Anne Cutler

Publications

Displaying 1 - 11 of 11
  • Burnham, D., Ambikairajah, E., Arciuli, J., Bennamoun, M., Best, C. T., Bird, S., Butcher, A. R., Cassidy, S., Chetty, G., Cox, F. M., Cutler, A., Dale, R., Epps, J. R., Fletcher, J. M., Goecke, R., Grayden, D. B., Hajek, J. T., Ingram, J. C., Ishihara, S., Kemp, N. and 10 moreBurnham, D., Ambikairajah, E., Arciuli, J., Bennamoun, M., Best, C. T., Bird, S., Butcher, A. R., Cassidy, S., Chetty, G., Cox, F. M., Cutler, A., Dale, R., Epps, J. R., Fletcher, J. M., Goecke, R., Grayden, D. B., Hajek, J. T., Ingram, J. C., Ishihara, S., Kemp, N., Kinoshita, Y., Kuratate, T., Lewis, T. W., Loakes, D. E., Onslow, M., Powers, D. M., Rose, P., Togneri, R., Tran, D., & Wagner, M. (2009). A blueprint for a comprehensive Australian English auditory-visual speech corpus. In M. Haugh, K. Burridge, J. Mulder, & P. Peters (Eds.), Selected proceedings of the 2008 HCSNet Workshop on Designing the Australian National Corpus (pp. 96-107). Somerville, MA: Cascadilla Proceedings Project.

    Abstract

    Large auditory-visual (AV) speech corpora are the grist of modern research in speech science, but no such corpus exists for Australian English. This is unfortunate, for speech science is the brains behind speech technology and applications such as text-to-speech (TTS) synthesis, automatic speech recognition (ASR), speaker recognition and forensic identification, talking heads, and hearing prostheses. Advances in these research areas in Australia require a large corpus of Australian English. Here the authors describe a blueprint for building the Big Australian Speech Corpus (the Big ASC), a corpus of over 1,100 speakers from urban and rural Australia, including speakers of non-indigenous, indigenous, ethnocultural, and disordered forms of Australian English, each of whom would be sampled on three occasions in a range of speech tasks designed by the researchers who would be using the corpus.
  • Cutler, A., Davis, C., & Kim, J. (2009). Non-automaticity of use of orthographic knowledge in phoneme evaluation. In Proceedings of the 10th Annual Conference of the International Speech Communication Association (Interspeech 2009) (pp. 380-383). Causal Productions Pty Ltd.

    Abstract

    Two phoneme goodness rating experiments addressed the role of orthographic knowledge in the evaluation of speech sounds. Ratings for the best tokens of /s/ were higher in words spelled with S (e.g., bless) than in words where /s/ was spelled with C (e.g., voice). This difference did not appear for analogous nonwords for which every lexical neighbour had either S or C spelling (pless, floice). Models of phonemic processing incorporating obligatory influence of lexical information in phonemic processing cannot explain this dissociation; the data are consistent with models in which phonemic decisions are not subject to necessary top-down lexical influence.
  • Cutler, A., Van Ooijen, B., & Norris, D. (1999). Vowels, consonants, and lexical activation. In J. Ohala, Y. Hasegawa, M. Ohala, D. Granville, & A. Bailey (Eds.), Proceedings of the Fourteenth International Congress of Phonetic Sciences: Vol. 3 (pp. 2053-2056). Berkeley: University of California.

    Abstract

    Two lexical decision studies examined the effects of single-phoneme mismatches on lexical activation in spoken-word recognition. One study was carried out in English, and involved spoken primes and visually presented lexical decision targets. The other study was carried out in Dutch, and primes and targets were both presented auditorily. Facilitation was found only for spoken targets preceded immediately by spoken primes; no facilitation occurred when targets were presented visually, or when intervening input occurred between prime and target. The effects of vowel mismatches and consonant mismatches were equivalent.
  • Shattuck-Hufnagel, S., & Cutler, A. (1999). The prosody of speech error corrections revisited. In J. Ohala, Y. Hasegawa, M. Ohala, D. Granville, & A. Bailey (Eds.), Proceedings of the Fourteenth International Congress of Phonetic Sciences: Vol. 2 (pp. 1483-1486). Berkely: University of California.

    Abstract

    A corpus of digitized speech errors is used to compare the prosody of correction patterns for word-level vs. sound-level errors. Results for both peak F0 and perceived prosodic markedness confirm that speakers are more likely to mark corrections of word-level errors than corrections of sound-level errors, and that errors ambiguous between word-level and soundlevel (such as boat for moat) show correction patterns like those for sound level errors. This finding increases the plausibility of the claim that word-sound-ambiguous errors arise at the same level of processing as sound errors that do not form words.
  • Van Ooijen, B., Cutler, A., & Berinetto, P. M. (1993). Click detection in Italian and English. In Eurospeech 93: Vol. 1 (pp. 681-684). Berlin: ESCA.

    Abstract

    We report four experiments in which English and Italian monolinguals detected clicks in continous speech in their native language. Two of the experiments used an off-line location task, and two used an on-line reaction time task. Despite there being large differences between English and Italian with respect to rhythmic characteristics, very similar response patterns were found for the two language groups. It is concluded that the process of click detection operates independently from language-specific differences in perceptual processing at the sublexical level.
  • Young, D., Altmann, G. T., Cutler, A., & Norris, D. (1993). Metrical structure and the perception of time-compressed speech. In Eurospeech 93: Vol. 2 (pp. 771-774).

    Abstract

    In the absence of explicitly marked cues to word boundaries, listeners tend to segment spoken English at the onset of strong syllables. This may suggest that under difficult listening conditions, speech should be easier to recognize where strong syllables are word-initial. We report two experiments in which listeners were presented with sentences which had been time-compressed to make listening difficult. The first study contrasted sentences in which all content words began with strong syllables with sentences in which all content words began with weak syllables. The intelligibility of the two groups of sentences did not differ significantly. Apparent rhythmic effects in the results prompted a second experiment; however, no significant effects of systematic rhythmic manipulation were observed. In both experiments, the strongest predictor of intelligibility was the rated plausibility of the sentences. We conclude that listeners' recognition responses to time-compressed speech may be strongly subject to experiential bias; effects of rhythmic structure are most likely to show up also as bias effects.
  • Cutler, A., & Fear, B. D. (1991). Categoricality in acceptability judgements for strong versus weak vowels. In J. Llisterri (Ed.), Proceedings of the ESCA Workshop on Phonetics and Phonology of Speaking Styles (pp. 18.1-18.5). Barcelona, Catalonia: Universitat Autonoma de Barcelona.

    Abstract

    A distinction between strong and weak vowels can be drawn on the basis of vowel quality, of stress, or of both factors. An experiment was conducted in which sets of contextually matched word-intial vowels ranging from clearly strong to clearly weak were cross-spliced, and the naturalness of the resulting words was rated by listeners. The ratings showed that in general cross-spliced words were only significantly less acceptable than unspliced words when schwa was not involved; this supports a categorical distinction based on vowel quality.
  • Cutler, A. (1991). Prosody in situations of communication: Salience and segmentation. In Proceedings of the Twelfth International Congress of Phonetic Sciences: Vol. 1 (pp. 264-270). Aix-en-Provence: Universit√© de Provence, Service des publications.

    Abstract

    Speakers and listeners have a shared goal: to communicate. The processes of speech perception and of speech production interact in many ways under the constraints of this communicative goal; such interaction is as characteristic of prosodic processing as of the processing of other aspects of linguistic structure. Two of the major uses of prosodic information in situations of communication are to encode salience and segmentation, and these themes unite the contributions to the symposium introduced by the present review.
  • Van Ooijen, B., Cutler, A., & Norris, D. (1991). Detection times for vowels versus consonants. In Eurospeech 91: Vol. 3 (pp. 1451-1454). Genova: Istituto Internazionale delle Comunicazioni.

    Abstract

    This paper reports two experiments with vowels and consonants as phoneme detection targets in real words. In the first experiment, two relatively distinct vowels were compared with two confusible stop consonants. Response times to the vowels were longer than to the consonants. Response times correlated negatively with target phoneme length. In the second, two relatively distinct vowels were compared with their corresponding semivowels. This time, the vowels were detected faster than the semivowels. We conclude that response time differences between vowels and stop consonants in this task may reflect differences between phoneme categories in the variability of tokens, both in the acoustic realisation of targets and in the' representation of targets by subjects.
  • Cutler, A. (1983). Semantics, syntax and sentence accent. In M. Van den Broecke, & A. Cohen (Eds.), Proceedings of the Tenth International Congress of Phonetic Sciences (pp. 85-91). Dordrecht: Foris.
  • Cutler, A. (1980). Productivity in word formation. In J. Kreiman, & A. E. Ojeda (Eds.), Papers from the Sixteenth Regional Meeting, Chicago Linguistic Society (pp. 45-51). Chicago, Ill.: CLS.

Share this page