Anne Cutler

Publications

Displaying 1 - 41 of 41
  • Burnham, D., Ambikairajah, E., Arciuli, J., Bennamoun, M., Best, C. T., Bird, S., Butcher, A. R., Cassidy, S., Chetty, G., Cox, F. M., Cutler, A., Dale, R., Epps, J. R., Fletcher, J. M., Goecke, R., Grayden, D. B., Hajek, J. T., Ingram, J. C., Ishihara, S., Kemp, N. and 10 moreBurnham, D., Ambikairajah, E., Arciuli, J., Bennamoun, M., Best, C. T., Bird, S., Butcher, A. R., Cassidy, S., Chetty, G., Cox, F. M., Cutler, A., Dale, R., Epps, J. R., Fletcher, J. M., Goecke, R., Grayden, D. B., Hajek, J. T., Ingram, J. C., Ishihara, S., Kemp, N., Kinoshita, Y., Kuratate, T., Lewis, T. W., Loakes, D. E., Onslow, M., Powers, D. M., Rose, P., Togneri, R., Tran, D., & Wagner, M. (2009). A blueprint for a comprehensive Australian English auditory-visual speech corpus. In M. Haugh, K. Burridge, J. Mulder, & P. Peters (Eds.), Selected proceedings of the 2008 HCSNet Workshop on Designing the Australian National Corpus (pp. 96-107). Somerville, MA: Cascadilla Proceedings Project.

    Abstract

    Large auditory-visual (AV) speech corpora are the grist of modern research in speech science, but no such corpus exists for Australian English. This is unfortunate, for speech science is the brains behind speech technology and applications such as text-to-speech (TTS) synthesis, automatic speech recognition (ASR), speaker recognition and forensic identification, talking heads, and hearing prostheses. Advances in these research areas in Australia require a large corpus of Australian English. Here the authors describe a blueprint for building the Big Australian Speech Corpus (the Big ASC), a corpus of over 1,100 speakers from urban and rural Australia, including speakers of non-indigenous, indigenous, ethnocultural, and disordered forms of Australian English, each of whom would be sampled on three occasions in a range of speech tasks designed by the researchers who would be using the corpus.
  • Cutler, A. (2009). Greater sensitivity to prosodic goodness in non-native than in native listeners. Journal of the Acoustical Society of America, 125, 3522-3525. doi:10.1121/1.3117434.

    Abstract

    English listeners largely disregard suprasegmental cues to stress in recognizing words. Evidence for this includes the demonstration of Fear et al. [J. Acoust. Soc. Am. 97, 1893–1904 (1995)] that cross-splicings are tolerated between stressed and unstressed full vowels (e.g., au- of autumn, automata). Dutch listeners, however, do exploit suprasegmental stress cues in recognizing native-language words. In this study, Dutch listeners were presented with English materials from the study of Fear et al. Acceptability ratings by these listeners revealed sensitivity to suprasegmental mismatch, in particular, in replacements of unstressed full vowels by higher-stressed vowels, thus evincing greater sensitivity to prosodic goodness than had been shown by the original native listener group.
  • Cutler, A., Davis, C., & Kim, J. (2009). Non-automaticity of use of orthographic knowledge in phoneme evaluation. In Proceedings of the 10th Annual Conference of the International Speech Communication Association (Interspeech 2009) (pp. 380-383). Causal Productions Pty Ltd.

    Abstract

    Two phoneme goodness rating experiments addressed the role of orthographic knowledge in the evaluation of speech sounds. Ratings for the best tokens of /s/ were higher in words spelled with S (e.g., bless) than in words where /s/ was spelled with C (e.g., voice). This difference did not appear for analogous nonwords for which every lexical neighbour had either S or C spelling (pless, floice). Models of phonemic processing incorporating obligatory influence of lexical information in phonemic processing cannot explain this dissociation; the data are consistent with models in which phonemic decisions are not subject to necessary top-down lexical influence.
  • Cutler, A. (2009). Psycholinguistics in our time. In P. Rabbitt (Ed.), Inside psychology: A science over 50 years (pp. 91-101). Oxford: Oxford University Press.
  • Cutler, A., Otake, T., & McQueen, J. M. (2009). Vowel devoicing and the perception of spoken Japanese words. Journal of the Acoustical Society of America, 125(3), 1693-1703. doi:10.1121/1.3075556.

    Abstract

    Three experiments, in which Japanese listeners detected Japanese words embedded in nonsense sequences, examined the perceptual consequences of vowel devoicing in that language. Since vowelless sequences disrupt speech segmentation [Norris et al. (1997). Cognit. Psychol. 34, 191– 243], devoicing is potentially problematic for perception. Words in initial position in nonsense sequences were detected more easily when followed by a sequence containing a vowel than by a vowelless segment (with or without further context), and vowelless segments that were potential devoicing environments were no easier than those not allowing devoicing. Thus asa, “morning,” was easier in asau or asazu than in all of asap, asapdo, asaf, or asafte, despite the fact that the /f/ in the latter two is a possible realization of fu, with devoiced [u]. Japanese listeners thus do not treat devoicing contexts as if they always contain vowels. Words in final position in nonsense sequences, however, produced a different pattern: here, preceding vowelless contexts allowing devoicing impeded word detection less strongly (so, sake was detected less accurately, but not less rapidly, in nyaksake—possibly arising from nyakusake—than in nyagusake). This is consistent with listeners treating consonant sequences as potential realizations of parts of existing lexical candidates wherever possible.
  • Kooijman, V., Hagoort, P., & Cutler, A. (2009). Prosodic structure in early word segmentation: ERP evidence from Dutch ten-month-olds. Infancy, 14, 591 -612. doi:10.1080/15250000903263957.

    Abstract

    Recognizing word boundaries in continuous speech requires detailed knowledge of the native language. In the first year of life, infants acquire considerable word segmentation abilities. Infants at this early stage in word segmentation rely to a large extent on the metrical pattern of their native language, at least in stress-based languages. In Dutch and English (both languages with a preferred trochaic stress pattern), segmentation of strong-weak words develops rapidly between 7 and 10 months of age. Nevertheless, trochaic languages contain not only strong-weak words but also words with a weak-strong stress pattern. In this article, we present electrophysiological evidence of the beginnings of weak-strong word segmentation in Dutch 10-month-olds. At this age, the ability to combine different cues for efficient word segmentation does not yet seem to be completely developed. We provide evidence that Dutch infants still largely rely on strong syllables, even for the segmentation of weak-strong words.
  • Tyler, M., & Cutler, A. (2009). Cross-language differences in cue use for speech segmentation. Journal of the Acoustical Society of America, 126, 367-376. doi:10.1121/1.3129127.

    Abstract

    Two artificial-language learning experiments directly compared English, French, and Dutch listeners’ use of suprasegmental cues for continuous-speech segmentation. In both experiments, listeners heard unbroken sequences of consonant-vowel syllables, composed of recurring three- and four-syllable “words.” These words were demarcated by(a) no cue other than transitional probabilities induced by their recurrence, (b) a consistent left-edge cue, or (c) a consistent right-edge cue. Experiment 1 examined a vowel lengthening cue. All three listener groups benefited from this cue in right-edge position; none benefited from it in left-edge position. Experiment 2 examined a pitch-movement cue. English listeners used this cue in left-edge position, French listeners used it in right-edge position, and Dutch listeners used it in both positions. These findings are interpreted as evidence of both language-universal and language-specific effects. Final lengthening is a language-universal effect expressing a more general (non-linguistic) mechanism. Pitch movement expresses prominence which has characteristically different placements across languages: typically at right edges in French, but at left edges in English and Dutch. Finally, stress realization in English versus Dutch encourages greater attention to suprasegmental variation by Dutch than by English listeners, allowing Dutch listeners to benefit from an informative pitch-movement cue even in an uncharacteristic position.
  • Akker, E., & Cutler, A. (2003). Prosodic cues to semantic structure in native and nonnative listening. Bilingualism: Language and Cognition, 6(2), 81-96. doi:10.1017/S1366728903001056.

    Abstract

    Listeners efficiently exploit sentence prosody to direct attention to words bearing sentence accent. This effect has been explained as a search for focus, furthering rapid apprehension of semantic structure. A first experiment supported this explanation: English listeners detected phoneme targets in sentences more rapidly when the target-bearing words were in accented position or in focussed position, but the two effects interacted, consistent with the claim that the effects serve a common cause. In a second experiment a similar asymmetry was observed with Dutch listeners and Dutch sentences. In a third and a fourth experiment, proficient Dutch users of English heard English sentences; here, however, the two effects did not interact. The results suggest that less efficient mapping of prosody to semantics may be one way in which nonnative listening fails to equal native listening.
  • Blumstein, S., & Cutler, A. (2003). Speech perception: Phonetic aspects. In W. Frawley (Ed.), International encyclopaedia of linguistics (pp. 151-154). Oxford: Oxford University Press.
  • Cutler, A., & Butterfield, S. (2003). Rhythmic cues to speech segmentation: Evidence from juncture misperception. In J. Field (Ed.), Psycholinguistics: A resource book for students. (pp. 185-189). London: Routledge.
  • Cutler, A., Murty, L., & Otake, T. (2003). Rhythmic similarity effects in non-native listening? In Proceedings of the 15th International Congress of Phonetic Sciences (PCPhS 2003) (pp. 329-332). Adelaide: Causal Productions.

    Abstract

    Listeners rely on native-language rhythm in segmenting speech; in different languages, stress-, syllable- or mora-based rhythm is exploited. This language-specificity affects listening to non- native speech, if native procedures are applied even though inefficient for the non-native language. However, speakers of two languages with similar rhythmic interpretation should segment their own and the other language similarly. This was observed to date only for related languages (English-Dutch; French-Spanish). We now report experiments in which Japanese listeners heard Telugu, a Dravidian language unrelated to Japanese, and Telugu listeners heard Japanese. In both cases detection of target sequences in speech was harder when target boundaries mismatched mora boundaries, exactly the pattern that Japanese listeners earlier exhibited with Japanese and other languages. These results suggest that Telugu and Japanese listeners use similar procedures in segmenting speech, and support the idea that languages fall into rhythmic classes, with aspects of phonological structure affecting listeners' speech segmentation.
  • Cutler, A. (2003). The perception of speech: Psycholinguistic aspects. In W. Frawley (Ed.), International encyclopaedia of linguistics (pp. 154-157). Oxford: Oxford University Press.
  • Johnson, E. K., Jusczyk, P. W., Cutler, A., & Norris, D. (2003). Lexical viability constraints on speech segmentation by infants. Cognitive Psychology, 46(1), 65-97. doi:10.1016/S0010-0285(02)00507-8.

    Abstract

    The Possible Word Constraint limits the number of lexical candidates considered in speech recognition by stipulating that input should be parsed into a string of lexically viable chunks. For instance, an isolated single consonant is not a feasible word candidate. Any segmentation containing such a chunk is disfavored. Five experiments using the head-turn preference procedure investigated whether, like adults, 12-month-olds observe this constraint in word recognition. In Experiments 1 and 2, infants were familiarized with target words (e.g., rush), then tested on lists of nonsense items containing these words in “possible” (e.g., “niprush” [nip + rush]) or “impossible” positions (e.g., “prush” [p + rush]). The infants listened significantly longer to targets in “possible” versus “impossible” contexts when targets occurred at the end of nonsense items (rush in “prush”), but not when they occurred at the beginning (tan in “tance”). In Experiments 3 and 4, 12-month-olds were similarly familiarized with target words, but test items were real words in sentential contexts (win in “wind” versus “window”). The infants listened significantly longer to words in the “possible” condition regardless of target location. Experiment 5 with targets at the beginning of isolated real words (e.g., win in “wind”) replicated Experiment 2 in showing no evidence of viability effects in beginning position. Taken together, the findings suggest that, in situations in which 12-month-olds are required to rely on their word segmentation abilities, they give evidence of observing lexical viability constraints in the way that they parse fluent speech.
  • McQueen, J. M., Dahan, D., & Cutler, A. (2003). Continuity and gradedness in speech processing. In N. O. Schiller, & A. S. Meyer (Eds.), Phonetics and phonology in language comprehension and production: Differences and similarities (pp. 39-78). Berlin: Mouton de Gruyter.
  • McQueen, J. M., Cutler, A., & Norris, D. (2003). Flow of information in the spoken word recognition system. Speech Communication, 41(1), 257-270. doi:10.1016/S0167-6393(02)00108-5.

    Abstract

    Spoken word recognition consists of two major component processes. First, at the prelexical stage, an abstract description of the utterance is generated from the information in the speech signal. Second, at the lexical stage, this description is used to activate all the words stored in the mental lexicon which match the input. These multiple candidate words then compete with each other. We review evidence which suggests that positive (match) and negative (mismatch) information of both a segmental and a suprasegmental nature is used to constrain this activation and competition process. We then ask whether, in addition to the necessary influence of the prelexical stage on the lexical stage, there is also feedback from the lexicon to the prelexical level. In two phonetic categorization experiments, Dutch listeners were asked to label both syllable-initial and syllable-final ambiguous fricatives (e.g., sounds ranging from [f] to [s]) in the word–nonword series maf–mas, and the nonword–word series jaf–jas. They tended to label the sounds in a lexically consistent manner (i.e., consistent with the word endpoints of the series). These lexical effects became smaller in listeners’ slower responses, even when the listeners were put under pressure to respond as fast as possible. Our results challenge models of spoken word recognition in which feedback modulates the prelexical analysis of the component sounds of a word whenever that word is heard
  • Norris, D., McQueen, J. M., & Cutler, A. (2003). Perceptual learning in speech. Cognitive Psychology, 47(2), 204-238. doi:10.1016/S0010-0285(03)00006-9.

    Abstract

    This study demonstrates that listeners use lexical knowledge in perceptual learning of speech sounds. Dutch listeners first made lexical decisions on Dutch words and nonwords. The final fricative of 20 critical words had been replaced by an ambiguous sound, between [f] and [s]. One group of listeners heard ambiguous [f]-final words (e.g., [WI tlo?], from witlof, chicory) and unambiguous [s]-final words (e.g., naaldbos, pine forest). Another group heard the reverse (e.g., ambiguous [na:ldbo?], unambiguous witlof). Listeners who had heard [?] in [f]-final words were subsequently more likely to categorize ambiguous sounds on an [f]–[s] continuum as [f] than those who heard [?] in [s]-final words. Control conditions ruled out alternative explanations based on selective adaptation and contrast. Lexical information can thus be used to train categorization of speech. This use of lexical information differs from the on-line lexical feedback embodied in interactive models of speech perception. In contrast to on-line feedback, lexical feedback for learning is of benefit to spoken word recognition (e.g., in adapting to a newly encountered dialect).
  • Otake, T., & Cutler, A. (2003). Evidence against "units of perception". In S. Shohov (Ed.), Advances in psychology research (pp. 57-82). Hauppauge, NY: Nova Science.
  • Shi, R., Werker, J., & Cutler, A. (2003). Function words in early speech perception. In Proceedings of the 15th International Congress of Phonetic Sciences (pp. 3009-3012).

    Abstract

    Three experiments examined whether infants recognise functors in phrases, and whether their representations of functors are phonetically well specified. Eight- and 13- month-old English infants heard monosyllabic lexical words preceded by real functors (e.g., the, his) versus nonsense functors (e.g., kuh); the latter were minimally modified segmentally (but not prosodically) from real functors. Lexical words were constant across conditions; thus recognition of functors would appear as longer listening time to sequences with real functors. Eightmonth- olds' listening times to sequences with real versus nonsense functors did not significantly differ, suggesting that they did not recognise real functors, or functor representations lacked phonetic specification. However, 13-month-olds listened significantly longer to sequences with real functors. Thus, somewhere between 8 and 13 months of age infants learn familiar functors and represent them with segmental detail. We propose that accumulated frequency of functors in input in general passes a critical threshold during this time.
  • Smits, R., Warner, N., McQueen, J. M., & Cutler, A. (2003). Unfolding of phonetic information over time: A database of Dutch diphone perception. Journal of the Acoustical Society of America, 113(1), 563-574. doi:10.1121/1.1525287.

    Abstract

    We present the results of a large-scale study on speech perception, assessing the number and type of perceptual hypotheses which listeners entertain about possible phoneme sequences in their language. Dutch listeners were asked to identify gated fragments of all 1179 diphones of Dutch, providing a total of 488 520 phoneme categorizations. The results manifest orderly uptake of acoustic information in the signal. Differences across phonemes in the rate at which fully correct recognition was achieved arose as a result of whether or not potential confusions could occur with other phonemes of the language ~long with short vowels, affricates with their initial components, etc.!. These data can be used to improve models of how acoustic phonetic information is mapped onto the mental lexicon during speech comprehension.
  • Spinelli, E., McQueen, J. M., & Cutler, A. (2003). Processing resyllabified words in French. Journal of Memory and Language, 48(2), 233-254. doi:10.1016/S0749-596X(02)00513-2.
  • Weber, A., & Cutler, A. (2003). Perceptual similarity co-existing with lexical dissimilarity [Abstract]. Abstracts of the 146th Meeting of the Acoustical Society of America. Journal of the Acoustical Society of America, 114(4 Pt. 2), 2422. doi:10.1121/1.1601094.

    Abstract

    The extreme case of perceptual similarity is indiscriminability, as when two second‐language phonemes map to a single native category. An example is the English had‐head vowel contrast for Dutch listeners; Dutch has just one such central vowel, transcribed [E]. We examine whether the failure to discriminate in phonetic categorization implies indiscriminability in other—e.g., lexical—processing. Eyetracking experiments show that Dutch‐native listeners instructed in English to ‘‘click on the panda’’ look (significantly more than native listeners) at a pictured pencil, suggesting that pan‐ activates their lexical representation of pencil. The reverse, however, is not the case: ‘‘click on the pencil’’ does not induce looks to a panda, suggesting that pen‐ does not activate panda in the lexicon. Thus prelexically undiscriminated second‐language distinctions can nevertheless be maintained in stored lexical representations. The problem of mapping a resulting unitary input to two distinct categories in lexical representations is solved by allowing input to activate only one second‐language category. For Dutch listeners to English, this is English [E], as a result of which no vowels in the signal ever map to words containing [ae]. We suggest that the choice of category is here motivated by a more abstract, phonemic, metric of similarity.
  • Cutler, A., Sebastian-Galles, N., Soler-Vilageliu, O., & Van Ooijen, B. (2000). Constraints of vowels and consonants on lexical selection: Cross-linguistic comparisons. Memory & Cognition, 28, 746-755.

    Abstract

    Languages differ in the constitution of their phonemic repertoire and in the relative distinctiveness of phonemes within the repertoire. In the present study, we asked whether such differences constrain spoken-word recognition, via two word reconstruction experiments, in which listeners turned non-words into real words by changing single sounds. The experiments were carried out in Dutch (which has a relatively balanced vowel-consonant ratio and many similar vowels) and in Spanish (which has many more consonants than vowels and high distinctiveness among the vowels). Both Dutch and Spanish listeners responded significantly faster and more accurately when required to change vowels as opposed to consonants; when allowed to change any phoneme, they more often altered vowels than consonants. Vowel information thus appears to constrain lexical selection less tightly (allow more potential candidates) than does consonant information, independent of language-specific phoneme repertoire and of relative distinctiveness of vowels.
  • Cutler, A., & Van de Weijer, J. (2000). De ontdekking van de eerste woorden. Stem-, Spraak- en Taalpathologie, 9, 245-259.

    Abstract

    Spraak is continu, er zijn geen betrouwbare signalen waardoor de luisteraar weet waar het ene woord eindigt en het volgende begint. Voor volwassen luisteraars is het segmenteren van gesproken taal in afzonderlijke woorden dus niet onproblematisch, maar voor een kind dat nog geen woordenschat bezit, vormt de continuïteit van spraak een nog grotere uitdaging. Desalniettemin produceren de meeste kinderen hun eerste herkenbare woorden rond het begin van het tweede levensjaar. Aan deze vroege spraakproducties gaat een formidabele perceptuele prestatie vooraf. Tijdens het eerste levensjaar - met name gedurende de tweede helft - ontwikkelt de spraakperceptie zich van een algemeen fonetisch discriminatievermogen tot een selectieve gevoeligheid voor de fonologische contrasten die in de moedertaal voorkomen. Recent onderzoek heeft verder aangetoond dat kinderen, lang voordat ze ook maar een enkel woord kunnen zeggen, in staat zijn woorden die kenmerkend zijn voor hun moedertaal te onderscheiden van woorden die dat niet zijn. Bovendien kunnen ze woorden die eerst in isolatie werden aangeboden herkennen in een continue spraakcontext. Het dagelijkse taalaanbod aan een kind van deze leeftijd maakt het in zekere zin niet gemakkelijk, bijvoorbeeld doordat de meeste woorden niet in isolatie voorkomen. Toch wordt het kind ook wel houvast geboden, onder andere doordat het woordgebruik beperkt is.
  • Cutler, A. (2000). Hoe het woord het oor verovert. In Voordrachten uitgesproken tijdens de uitreiking van de SPINOZA-premies op 15 februari 2000 (pp. 29-41). The Hague, The Netherlands: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).
  • Cutler, A., McQueen, J. M., & Zondervan, R. (2000). Proceedings of SWAP (Workshop on Spoken Word Access Processes). Nijmegen: MPI for Psycholinguistics.
  • Cutler, A. (2000). How the ear comes to hear. In New Trends in Modern Linguistics [Part of Annual catalogue series] (pp. 6-10). Tokyo, Japan: Maruzen Publishers.
  • Cutler, A. (2000). Real words, phantom words and impossible words. In D. Burnham, S. Luksaneeyanawin, C. Davis, & M. Lafourcade (Eds.), Interdisciplinary approaches to language processing: The international conference on human and machine processing of language and speech (pp. 32-42). Bangkok: NECTEC.
  • Cutler, A., & Koster, M. (2000). Stress and lexical activation in Dutch. In B. Yuan, T. Huang, & X. Tang (Eds.), Proceedings of the Sixth International Conference on Spoken Language Processing: Vol. 1 (pp. 593-596). Beijing: China Military Friendship Publish.

    Abstract

    Dutch listeners were slower to make judgements about the semantic relatedness between a spoken target word (e.g. atLEET, 'athlete') and a previously presented visual prime word (e.g. SPORT 'sport') when the spoken word was mis-stressed. The adverse effect of mis-stressing confirms the role of stress information in lexical recognition in Dutch. However, although the erroneous stress pattern was always initially compatible with a competing word (e.g. ATlas, 'atlas'), mis-stressed words did not produced high false alarm rates in unrelated pairs (e.g. SPORT - atLAS). This suggests that stress information did not completely rule out segmentally matching but suprasegmentally mismatching words, a finding consistent with spoken-word recognition models involving multiple activation and inter-word competition.
  • Cutler, A., Norris, D., & McQueen, J. M. (2000). Tracking TRACE’s troubles. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 63-66). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    Simulations explored the inability of the TRACE model of spoken-word recognition to model the effects on human listening of acoustic-phonetic mismatches in word forms. The source of TRACE's failure lay not in its interactive connectivity, not in the presence of interword competition, and not in the use of phonemic representations, but in the need for continuously optimised interpretation of the input. When an analogue of TRACE was allowed to cycle to asymptote on every slice of input, an acceptable simulation of the subcategorical mismatch data was achieved. Even then, however, the simulation was not as close as that produced by the Merge model.
  • Houston, D. M., Jusczyk, P. W., Kuijpers, C., Coolen, R., & Cutler, A. (2000). Cross-language word segmentation by 9-month-olds. Psychonomic Bulletin & Review, 7, 504-509.

    Abstract

    Dutch-learning and English-learning 9-month-olds were tested, using the Headturn Preference Procedure, for their ability to segment Dutch words with strong/weak stress patterns from fluent Dutch speech. This prosodic pattern is highly typical for words of both languages. The infants were familiarized with pairs of words and then tested on four passages, two that included the familiarized words and two that did not. Both the Dutch- and the English-learning infants gave evidence of segmenting the targets from the passages, to an equivalent degree. Thus, English-learning infants are able to extract words from fluent speech in a language that is phonetically different from English. We discuss the possibility that this cross-language segmentation ability is aided by the similarity of the typical rhythmic structure of Dutch and English words.
  • Johnson, E. K., Jusczyk, P. W., Cutler, A., & Norris, D. (2000). The development of word recognition: The use of the possible-word constraint by 12-month-olds. In L. Gleitman, & A. Joshi (Eds.), Proceedings of CogSci 2000 (pp. 1034). London: Erlbaum.
  • McQueen, J. M., Cutler, A., & Norris, D. (2000). Positive and negative influences of the lexicon on phonemic decision-making. In B. Yuan, T. Huang, & X. Tang (Eds.), Proceedings of the Sixth International Conference on Spoken Language Processing: Vol. 3 (pp. 778-781). Beijing: China Military Friendship Publish.

    Abstract

    Lexical knowledge influences how human listeners make decisions about speech sounds. Positive lexical effects (faster responses to target sounds in words than in nonwords) are robust across several laboratory tasks, while negative effects (slower responses to targets in more word-like nonwords than in less word-like nonwords) have been found in phonetic decision tasks but not phoneme monitoring tasks. The present experiments tested whether negative lexical effects are therefore a task-specific consequence of the forced choice required in phonetic decision. We compared phoneme monitoring and phonetic decision performance using the same Dutch materials in each task. In both experiments there were positive lexical effects, but no negative lexical effects. We observe that in all studies showing negative lexical effects, the materials were made by cross-splicing, which meant that they contained perceptual evidence supporting the lexically-consistent phonemes. Lexical knowledge seems to influence phonemic decision-making only when there is evidence for the lexically-consistent phoneme in the speech signal.
  • McQueen, J. M., Cutler, A., & Norris, D. (2000). Why Merge really is autonomous and parsimonious. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 47-50). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    We briefly describe the Merge model of phonemic decision-making, and, in the light of general arguments about the possible role of feedback in spoken-word recognition, defend Merge's feedforward structure. Merge not only accounts adequately for the data, without invoking feedback connections, but does so in a parsimonious manner.
  • Norris, D., McQueen, J. M., & Cutler, A. (2000). Feedback on feedback on feedback: It’s feedforward. (Response to commentators). Behavioral and Brain Sciences, 23, 352-370.

    Abstract

    The central thesis of the target article was that feedback is never necessary in spoken word recognition. The commentaries present no new data and no new theoretical arguments which lead us to revise this position. In this response we begin by clarifying some terminological issues which have lead to a number of significant misunderstandings. We provide some new arguments to support our case that the feedforward model Merge is indeed more parsimonious than the interactive alternatives, and that it provides a more convincing account of the data than alternative models. Finally, we extend the arguments to deal with new issues raised by the commentators such as infant speech perception and neural architecture.
  • Norris, D., Cutler, A., McQueen, J. M., Butterfield, S., & Kearns, R. K. (2000). Language-universal constraints on the segmentation of English. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 43-46). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    Two word-spotting experiments are reported that examine whether the Possible-Word Constraint (PWC) [1] is a language-specific or language-universal strategy for the segmentation of continuous speech. The PWC disfavours parses which leave an impossible residue between the end of a candidate word and a known boundary. The experiments examined cases where the residue was either a CV syllable with a lax vowel, or a CVC syllable with a schwa. Although neither syllable context is a possible word in English, word-spotting in both contexts was easier than with a context consisting of a single consonant. The PWC appears to be language-universal rather than language-specific.
  • Norris, D., McQueen, J. M., & Cutler, A. (2000). Merging information in speech recognition: Feedback is never necessary. Behavioral and Brain Sciences, 23, 299-325.

    Abstract

    Top-down feedback does not benefit speech recognition; on the contrary, it can hinder it. No experimental data imply that feedback loops are required for speech recognition. Feedback is accordingly unnecessary and spoken word recognition is modular. To defend this thesis, we analyse lexical involvement in phonemic decision making. TRACE (McClelland & Elman 1986), a model with feedback from the lexicon to prelexical processes, is unable to account for all the available data on phonemic decision making. The modular Race model (Cutler & Norris 1979) is likewise challenged by some recent results, however. We therefore present a new modular model of phonemic decision making, the Merge model. In Merge, information flows from prelexical processes to the lexicon without feedback. Because phonemic decisions are based on the merging of prelexical and lexical information, Merge correctly predicts lexical involvement in phonemic decisions in both words and nonwords. Computer simulations show how Merge is able to account for the data through a process of competition between lexical hypotheses. We discuss the issue of feedback in other areas of language processing and conclude that modular models are particularly well suited to the problems and constraints of speech recognition.
  • Norris, D., Cutler, A., & McQueen, J. M. (2000). The optimal architecture for simulating spoken-word recognition. In C. Davis, T. Van Gelder, & R. Wales (Eds.), Cognitive Science in Australia, 2000: Proceedings of the Fifth Biennial Conference of the Australasian Cognitive Science Society. Adelaide: Causal Productions.

    Abstract

    Simulations explored the inability of the TRACE model of spoken-word recognition to model the effects on human listening of subcategorical mismatch in word forms. The source of TRACE's failure lay not in interactive connectivity, not in the presence of inter-word competition, and not in the use of phonemic representations, but in the need for continuously optimised interpretation of the input. When an analogue of TRACE was allowed to cycle to asymptote on every slice of input, an acceptable simulation of the subcategorical mismatch data was achieved. Even then, however, the simulation was not as close as that produced by the Merge model, which has inter-word competition, phonemic representations and continuous optimisation (but no interactive connectivity).
  • Otake, T., & Cutler, A. (2000). A set of Japanese word cohorts rated for relative familiarity. In B. Yuan, T. Huang, & X. Tang (Eds.), Proceedings of the Sixth International Conference on Spoken Language Processing: Vol. 3 (pp. 766-769). Beijing: China Military Friendship Publish.

    Abstract

    A database is presented of relative familiarity ratings for 24 sets of Japanese words, each set comprising words overlapping in the initial portions. These ratings are useful for the generation of material sets for research in the recognition of spoken words.
  • Cutler, A., & Fay, D. A. (Eds.). (1978). [Annotated re-issue of R. Meringer and C. Mayer: Versprechen und Verlesen, 1895]. Amsterdam: John Benjamins.
  • Cutler, A., & Fay, D. (1978). Introduction. In A. Cutler, & D. Fay (Eds.), [Annotated re-issue of R. Meringer and C. Mayer: Versprechen und Verlesen, 1895] (pp. ix-xl). Amsterdam: John Benjamins.
  • Cutler, A., & Cooper, W. E. (1978). Phoneme-monitoring in the context of different phonetic sequences. Journal of Phonetics, 6, 221-225.

    Abstract

    The order of some conjoined words is rigidly fixed (e.g. dribs and drabs/*drabs and dribs). Both phonetic and semantic factors can play a role in determining the fixed order. An experiment was conducted to test whether listerners’ reaction times for monitoring a predetermined phoneme are influenced by phonetic constraints on ordering. Two such constraints were investigated: monosyllable-bissyllable and high-low vowel sequences. In English, conjoined words occur in such sequences with much greater frequency than their converses, other factors being equal. Reaction times were significantly shorter for phoneme monitoring in monosyllable-bisyllable sequences than in bisyllable- monosyllable sequences. However, reaction times were not significantly different for high-low vs. low-high vowel sequences.

Share this page