Anne Cutler †

Publications

Displaying 1 - 45 of 45
  • Alispahic, S., Pellicano, E., Cutler, A., & Antoniou, M. (2022). Auditory perceptual learning in autistic adults. Autism Research, 15(8), 1495-1507. doi:10.1002/aur.2778.

    Abstract

    The automatic retuning of phoneme categories to better adapt to the speech of a novel talker has been extensively documented across various (neurotypical) populations, including both adults and children. However, no studies have examined auditory perceptual learning effects in populations atypical in perceptual, social, and language processing for communication, such as populations with autism. Employing a classic lexically-guided perceptual learning paradigm, the present study investigated perceptual learning effects in Australian English autistic and non-autistic adults. The findings revealed that automatic attunement to existing phoneme categories was not activated in the autistic group in the same manner as for non-autistic control subjects. Specifically, autistic adults were able to both successfully discern lexical items and to categorize speech sounds; however, they did not show effects of perceptual retuning to talkers. These findings may have implications for the application of current sensory theories (e.g., Bayesian decision theory) to speech and language processing by autistic individuals.
    Lay Summary

    Lexically guided perceptual learning assists in the disambiguation of speech from a novel talker. The present study established that while Australian English autistic adult listeners were able to successfully discern lexical items and categorize speech sounds in their native language, perceptual flexibility in updating speaker-specific phonemic knowledge when exposed to a novel talker was not available. Implications for speech and language processing by autistic individuals as well as current sensory theories are discussed.

    Additional information

    data
  • Bruggeman, L., Yu, J., & Cutler, A. (2022). Listener adjustment of stress cue use to fit language vocabulary structure. In S. Frota, M. Cruz, & M. Vigário (Eds.), Proceedings of Speech Prosody 2022 (pp. 264-267). doi:10.21437/SpeechProsody.2022-54.

    Abstract

    In lexical stress languages, phonemically identical syllables can differ suprasegmentally (in duration, amplitude, F0). Such stress
    cues allow listeners to speed spoken-word recognition by rejecting mismatching competitors (e.g., unstressed set- in settee
    rules out stressed set- in setting, setter, settle). Such processing effects have indeed been observed in Spanish, Dutch and German, but English listeners are known to largely ignore stress cues. Dutch and German listeners even outdo English listeners in distinguishing stressed versus unstressed English syllables. This has been attributed to the relative frequency across the stress languages of unstressed syllables with full vowels; in English most unstressed syllables contain schwa, instead, and stress cues on full vowels are thus least often informative in this language. If only informativeness matters, would English listeners who encounter situations where such cues would pay off for them (e.g., learning one of those other stress languages) then shift to using stress cues? Likewise, would stress cue users with English as L2, if mainly using English, shift away from
    using the cues in English? Here we report tests of these two questions, with each receiving a yes answer. We propose that
    English listeners’ disregard of stress cues is purely pragmatic.
  • Cutler, A., Ernestus, M., Warner, N., & Weber, A. (2022). Managing speech perception data sets. In B. McDonnell, E. Koller, & L. B. Collister (Eds.), The Open Handbook of Linguistic Data Management (pp. 565-573). Cambrdige, MA, USA: MIT Press. doi:10.7551/mitpress/12200.003.0055.
  • Ip, M. H. K., & Cutler, A. (2022). Juncture prosody across languages: Similar production but dissimilar perception. Laboratory Phonology, 13(1): 5. doi:10.16995/labphon.6464.

    Abstract

    How do speakers of languages with different intonation systems produce and perceive prosodic junctures in sentences with identical structural ambiguity? Native speakers of English and of Mandarin produced potentially ambiguous sentences with a prosodic juncture either earlier in the utterance (e.g., “He gave her # dog biscuits,” “他给她#狗饼干 ”), or later (e.g., “He gave her dog # biscuits,” “他给她狗 #饼干 ”). These productiondata showed that prosodic disambiguation is realised very similarly in the two languages, despite some differences in the degree to which individual juncture cues (e.g., pausing) were favoured. In perception experiments with a new disambiguation task, requiring speeded responses to select the correct meaning for structurally ambiguous sentences, language differences in disambiguation response time appeared: Mandarin speakers correctly disambiguated sentences with earlier juncture faster than those with later juncture, while English speakers showed the reverse. Mandarin-speakers with L2 English did not show their native-language response time pattern when they heard the English ambiguous sentences. Thus even with identical structural ambiguity and identically cued production, prosodic juncture perception across languages can differ.

    Additional information

    supplementary files
  • Liu, L., Yuan, C., Ong, J. H., Tuninetti, A., Antoniou, M., Cutler, A., & Escudero, P. (2022). Learning to perceive non-native tones via distributional training: Effects of task and acoustic cue weighting. Brain Sciences, 12(5): 559. doi:10.3390/brainsci12050559.

    Abstract

    As many distributional learning (DL) studies have shown, adult listeners can achieve discrimination of a difficult non-native contrast after a short repetitive exposure to tokens falling at the extremes of that contrast. Such studies have shown using behavioural methods that a short distributional training can induce perceptual learning of vowel and consonant contrasts. However, much less is known about the neurological correlates of DL, and few studies have examined non-native lexical tone contrasts. Here, Australian-English speakers underwent DL training on a Mandarin tone contrast using behavioural (discrimination, identification) and neural (oddball-EEG) tasks, with listeners hearing either a bimodal or a unimodal distribution. Behavioural results show that listeners learned to discriminate tones after both unimodal and bimodal training; while EEG responses revealed more learning for listeners exposed to the bimodal distribution. Thus, perceptual learning through exposure to brief sound distributions (a) extends to non-native tonal contrasts, and (b) is sensitive to task, phonetic distance, and acoustic cue-weighting. Our findings have implications for models of how auditory and phonetic constraints influence speech learning.

    Additional information

    supplementary material A-D
  • Cutler, A., Wales, R., Cooper, N., & Janssen, J. (2007). Dutch listeners' use of suprasegmental cues to English stress. In J. Trouvain, & W. J. Barry (Eds.), Proceedings of the 16th International Congress of Phonetics Sciences (ICPhS 2007) (pp. 1913-1916). Dudweiler: Pirrot.

    Abstract

    Dutch listeners outperform native listeners in identifying syllable stress in English. This is because lexical stress is more useful in recognition of spoken words of Dutch than of English, so that Dutch listeners pay greater attention to stress in general. We examined Dutch listeners’ use of the acoustic correlates of English stress. Primary- and secondary-stressed syllables differ significantly on acoustic measures, and some differences, in F0 especially, correlate with data of earlier listening experiments. The correlations found in the Dutch responses were not paralleled in data from native listeners. Thus the acoustic cues which distinguish English primary versus secondary stress are better exploited by Dutch than by native listeners.
  • Cutler, A., & Weber, A. (2007). Listening experience and phonetic-to-lexical mapping in L2. In J. Trouvain, & W. J. Barry (Eds.), Proceedings of the 16th International Congress of Phonetic Sciences (ICPhS 2007) (pp. 43-48). Dudweiler: Pirrot.

    Abstract

    In contrast to initial L1 vocabularies, which of necessity depend largely on heard exemplars, L2 vocabulary construction can draw on a variety of knowledge sources. This can lead to richer stored knowledge about the phonology of the L2 than the listener's prelexical phonetic processing capacity can support, and thus to mismatch between the level of detail required for accurate lexical mapping and the level of detail delivered by the prelexical processor. Experiments on spoken word recognition in L2 have shown that phonetic contrasts which are not reliably perceived are represented in the lexicon nonetheless. This lexical representation of contrast must be based on abstract knowledge, not on veridical representation of heard exemplars. New experiments confirm that provision of abstract knowledge (in the form of spelling) can induce lexical representation of a contrast which is not reliably perceived; but also that experience (in the form of frequency of occurrence) modulates the mismatch of phonetic and lexical processing. We conclude that a correct account of word recognition in L2 (as indeed in L1) requires consideration of both abstract and episodic information.
  • Cutler, A., Cooke, M., Garcia-Lecumberri, M. L., & Pasveer, D. (2007). L2 consonant identification in noise: Cross-language comparisons. In H. van Hamme, & R. van Son (Eds.), Proceedings of Interspeech 2007 (pp. 1585-1588). Adelaide: Causal productions.

    Abstract

    The difficulty of listening to speech in noise is exacerbated when the speech is in the listener’s L2 rather than L1. In this study, Spanish and Dutch users of English as an L2 identified American English consonants in a constant intervocalic context. Their performance was compared with that of L1 (British English) listeners, under quiet conditions and when the speech was masked by speech from another talker or by noise. Masking affected performance more for the Spanish listeners than for the L1 listeners, but not for the Dutch listeners, whose performance was worse than the L1 case to about the same degree in all conditions. There were, however,large differences in the pattern of results across individual consonants, which were consistent with differences in how consonants are identified in the respective L1s.
  • Murty, L., Otake, T., & Cutler, A. (2007). Perceptual tests of rhythmic similarity: I. Mora Rhythm. Language and Speech, 50(1), 77-99. doi:10.1177/00238309070500010401.

    Abstract

    Listeners rely on native-language rhythm in segmenting speech; in different languages, stress-, syllable- or mora-based rhythm is exploited. The rhythmic similarity hypothesis holds that where two languages have similar rhythm, listeners of each language should segment their own and the other language similarly. Such similarity in listening was previously observed only for related languages (English-Dutch; French-Spanish). We now report three experiments in which speakers of Telugu, a Dravidian language unrelated to Japanese but similar to it in crucial aspects of rhythmic structure, heard speech in Japanese and in their own language, and Japanese listeners heard Telugu. For the Telugu listeners, detection of target sequences in Japanese speech was harder when target boundaries mismatched mora boundaries, exactly the pattern that Japanese listeners earlier exhibited with Japanese and other languages. The same results appeared when Japanese listeners heard Telugu speech containing only codas permissible in Japanese. Telugu listeners' results with Telugu speech were mixed, but the overall pattern revealed correspondences between the response patterns of the two listener groups, as predicted by the rhythmic similarity hypothesis. Telugu and Japanese listeners appear to command similar procedures for speech segmentation, further bolstering the proposal that aspects of language phonological structure affect listeners' speech segmentation.
  • Snijders, T. M., Kooijman, V., Cutler, A., & Hagoort, P. (2007). Neurophysiological evidence of delayed segmentation in a foreign language. Brain Research, 1178, 106-113. doi:10.1016/j.brainres.2007.07.080.

    Abstract

    Previous studies have shown that segmentation skills are language-specific, making it difficult to segment continuous speech in an unfamiliar language into its component words. Here we present the first study capturing the delay in segmentation and recognition in the foreign listener using ERPs. We compared the ability of Dutch adults and of English adults without knowledge of Dutch (‘foreign listeners’) to segment familiarized words from continuous Dutch speech. We used the known effect of repetition on the event-related potential (ERP) as an index of recognition of words in continuous speech. Our results show that word repetitions in isolation are recognized with equivalent facility by native and foreign listeners, but word repetitions in continuous speech are not. First, words familiarized in isolation are recognized faster by native than by foreign listeners when they are repeated in continuous speech. Second, when words that have previously been heard only in a continuous-speech context re-occur in continuous speech, the repetition is detected by native listeners, but is not detected by foreign listeners. A preceding speech context facilitates word recognition for native listeners, but delays or even inhibits word recognition for foreign listeners. We propose that the apparent difference in segmentation rate between native and foreign listeners is grounded in the difference in language-specific skills available to the listeners.
  • Tuinman, A., Mitterer, H., & Cutler, A. (2007). Speakers differentiate English intrusive and onset /r/, but L2 listeners do not. In J. Trouvain, & W. J. Barry (Eds.), Proceedings of the 16th International Congress of Phonetic Sciences (ICPhS 2007) (pp. 1905-1908). Dudweiler: Pirrot.

    Abstract

    We investigated whether non-native listeners can exploit phonetic detail in recognizing potentially ambiguous utterances, as native listeners can [6, 7, 8, 9, 10]. Due to the phenomenon of intrusive /r/, the English phrase extra ice may sound like extra rice. A production study indicates that the intrusive /r/ can be distinguished from the onset /r/ in rice, as it is phonetically weaker. In two cross-modal identity priming studies, however, we found no conclusive evidence that Dutch learners of English are able to make use of this difference. Instead, auditory primes such as extra rice and extra ice with onset and intrusive /r/s activate both types of targets such as ice and rice. This supports the notion of spurious lexical activation in L2 perception.
  • Cutler, A. (2001). De baby in je hoofd: luisteren naar eigen en andermans taal [Speech at the Catholic University's 78th Dies Natalis]. Nijmegen, The Netherlands: Nijmegen University Press.
  • Cutler, A. (2001). Entries on: Acquisition of language by non-human primates; bilingualism; compound (linguistic); development of language-specific phonology; gender (linguistic); grammar; infant speech perception; language; lexicon; morphology; motor theory of speech perception; perception of second languages; phoneme; phonological store; phonology; prosody; sign language; slips of the tongue; speech perception; speech production; stress (linguistic); syntax; word recognition; words. In P. Winn (Ed.), Dictionary of biological psychology. London: Routledge.
  • Cutler, A. (2001). Listening to a second language through the ears of a first. Interpreting, 5, 1-23.
  • Cutler, A., McQueen, J. M., Norris, D., & Somejuan, A. (2001). The roll of the silly ball. In E. Dupoux (Ed.), Language, brain and cognitive development: Essays in honor of Jacques Mehler (pp. 181-194). Cambridge, MA: MIT Press.
  • Cutler, A., & Van Donselaar, W. (2001). Voornaam is not a homophone: Lexical prosody and lexical access in Dutch. Language and Speech, 44, 171-195. doi:10.1177/00238309010440020301.

    Abstract

    Four experiments examined Dutch listeners’ use of suprasegmental information in spoken-word recognition. Isolated syllables excised from minimal stress pairs such as VOORnaam/voorNAAM could be reliably assigned to their source words. In lexical decision, no priming was observed from one member of minimal stress pairs to the other, suggesting that the pairs’ segmental ambiguity was removed by suprasegmental information.Words embedded in nonsense strings were harder to detect if the nonsense string itself formed the beginning of a competing word, but a suprasegmental mismatch to the competing word significantly reduced this inhibition. The same nonsense strings facilitated recognition of the longer words of which they constituted the beginning, butagain the facilitation was significantly reduced by suprasegmental mismatch. Together these results indicate that Dutch listeners effectively exploit suprasegmental cues in recognizing spoken words. Nonetheless, suprasegmental mismatch appears to be somewhat less effective in constraining activation than segmental mismatch.
  • McQueen, J. M., Norris, D., & Cutler, A. (2001). Can lexical knowledge modulate prelexical representations over time? In R. Smits, J. Kingston, T. Neary, & R. Zondervan (Eds.), Proceedings of the workshop on Speech Recognition as Pattern Classification (SPRAAC) (pp. 145-150). Nijmegen: Max Planck Institute for Psycholinguistics.

    Abstract

    The results of a study on perceptual learning are reported. Dutch subjects made lexical decisions on a list of words and nonwords. Embedded in the list were either [f]- or [s]-final words in which the final fricative had been replaced by an ambiguous sound, midway between [f] and [s]. One group of listeners heard ambiguous [f]- final Dutch words like [kara?] (based on karaf, carafe) and unambiguous [s]-final words (e.g., karkas, carcase). A second group heard the reverse (e.g., ambiguous [karka?] and unambiguous karaf). After this training phase, listeners labelled ambiguous fricatives on an [f]- [s] continuum. The subjects who had heard [?] in [f]- final words categorised these fricatives as [f] reliably more often than those who had heard [?] in [s]-final words. These results suggest that speech recognition is dynamic: the system adjusts to the constraints of each particular listening situation. The lexicon can provide this adjustment process with a training signal.
  • McQueen, J. M., & Cutler, A. (Eds.). (2001). Spoken word access processes. Hove, UK: Psychology Press.
  • McQueen, J. M., & Cutler, A. (2001). Spoken word access processes: An introduction. Language and Cognitive Processes, 16, 469-490. doi:10.1080/01690960143000209.

    Abstract

    We introduce the papers in this special issue by summarising the current major issues in spoken word recognition. We argue that a full understanding of the process of lexical access during speech comprehension will depend on resolving several key representational issues: what is the form of the representations used for lexical access; how is phonological information coded in the mental lexicon; and how is the morphological and semantic information about each word stored? We then discuss a number of distinct access processes: competition between lexical hypotheses; the computation of goodness-of-fit between the signal and stored lexical knowledge; segmentation of continuous speech; whether the lexicon influences prelexical processing through feedback; and the relationship of form-based processing to the processes responsible for deriving an interpretation of a complete utterance. We conclude that further progress may well be made by swapping ideas among the different sub-domains of the discipline.
  • McQueen, J. M., Otake, T., & Cutler, A. (2001). Rhythmic cues and possible-word constraints in Japanese speech segmentation. Journal of Memory and Language, 45, 103-132. doi:10.1006/jmla.2000.2763.

    Abstract

    In two word-spotting experiments, Japanese listeners detected Japanese words faster in vowel contexts (e.g., agura, to sit cross-legged, in oagura) than in consonant contexts (e.g., tagura). In the same experiments, however, listeners spotted words in vowel contexts (e.g., saru, monkey, in sarua) no faster than in moraic nasal contexts (e.g., saruN). In a third word-spotting experiment, words like uni, sea urchin, followed contexts consisting of a consonant-consonant-vowel mora (e.g., gya) plus either a moraic nasal (gyaNuni), a vowel (gyaouni) or a consonant (gyabuni). Listeners spotted words as easily in the first as in the second context (where in each case the target words were aligned with mora boundaries), but found it almost impossible to spot words in the third (where there was a single consonant, such as the [b] in gyabuni, between the beginning of the word and the nearest preceding mora boundary). Three control experiments confirmed that these effects reflected the relative ease of segmentation of the words from their contexts.We argue that the listeners showed sensitivity to the viability of sound sequences as possible Japanese words in the way that they parsed the speech into words. Since single consonants are not possible Japanese words, the listeners avoided lexical parses including single consonants and thus had difficulty recognizing words in the consonant contexts. Even though moraic nasals are also impossible words, they were not difficult segmentation contexts because, as with the vowel contexts, the mora boundaries between the contexts and the target words signaled likely word boundaries. Moraic rhythm appears to provide Japanese listeners with important segmentation cues.
  • Moore, R. K., & Cutler, A. (2001). Constraints on theories of human vs. machine recognition of speech. In R. Smits, J. Kingston, T. Neary, & R. Zondervan (Eds.), Proceedings of the workshop on Speech Recognition as Pattern Classification (SPRAAC) (pp. 145-150). Nijmegen: Max Planck Institute for Psycholinguistics.

    Abstract

    The central issues in the study of speech recognition by human listeners (HSR) and of automatic speech recognition (ASR) are clearly comparable; nevertheless the research communities that concern themselves with ASR and HSR are largely distinct. This paper compares the research objectives of the two fields, and attempts to draw informative lessons from one to the other.
  • Norris, D., McQueen, J. M., Cutler, A., Butterfield, S., & Kearns, R. (2001). Language-universal constraints on speech segmentation. Language and Cognitive Processes, 16, 637-660. doi:10.1080/01690960143000119.

    Abstract

    Two word-spotting experiments are reported that examine whether the Possible-Word Constraint (PWC) is a language-specific or language-universal strategy for the segmentation of continuous speech. The PWC disfavours parses which leave an impossible residue between the end of a candidate word and any likely location of a word boundary, as cued in the speech signal. The experiments examined cases where the residue was either a CVC syllable with a schwa, or a CV syllable with a lax vowel. Although neither of these syllable contexts is a possible lexical word in English, word-spotting in both contexts was easier than in a context consisting of a single consonant. Two control lexical-decision experiments showed that the word-spotting results reflected the relative segmentation difficulty of the words in different contexts. The PWC appears to be language-universal rather than language-specific.
  • Otake, T., & Cutler, A. (2001). Recognition of (almost) spoken words: Evidence from word play in Japanese. In P. Dalsgaard (Ed.), Proceedings of EUROSPEECH 2001 (pp. 465-468).

    Abstract

    Current models of spoken-word recognition assume automatic activation of multiple candidate words fully or partially compatible with the speech input. We propose that listeners make use of this concurrent activation in word play such as punning. Distortion in punning should ideally involve no more than a minimal contrastive deviation between two words, namely a phoneme. Moreover, we propose that this metric of similarity does not presuppose phonemic awareness on the part of the punster. We support these claims with an analysis of modern and traditional puns in Japanese (in which phonemic awareness in language users is not encouraged by alphabetic orthography). For both data sets, the results support the predictions. Punning draws on basic processes of spokenword recognition, common across languages.
  • Soto-Faraco, S., Sebastian-Galles, N., & Cutler, A. (2001). Segmental and suprasegmental mismatch in lexical access. Journal of Memory and Language, 45, 412-432. doi:10.1006/jmla.2000.2783.

    Abstract

    Four cross-modal priming experiments in Spanish addressed the role of suprasegmental and segmental information in the activation of spoken words. Listeners heard neutral sentences ending with word fragments (e.g., princi-) and made lexical decisions on letter strings presented at fragment offset. Responses were compared for fragment primes that fully matched the spoken form of the initial portion of target words, versus primes that mismatched in a single element (stress pattern; one vowel; one consonant), versus control primes. Fully matching primes always facilitated lexical decision responses, in comparison to the control condition, while mismatching primes always produced inhibition. The respective strength of the contribution of stress, vowel, and consonant (one feature mismatch or more) information did not differ statistically. The results support a model of spoken-word recognition involving automatic activation of word forms and competition between activated words, in which the activation process is sensitive to all acoustic information relevant to the language’s phonology.
  • Warner, N., Jongman, A., Cutler, A., & Mücke, D. (2001). The phonological status of Dutch epenthetic schwa. Phonology, 18, 387-420. doi:10.1017/S0952675701004213.

    Abstract

    In this paper, we use articulatory measures to determine whether Dutch schwa epenthesis is an abstract phonological process or a concrete phonetic process depending on articulatory timing. We examine tongue position during /l/ before underlying schwa and epenthetic schwa and in coda position. We find greater tip raising before both types of schwa, indicating light /l/ before schwa and dark /l/ in coda position. We argue that the ability of epenthetic schwa to condition the /l/ alternation shows that Dutch schwa epenthesis is an abstract phonological process involving insertion of some unit, and cannot be accounted for within Articulatory Phonology.
  • Warner, N., Jongman, A., Mucke, D., & Cutler, A. (2001). The phonological status of schwa insertion in Dutch: An EMA study. In B. Maassen, W. Hulstijn, R. Kent, H. Peters, & P. v. Lieshout (Eds.), Speech motor control in normal and disordered speech: 4th International Speech Motor Conference (pp. 86-89). Nijmegen: Vantilt.

    Abstract

    Articulatory data are used to address the question of whether Dutch schwa insertion is a phonological or a phonetic process. By investigating tongue tip raising and dorsal lowering, we show that /l/ when it appears before inserted schwa is a light /l/, just as /l/ before an underlying schwa is, and unlike the dark /l/ before a consonant in non-insertion productions of the same words. The fact that inserted schwa can condition the light/dark /l/ alternation shows that schwa insertion involves the phonological insertion of a segment rather than phonetic adjustments to articulations.
  • Cutler, A., & Fear, B. D. (1991). Categoricality in acceptability judgements for strong versus weak vowels. In J. Llisterri (Ed.), Proceedings of the ESCA Workshop on Phonetics and Phonology of Speaking Styles (pp. 18.1-18.5). Barcelona, Catalonia: Universitat Autonoma de Barcelona.

    Abstract

    A distinction between strong and weak vowels can be drawn on the basis of vowel quality, of stress, or of both factors. An experiment was conducted in which sets of contextually matched word-intial vowels ranging from clearly strong to clearly weak were cross-spliced, and the naturalness of the resulting words was rated by listeners. The ratings showed that in general cross-spliced words were only significantly less acceptable than unspliced words when schwa was not involved; this supports a categorical distinction based on vowel quality.
  • Cutler, A. (1991). Linguistic rhythm and speech segmentation. In J. Sundberg, L. Nord, & R. Carlson (Eds.), Music, language, speech and brain (pp. 157-166). London: Macmillan.
  • Cutler, A. (1991). Proceed with caution. New Scientist, (1799), 53-54.
  • Cutler, A. (1991). Prosody in situations of communication: Salience and segmentation. In Proceedings of the Twelfth International Congress of Phonetic Sciences: Vol. 1 (pp. 264-270). Aix-en-Provence: Université de Provence, Service des publications.

    Abstract

    Speakers and listeners have a shared goal: to communicate. The processes of speech perception and of speech production interact in many ways under the constraints of this communicative goal; such interaction is as characteristic of prosodic processing as of the processing of other aspects of linguistic structure. Two of the major uses of prosodic information in situations of communication are to encode salience and segmentation, and these themes unite the contributions to the symposium introduced by the present review.
  • Cutler, A., & Butterfield, S. (1991). Word boundary cues in clear speech: A supplementary report. Speech Communication, 10, 335-353. doi:10.1016/0167-6393(91)90002-B.

    Abstract

    One of a listener's major tasks in understanding continuous speech is segmenting the speech signal into separate words. When listening conditions are difficult, speakers can help listeners by deliberately speaking more clearly. In four experiments, we examined how word boundaries are produced in deliberately clear speech. In an earlier report we showed that speakers do indeed mark word boundaries in clear speech, by pausing at the boundary and lengthening pre-boundary syllables; moreover, these effects are applied particularly to boundaries preceding weak syllables. In English, listeners use segmentation procedures which make word boundaries before strong syllables easier to perceive; thus marking word boundaries before weak syllables in clear speech will make clear precisely those boundaries which are otherwise hard to perceive. The present report presents supplementary data, namely prosodic analyses of the syllable following a critical word boundary. More lengthening and greater increases in intensity were applied in clear speech to weak syllables than to strong. Mean F0 was also increased to a greater extent on weak syllables than on strong. Pitch movement, however, increased to a greater extent on strong syllables than on weak. The effects were, however, very small in comparison to the durational effects we observed earlier for syllables preceding the boundary and for pauses at the boundary.
  • Van Ooijen, B., Cutler, A., & Norris, D. (1991). Detection times for vowels versus consonants. In Eurospeech 91: Vol. 3 (pp. 1451-1454). Genova: Istituto Internazionale delle Comunicazioni.

    Abstract

    This paper reports two experiments with vowels and consonants as phoneme detection targets in real words. In the first experiment, two relatively distinct vowels were compared with two confusible stop consonants. Response times to the vowels were longer than to the consonants. Response times correlated negatively with target phoneme length. In the second, two relatively distinct vowels were compared with their corresponding semivowels. This time, the vowels were detected faster than the semivowels. We conclude that response time differences between vowels and stop consonants in this task may reflect differences between phoneme categories in the variability of tokens, both in the acoustic realisation of targets and in the' representation of targets by subjects.
  • Butterfield, S., & Cutler, A. (1988). Segmentation errors by human listeners: Evidence for a prosodic segmentation strategy. In W. Ainsworth, & J. Holmes (Eds.), Proceedings of SPEECH ’88: Seventh Symposium of the Federation of Acoustic Societies of Europe: Vol. 3 (pp. 827-833). Edinburgh: Institute of Acoustics.
  • Cutler, A., Mehler, J., Norris, D., & Segui, J. (1988). Limits on bilingualism [Letters to Nature]. Nature, 340, 229-230. doi:10.1038/340229a0.

    Abstract

    SPEECH, in any language, is continuous; speakers provide few reliable cues to the boundaries of words, phrases, or other meaningful units. To understand speech, listeners must divide the continuous speech stream into portions that correspond to such units. This segmentation process is so basic to human language comprehension that psycholinguists long assumed that all speakers would do it in the same way. In previous research1,2, however, we reported that segmentation routines can be language-specific: speakers of French process spoken words syllable by syllable, but speakers of English do not. French has relatively clear syllable boundaries and syllable-based timing patterns, whereas English has relatively unclear syllable boundaries and stress-based timing; thus syllabic segmentation would work more efficiently in the comprehension of French than in the comprehension of English. Our present study suggests that at this level of language processing, there are limits to bilingualism: a bilingual speaker has one and only one basic language.
  • Cutler, A. (1988). The perfect speech error. In L. Hyman, & C. Li (Eds.), Language, speech and mind: Studies in honor of Victoria A. Fromkin (pp. 209-223). London: Croom Helm.
  • Cutler, A., & Norris, D. (1988). The role of strong syllables in segmentation for lexical access. Journal of Experimental Psychology: Human Perception and Performance, 14, 113-121. doi:10.1037/0096-1523.14.1.113.

    Abstract

    A model of speech segmentation in a stress language is proposed, according to which the occurrence of a strong syllable triggers segmentation of the speech signal, whereas occurrence of a weak syllable does not trigger segmentation. We report experiments in which listeners detected words embedded in nonsense bisyllables more slowly when the bisyllable had two strong syllables than when it had a strong and a weak syllable; mint was detected more slowly in mintayve than in mintesh. According to our proposed model, this result is an effect of segmentation: When the second syllable is strong, it is segmented from the first syllable, and successful detection of the embedded word therefore requires assembly of speech material across a segmentation position. Speech recognition models involving phonemic or syllabic recoding, or based on strictly left-to-right processes, do not predict this result. It is argued that segmentation at strong syllables in continuous speech recognition serves the purpose of detecting the most efficient locations at which to initiate lexical access. (C) 1988 by the American Psychological Association
  • Hawkins, J. A., & Cutler, A. (1988). Psycholinguistic factors in morphological asymmetry. In J. A. Hawkins (Ed.), Explaining language universals (pp. 280-317). Oxford: Blackwell.
  • Henderson, L., Coltheart, M., Cutler, A., & Vincent, N. (1988). Preface. Linguistics, 26(4), 519-520. doi:10.1515/ling.1988.26.4.519.
  • Mehta, G., & Cutler, A. (1988). Detection of target phonemes in spontaneous and read speech. Language and Speech, 31, 135-156.

    Abstract

    Although spontaneous speech occurs more frequently in most listeners’ experience than read speech, laboratory studies of human speech recognition typically use carefully controlled materials read from a script. The phonological and prosodic characteristics of spontaneous and read speech differ considerably, however, which suggests that laboratory results may not generalize to the recognition of spontaneous and read speech materials, and their response time to detect word-initial target phonemes was measured. Response were, overall, equally fast in each speech mode. However analysis of effects previously reported in phoneme detection studies revealed significant differences between speech modes. In read speech but not in spontaneous speech, later targets were detected more rapidly than earlier targets, and targets preceded by long words were detected more rapidly than targets preceded by short words. In contrast, in spontaneous speech but not in read speech, targets were detected more rapidly in accented than unaccented words and in strong than in weak syllables. An explanation for this pattern is offered in terms of characteristic prosodic differences between spontaneous and read speech. The results support claim from previous work that listeners pay great attention to prosodic information in the process of recognizing speech.
  • Norris, D., & Cutler, A. (1988). Speech recognition in French and English. MRC News, 39, 30-31.
  • Norris, D., & Cutler, A. (1988). The relative accessibility of phonemes and syllables. Perception and Psychophysics, 43, 541-550. Retrieved from http://www.psychonomic.org/search/view.cgi?id=8530.

    Abstract

    Previous research comparing detection times for syllables and for phonemes has consistently found that syllables are responded to faster than phonemes. This finding poses theoretical problems for strictly hierarchical models of speech recognition, in which smaller units should be able to be identified faster than larger units. However, inspection of the characteristics of previous experiments’stimuli reveals that subjects have been able to respond to syllables on the basis of only a partial analysis of the stimulus. In the present experiment, five groups of subjects listened to identical stimulus material. Phoneme and syllable monitoring under standard conditions was compared with monitoring under conditions in which near matches of target and stimulus occurred on no-response trials. In the latter case, when subjects were forced to analyze each stimulus fully, phonemes were detected faster than syllables.
  • Cutler, A. (1979). Beyond parsing and lexical look-up. In R. J. Wales, & E. C. T. Walker (Eds.), New approaches to language mechanisms: a collection of psycholinguistic studies (pp. 133-149). Amsterdam: North-Holland.
  • Cutler, A. (1979). Contemporary reaction to Rudolf Meringer’s speech error research. Historiograpia Linguistica, 6, 57-76.
  • Cutler, A., & Norris, D. (1979). Monitoring sentence comprehension. In W. E. Cooper, & E. C. T. Walker (Eds.), Sentence processing: Psycholinguistic studies presented to Merrill Garrett (pp. 113-134). Hillsdale: Erlbaum.
  • Swinney, D. A., & Cutler, A. (1979). The access and processing of idiomatic expressions. Journal of Verbal Learning an Verbal Behavior, 18, 523-534. doi:10.1016/S0022-5371(79)90284-6.

    Abstract

    Two experiments examined the nature of access, storage, and comprehension of idiomatic phrases. In both studies a Phrase Classification Task was utilized. In this, reaction times to determine whether or not word strings constituted acceptable English phrases were measured. Classification times were significantly faster to idiom than to matched control phrases. This effect held under conditions involving different categories of idioms, different transitional probabilities among words in the phrases, and different levels of awareness of the presence of idioms in the materials. The data support a Lexical Representation Hypothesis for the processing of idioms.

Share this page