Anne Cutler

Publications

Displaying 1 - 9 of 9
  • Burnham, D., Ambikairajah, E., Arciuli, J., Bennamoun, M., Best, C. T., Bird, S., Butcher, A. R., Cassidy, S., Chetty, G., Cox, F. M., Cutler, A., Dale, R., Epps, J. R., Fletcher, J. M., Goecke, R., Grayden, D. B., Hajek, J. T., Ingram, J. C., Ishihara, S., Kemp, N. and 10 moreBurnham, D., Ambikairajah, E., Arciuli, J., Bennamoun, M., Best, C. T., Bird, S., Butcher, A. R., Cassidy, S., Chetty, G., Cox, F. M., Cutler, A., Dale, R., Epps, J. R., Fletcher, J. M., Goecke, R., Grayden, D. B., Hajek, J. T., Ingram, J. C., Ishihara, S., Kemp, N., Kinoshita, Y., Kuratate, T., Lewis, T. W., Loakes, D. E., Onslow, M., Powers, D. M., Rose, P., Togneri, R., Tran, D., & Wagner, M. (2009). A blueprint for a comprehensive Australian English auditory-visual speech corpus. In M. Haugh, K. Burridge, J. Mulder, & P. Peters (Eds.), Selected proceedings of the 2008 HCSNet Workshop on Designing the Australian National Corpus (pp. 96-107). Somerville, MA: Cascadilla Proceedings Project.

    Abstract

    Large auditory-visual (AV) speech corpora are the grist of modern research in speech science, but no such corpus exists for Australian English. This is unfortunate, for speech science is the brains behind speech technology and applications such as text-to-speech (TTS) synthesis, automatic speech recognition (ASR), speaker recognition and forensic identification, talking heads, and hearing prostheses. Advances in these research areas in Australia require a large corpus of Australian English. Here the authors describe a blueprint for building the Big Australian Speech Corpus (the Big ASC), a corpus of over 1,100 speakers from urban and rural Australia, including speakers of non-indigenous, indigenous, ethnocultural, and disordered forms of Australian English, each of whom would be sampled on three occasions in a range of speech tasks designed by the researchers who would be using the corpus.
  • Cutler, A., Davis, C., & Kim, J. (2009). Non-automaticity of use of orthographic knowledge in phoneme evaluation. In Proceedings of the 10th Annual Conference of the International Speech Communication Association (Interspeech 2009) (pp. 380-383). Causal Productions Pty Ltd.

    Abstract

    Two phoneme goodness rating experiments addressed the role of orthographic knowledge in the evaluation of speech sounds. Ratings for the best tokens of /s/ were higher in words spelled with S (e.g., bless) than in words where /s/ was spelled with C (e.g., voice). This difference did not appear for analogous nonwords for which every lexical neighbour had either S or C spelling (pless, floice). Models of phonemic processing incorporating obligatory influence of lexical information in phonemic processing cannot explain this dissociation; the data are consistent with models in which phonemic decisions are not subject to necessary top-down lexical influence.
  • Cutler, A. (1994). How human speech recognition is affected by phonological diversity among languages. In R. Togneri (Ed.), Proceedings of the fifth Australian International Conference on Speech Science and Technology: Vol. 1 (pp. 285-288). Canberra: Australian Speech Science and Technology Association.

    Abstract

    Listeners process spoken language in ways which are adapted to the phonological structure of their native language. As a consequence, non-native speakers do not listen to a language in the same way as native speakers; moreover, listeners may use their native language listening procedures inappropriately with foreign input. With sufficient experience, however, it may be possible to inhibit this latter (counter-productive) behavior.
  • Cutler, A., & Young, D. (1994). Rhythmic structure of word blends in English. In Proceedings of the Third International Conference on Spoken Language Processing (pp. 1407-1410). Kobe: Acoustical Society of Japan.

    Abstract

    Word blends combine fragments from two words, either in speech errors or when a new word is created. Previous work has demonstrated that in Japanese, such blends preserve moraic structure; in English they do not. A similar effect of moraic structure is observed in perceptual research on segmentation of continuous speech in Japanese; English listeners, by contrast, exploit stress units in segmentation, suggesting that a general rhythmic constraint may underlie both findings. The present study examined whether mis parallel would also hold for word blends. In spontaneous English polysyllabic blends, the source words were significantly more likely to be split before a strong than before a weak (unstressed) syllable, i.e. to be split at a stress unit boundary. In an experiment in which listeners were asked to identify the source words of blends, significantly more correct detections resulted when splits had been made before strong syllables. Word blending, like speech segmentation, appears to be constrained by language rhythm.
  • Cutler, A., McQueen, J. M., Baayen, R. H., & Drexler, H. (1994). Words within words in a real-speech corpus. In R. Togneri (Ed.), Proceedings of the 5th Australian International Conference on Speech Science and Technology: Vol. 1 (pp. 362-367). Canberra: Australian Speech Science and Technology Association.

    Abstract

    In a 50,000-word corpus of spoken British English the occurrence of words embedded within other words is reported. Within-word embedding in this real speech sample is common, and analogous to the extent of embedding observed in the vocabulary. Imposition of a syllable boundary matching constraint reduces but by no means eliminates spurious embedding. Embedded words are most likely to overlap with the beginning of matrix words, and thus may pose serious problems for speech recognisers.
  • Norris, D., McQueen, J. M., & Cutler, A. (1994). Competition and segmentation in spoken word recognition. In Proceedings of the Third International Conference on Spoken Language Processing: Vol. 1 (pp. 401-404). Yokohama: PACIFICO.

    Abstract

    This paper describes recent experimental evidence which shows that models of spoken word recognition must incorporate both inhibition between competing lexical candidates and a sensitivity to metrical cues to lexical segmentation. A new version of the Shortlist [1][2] model incorporating the Metrical Segmentation Strategy [3] provides a detailed simulation of the data.
  • Cutler, A., & Butterfield, S. (1989). Natural speech cues to word segmentation under dif´Čücult listening conditions. In J. Tubach, & J. Mariani (Eds.), Proceedings of Eurospeech 89: European Conference on Speech Communication and Technology: Vol. 2 (pp. 372-375). Edinburgh: CEP Consultants.

    Abstract

    One of a listener's major tasks in understanding continuous speech is segmenting the speech signal into separate words. When listening conditions are difficult, speakers can help listeners by deliberately speaking more clearly. In three experiments, we examined how word boundaries are produced in deliberately clear speech. We found that speakers do indeed attempt to mark word boundaries; moreover, they differentiate between word boundaries in a way which suggests they are sensitive to listener needs. Application of heuristic segmentation strategies makes word boundaries before strong syllables easiest for listeners to perceive; but under difficult listening conditions speakers pay more attention to marking word boundaries before weak syllables, i.e. they mark those boundaries which are otherwise particularly hard to perceive.
  • Cutler, A. (1983). Semantics, syntax and sentence accent. In M. Van den Broecke, & A. Cohen (Eds.), Proceedings of the Tenth International Congress of Phonetic Sciences (pp. 85-91). Dordrecht: Foris.
  • Cutler, A. (1980). Productivity in word formation. In J. Kreiman, & A. E. Ojeda (Eds.), Papers from the Sixteenth Regional Meeting, Chicago Linguistic Society (pp. 45-51). Chicago, Ill.: CLS.

Share this page