster than phonemes. This finding poses theoretical problems for strictly hierarchical models of speech recognition, in which smaller units should be able to be identified faster than larger units. However, inspection of the characteristics of previous experiments’stimuli reveals that subjects have been able to respond to syllables on the basis of only a partial analysis of the stimulus. In the present experiment, five groups of subjects listened to identical stimulus material. Phoneme and syllable monitoring under standard conditions was compared with monitoring under conditions in which near matches of target and stimulus occurred on no-response trials. In the latter case, when subjects were forced to analyze each stimulus fully, phonemes were detected faster than syllables.
  • Cutler, A., & Foss, D. (1977). On the role of sentence stress in sentence processing. Language and Speech, 20, 1-10.
  • Fay, D., & Cutler, A. (1977). Malapropisms and the structure of the mental lexicon. Linguistic Inquiry, 8, 505-520. Retrieved from http://www.jstor.org/stable/4177997.

Share this page