Anne Cutler †

Publications

Displaying 1 - 51 of 51
  • Cutler, A., & Bruggeman, L. (2013). Vocabulary structure and spoken-word recognition: Evidence from French reveals the source of embedding asymmetry. In Proceedings of INTERSPEECH: 14th Annual Conference of the International Speech Communication Association (pp. 2812-2816).

    Abstract

    Vocabularies contain hundreds of thousands of words built from only a handful of phonemes, so that inevitably longer words tend to contain shorter ones. In many languages (but not all) such embedded words occur more often word-initially than word-finally, and this asymmetry, if present, has farreaching consequences for spoken-word recognition. Prior research had ascribed the asymmetry to suffixing or to effects of stress (in particular, final syllables containing the vowel schwa). Analyses of the standard French vocabulary here reveal an effect of suffixing, as predicted by this account, and further analyses of an artificial variety of French reveal that extensive final schwa has an independent and additive effect in promoting the embedding asymmetry.
  • Johnson, E. K., Lahey, M., Ernestus, M., & Cutler, A. (2013). A multimodal corpus of speech to infant and adult listeners. Journal of the Acoustical Society of America, 134, EL534-EL540. doi:10.1121/1.4828977.

    Abstract

    An audio and video corpus of speech addressed to 28 11-month-olds is described. The corpus allows comparisons between adult speech directed towards infants, familiar adults and unfamiliar adult addressees, as well as of caregivers’ word teaching strategies across word classes. Summary data show that infant-directed speech differed more from speech to unfamiliar than familiar adults; that word teaching strategies for nominals versus verbs and adjectives differed; that mothers mostly addressed infants with multi-word utterances; and that infants’ vocabulary size was unrelated to speech rate, but correlated positively with predominance of continuous caregiver speech (not of isolated words) in the input.
  • Kooijman, V., Junge, C., Johnson, E. K., Hagoort, P., & Cutler, A. (2013). Predictive brain signals of linguistic development. Frontiers in Psychology, 4: 25. doi:10.3389/fpsyg.2013.00025.

    Abstract

    The ability to extract word forms from continuous speech is a prerequisite for constructing a vocabulary and emerges in the first year of life. Electrophysiological (ERP) studies of speech segmentation by 9- to 12-month-old listeners in several languages have found a left-localized negativity linked to word onset as a marker of word detection. We report an ERP study showing significant evidence of speech segmentation in Dutch-learning 7-month-olds. In contrast to the left-localized negative effect reported with older infants, the observed overall mean effect had a positive polarity. Inspection of individual results revealed two participant sub-groups: a majority showing a positive-going response, and a minority showing the left negativity observed in older age groups. We retested participants at age three, on vocabulary comprehension and word and sentence production. On every test, children who at 7 months had shown the negativity associated with segmentation of words from speech outperformed those who had produced positive-going brain responses to the same input. The earlier that infants show the left-localized brain responses typically indicating detection of words in speech, the better their early childhood language skills.
  • Otake, T., & Cutler, A. (2013). Lexical selection in action: Evidence from spontaneous punning. Language and Speech, 56(4), 555-573. doi:10.1177/0023830913478933.

    Abstract

    Analysis of a corpus of spontaneously produced Japanese puns from a single speaker over a two-year period provides a view of how a punster selects a source word for a pun and transforms it into another word for humorous effect. The pun-making process is driven by a principle of similarity: the source word should as far as possible be preserved (in terms of segmental sequence) in the pun. This renders homophones (English example: band–banned) the pun type of choice, with part–whole relationships of embedding (cap–capture), and mutations of the source word (peas–bees) rather less favored. Similarity also governs mutations in that single-phoneme substitutions outnumber larger changes, and in phoneme substitutions, subphonemic features tend to be preserved. The process of spontaneous punning thus applies, on line, the same similarity criteria as govern explicit similarity judgments and offline decisions about pun success (e.g., for inclusion in published collections). Finally, the process of spoken-word recognition is word-play-friendly in that it involves multiple word-form activation and competition, which, coupled with known techniques in use in difficult listening conditions, enables listeners to generate most pun types as offshoots of normal listening procedures.
  • Van der Zande, P., Jesse, A., & Cutler, A. (2013). Lexically guided retuning of visual phonetic categories. Journal of the Acoustical Society of America, 134, 562-571. doi:10.1121/1.4807814.

    Abstract

    Listeners retune the boundaries between phonetic categories to adjust to individual speakers' productions. Lexical information, for example, indicates what an unusual sound is supposed to be, and boundary retuning then enables the speaker's sound to be included in the appropriate auditory phonetic category. In this study, it was investigated whether lexical knowledge that is known to guide the retuning of auditory phonetic categories, can also retune visual phonetic categories. In Experiment 1, exposure to a visual idiosyncrasy in ambiguous audiovisually presented target words in a lexical decision task indeed resulted in retuning of the visual category boundary based on the disambiguating lexical context. In Experiment 2 it was tested whether lexical information retunes visual categories directly, or indirectly through the generalization from retuned auditory phonetic categories. Here, participants were exposed to auditory-only versions of the same ambiguous target words as in Experiment 1. Auditory phonetic categories were retuned by lexical knowledge, but no shifts were observed for the visual phonetic categories. Lexical knowledge can therefore guide retuning of visual phonetic categories, but lexically guided retuning of auditory phonetic categories is not generalized to visual categories. Rather, listeners adjust auditory and visual phonetic categories to talker idiosyncrasies separately.
  • Akker, E., & Cutler, A. (2003). Prosodic cues to semantic structure in native and nonnative listening. Bilingualism: Language and Cognition, 6(2), 81-96. doi:10.1017/S1366728903001056.

    Abstract

    Listeners efficiently exploit sentence prosody to direct attention to words bearing sentence accent. This effect has been explained as a search for focus, furthering rapid apprehension of semantic structure. A first experiment supported this explanation: English listeners detected phoneme targets in sentences more rapidly when the target-bearing words were in accented position or in focussed position, but the two effects interacted, consistent with the claim that the effects serve a common cause. In a second experiment a similar asymmetry was observed with Dutch listeners and Dutch sentences. In a third and a fourth experiment, proficient Dutch users of English heard English sentences; here, however, the two effects did not interact. The results suggest that less efficient mapping of prosody to semantics may be one way in which nonnative listening fails to equal native listening.
  • Blumstein, S., & Cutler, A. (2003). Speech perception: Phonetic aspects. In W. Frawley (Ed.), International encyclopaedia of linguistics (pp. 151-154). Oxford: Oxford University Press.
  • Cutler, A., & Butterfield, S. (2003). Rhythmic cues to speech segmentation: Evidence from juncture misperception. In J. Field (Ed.), Psycholinguistics: A resource book for students. (pp. 185-189). London: Routledge.
  • Cutler, A., Murty, L., & Otake, T. (2003). Rhythmic similarity effects in non-native listening? In Proceedings of the 15th International Congress of Phonetic Sciences (PCPhS 2003) (pp. 329-332). Adelaide: Causal Productions.

    Abstract

    Listeners rely on native-language rhythm in segmenting speech; in different languages, stress-, syllable- or mora-based rhythm is exploited. This language-specificity affects listening to non- native speech, if native procedures are applied even though inefficient for the non-native language. However, speakers of two languages with similar rhythmic interpretation should segment their own and the other language similarly. This was observed to date only for related languages (English-Dutch; French-Spanish). We now report experiments in which Japanese listeners heard Telugu, a Dravidian language unrelated to Japanese, and Telugu listeners heard Japanese. In both cases detection of target sequences in speech was harder when target boundaries mismatched mora boundaries, exactly the pattern that Japanese listeners earlier exhibited with Japanese and other languages. These results suggest that Telugu and Japanese listeners use similar procedures in segmenting speech, and support the idea that languages fall into rhythmic classes, with aspects of phonological structure affecting listeners' speech segmentation.
  • Cutler, A. (2003). The perception of speech: Psycholinguistic aspects. In W. Frawley (Ed.), International encyclopaedia of linguistics (pp. 154-157). Oxford: Oxford University Press.
  • Johnson, E. K., Jusczyk, P. W., Cutler, A., & Norris, D. (2003). Lexical viability constraints on speech segmentation by infants. Cognitive Psychology, 46(1), 65-97. doi:10.1016/S0010-0285(02)00507-8.

    Abstract

    The Possible Word Constraint limits the number of lexical candidates considered in speech recognition by stipulating that input should be parsed into a string of lexically viable chunks. For instance, an isolated single consonant is not a feasible word candidate. Any segmentation containing such a chunk is disfavored. Five experiments using the head-turn preference procedure investigated whether, like adults, 12-month-olds observe this constraint in word recognition. In Experiments 1 and 2, infants were familiarized with target words (e.g., rush), then tested on lists of nonsense items containing these words in “possible” (e.g., “niprush” [nip + rush]) or “impossible” positions (e.g., “prush” [p + rush]). The infants listened significantly longer to targets in “possible” versus “impossible” contexts when targets occurred at the end of nonsense items (rush in “prush”), but not when they occurred at the beginning (tan in “tance”). In Experiments 3 and 4, 12-month-olds were similarly familiarized with target words, but test items were real words in sentential contexts (win in “wind” versus “window”). The infants listened significantly longer to words in the “possible” condition regardless of target location. Experiment 5 with targets at the beginning of isolated real words (e.g., win in “wind”) replicated Experiment 2 in showing no evidence of viability effects in beginning position. Taken together, the findings suggest that, in situations in which 12-month-olds are required to rely on their word segmentation abilities, they give evidence of observing lexical viability constraints in the way that they parse fluent speech.
  • McQueen, J. M., Dahan, D., & Cutler, A. (2003). Continuity and gradedness in speech processing. In N. O. Schiller, & A. S. Meyer (Eds.), Phonetics and phonology in language comprehension and production: Differences and similarities (pp. 39-78). Berlin: Mouton de Gruyter.
  • McQueen, J. M., Cutler, A., & Norris, D. (2003). Flow of information in the spoken word recognition system. Speech Communication, 41(1), 257-270. doi:10.1016/S0167-6393(02)00108-5.

    Abstract

    Spoken word recognition consists of two major component processes. First, at the prelexical stage, an abstract description of the utterance is generated from the information in the speech signal. Second, at the lexical stage, this description is used to activate all the words stored in the mental lexicon which match the input. These multiple candidate words then compete with each other. We review evidence which suggests that positive (match) and negative (mismatch) information of both a segmental and a suprasegmental nature is used to constrain this activation and competition process. We then ask whether, in addition to the necessary influence of the prelexical stage on the lexical stage, there is also feedback from the lexicon to the prelexical level. In two phonetic categorization experiments, Dutch listeners were asked to label both syllable-initial and syllable-final ambiguous fricatives (e.g., sounds ranging from [f] to [s]) in the word–nonword series maf–mas, and the nonword–word series jaf–jas. They tended to label the sounds in a lexically consistent manner (i.e., consistent with the word endpoints of the series). These lexical effects became smaller in listeners’ slower responses, even when the listeners were put under pressure to respond as fast as possible. Our results challenge models of spoken word recognition in which feedback modulates the prelexical analysis of the component sounds of a word whenever that word is heard
  • Norris, D., McQueen, J. M., & Cutler, A. (2003). Perceptual learning in speech. Cognitive Psychology, 47(2), 204-238. doi:10.1016/S0010-0285(03)00006-9.

    Abstract

    This study demonstrates that listeners use lexical knowledge in perceptual learning of speech sounds. Dutch listeners first made lexical decisions on Dutch words and nonwords. The final fricative of 20 critical words had been replaced by an ambiguous sound, between [f] and [s]. One group of listeners heard ambiguous [f]-final words (e.g., [WI tlo?], from witlof, chicory) and unambiguous [s]-final words (e.g., naaldbos, pine forest). Another group heard the reverse (e.g., ambiguous [na:ldbo?], unambiguous witlof). Listeners who had heard [?] in [f]-final words were subsequently more likely to categorize ambiguous sounds on an [f]–[s] continuum as [f] than those who heard [?] in [s]-final words. Control conditions ruled out alternative explanations based on selective adaptation and contrast. Lexical information can thus be used to train categorization of speech. This use of lexical information differs from the on-line lexical feedback embodied in interactive models of speech perception. In contrast to on-line feedback, lexical feedback for learning is of benefit to spoken word recognition (e.g., in adapting to a newly encountered dialect).
  • Otake, T., & Cutler, A. (2003). Evidence against "units of perception". In S. Shohov (Ed.), Advances in psychology research (pp. 57-82). Hauppauge, NY: Nova Science.
  • Shi, R., Werker, J., & Cutler, A. (2003). Function words in early speech perception. In Proceedings of the 15th International Congress of Phonetic Sciences (pp. 3009-3012).

    Abstract

    Three experiments examined whether infants recognise functors in phrases, and whether their representations of functors are phonetically well specified. Eight- and 13- month-old English infants heard monosyllabic lexical words preceded by real functors (e.g., the, his) versus nonsense functors (e.g., kuh); the latter were minimally modified segmentally (but not prosodically) from real functors. Lexical words were constant across conditions; thus recognition of functors would appear as longer listening time to sequences with real functors. Eightmonth- olds' listening times to sequences with real versus nonsense functors did not significantly differ, suggesting that they did not recognise real functors, or functor representations lacked phonetic specification. However, 13-month-olds listened significantly longer to sequences with real functors. Thus, somewhere between 8 and 13 months of age infants learn familiar functors and represent them with segmental detail. We propose that accumulated frequency of functors in input in general passes a critical threshold during this time.
  • Smits, R., Warner, N., McQueen, J. M., & Cutler, A. (2003). Unfolding of phonetic information over time: A database of Dutch diphone perception. Journal of the Acoustical Society of America, 113(1), 563-574. doi:10.1121/1.1525287.

    Abstract

    We present the results of a large-scale study on speech perception, assessing the number and type of perceptual hypotheses which listeners entertain about possible phoneme sequences in their language. Dutch listeners were asked to identify gated fragments of all 1179 diphones of Dutch, providing a total of 488 520 phoneme categorizations. The results manifest orderly uptake of acoustic information in the signal. Differences across phonemes in the rate at which fully correct recognition was achieved arose as a result of whether or not potential confusions could occur with other phonemes of the language ~long with short vowels, affricates with their initial components, etc.!. These data can be used to improve models of how acoustic phonetic information is mapped onto the mental lexicon during speech comprehension.
  • Spinelli, E., McQueen, J. M., & Cutler, A. (2003). Processing resyllabified words in French. Journal of Memory and Language, 48(2), 233-254. doi:10.1016/S0749-596X(02)00513-2.
  • Weber, A., & Cutler, A. (2003). Perceptual similarity co-existing with lexical dissimilarity [Abstract]. Abstracts of the 146th Meeting of the Acoustical Society of America. Journal of the Acoustical Society of America, 114(4 Pt. 2), 2422. doi:10.1121/1.1601094.

    Abstract

    The extreme case of perceptual similarity is indiscriminability, as when two second‐language phonemes map to a single native category. An example is the English had‐head vowel contrast for Dutch listeners; Dutch has just one such central vowel, transcribed [E]. We examine whether the failure to discriminate in phonetic categorization implies indiscriminability in other—e.g., lexical—processing. Eyetracking experiments show that Dutch‐native listeners instructed in English to ‘‘click on the panda’’ look (significantly more than native listeners) at a pictured pencil, suggesting that pan‐ activates their lexical representation of pencil. The reverse, however, is not the case: ‘‘click on the pencil’’ does not induce looks to a panda, suggesting that pen‐ does not activate panda in the lexicon. Thus prelexically undiscriminated second‐language distinctions can nevertheless be maintained in stored lexical representations. The problem of mapping a resulting unitary input to two distinct categories in lexical representations is solved by allowing input to activate only one second‐language category. For Dutch listeners to English, this is English [E], as a result of which no vowels in the signal ever map to words containing [ae]. We suggest that the choice of category is here motivated by a more abstract, phonemic, metric of similarity.
  • Butterfield, S., & Cutler, A. (1990). Intonational cues to word boundaries in clear speech? In Proceedings of the Institute of Acoustics: Vol 12, part 10 (pp. 87-94). St. Albans, Herts.: Institute of Acoustics.
  • Cutler, A., & Butterfield, S. (1990). Durational cues to word boundaries in clear speech. Speech Communication, 9, 485-495.

    Abstract

    One of a listener’s major tasks in understanding continuous speech in segmenting the speech signal into separate words. When listening conditions are difficult, speakers can help listeners by deliberately clear speech. We found that speakers do indeed attempt to makr word boundaries; moreover, they differentiate between word boundaries in a way which suggest they are sensitive to listener needs. Application of heuristic segmentation strategies makes word boundaries before strong syllables easiest for listeners to perceive; but under difficult listening conditions speakers pay more attention to marking word boundaries before weak syllables, i.e. they mark those boundaries which are otherwise particularly hard to perceive.
  • Cutler, A., McQueen, J. M., & Robinson, K. (1990). Elizabeth and John: Sound patterns of men’s and women’s names. Journal of Linguistics, 26, 471-482. doi:10.1017/S0022226700014754.
  • Cutler, A. (1990). From performance to phonology: Comments on Beckman and Edwards's paper. In J. Kingston, & M. Beckman (Eds.), Papers in laboratory phonology I: Between the grammar and physics of speech (pp. 208-214). Cambridge: Cambridge University Press.
  • Cutler, A. (1990). Exploiting prosodic probabilities in speech segmentation. In G. Altmann (Ed.), Cognitive models of speech processing: Psycholinguistic and computational perspectives (pp. 105-121). Cambridge, MA: MIT Press.
  • Cutler, A., & Scott, D. R. (1990). Speaker sex and perceived apportionment of talk. Applied Psycholinguistics, 11, 253-272. doi:10.1017/S0142716400008882.

    Abstract

    It is a widely held belief that women talk more than men; but experimental evidence has suggested that this belief is mistaken. The present study investigated whether listener bias contributes to this mistake. Dialogues were recorded in mixed-sex and single-sex versions, and male and female listeners judged the proportions of talk contributed to the dialogues by each participant. Female contributions to mixed-sex dialogues were rated as greater than male contributions by both male and female listeners. Female contributions were more likely to be overestimated when they were speaking a dialogue part perceived as probably female than when they were speaking a dialogue part perceived as probably male. It is suggested that the misestimates are due to a complex of factors that may involve both perceptual effects such as misjudgment of rates of speech and sociological effects such as attitudes to social roles and perception of power relations.
  • Cutler, A. (1990). Syllabic lengthening as a word boundary cue. In R. Seidl (Ed.), Proceedings of the 3rd Australian International Conference on Speech Science and Technology (pp. 324-328). Canberra: Australian Speech Science and Technology Association.

    Abstract

    Bisyllabic sequences which could be interpreted as one word or two were produced in sentence contexts by a trained speaker, and syllabic durations measured. Listeners judged whether the bisyllables, excised from context, were one word or two. The proportion of two-word choices correlated positively with measured duration, but only for bisyllables stressed on the second syllable. The results may suggest a limit for listener sensitivity to syllabic lengthening as a word boundary cue.
  • Cutler, A., Norris, D., & Van Ooijen, B. (1990). Vowels as phoneme detection targets. In Proceedings of the First International Conference on Spoken Language Processing (pp. 581-584).

    Abstract

    Phoneme detection is a psycholinguistic task in which listeners' response time to detect the presence of a pre-specified phoneme target is measured. Typically, detection tasks have used consonant targets. This paper reports two experiments in which subjects responded to vowels as phoneme detection targets. In the first experiment, targets occurred in real words, in the second in nonsense words. Response times were long by comparison with consonantal targets. Targets in initial syllables were responded to much more slowly than targets in second syllables. Strong vowels were responded to faster than reduced vowels in real words but not in nonwords. These results suggest that the process of phoneme detection produces different results for vowels and for consonants. We discuss possible explanations for this difference, in particular the possibility of language-specificity.
  • Mehler, J., & Cutler, A. (1990). Psycholinguistic implications of phonological diversity among languages. In M. Piattelli-Palmerini (Ed.), Cognitive science in Europe: Issues and trends (pp. 119-134). Rome: Golem.
  • Cutler, A. (1989). Auditory lexical access: Where do we start? In W. Marslen-Wilson (Ed.), Lexical representation and process (pp. 342-356). Cambridge, MA: MIT Press.

    Abstract

    The lexicon, considered as a component of the process of recognizing speech, is a device that accepts a sound image as input and outputs meaning. Lexical access is the process of formulating an appropriate input and mapping it onto an entry in the lexicon's store of sound images matched with their meanings. This chapter addresses the problems of auditory lexical access from continuous speech. The central argument to be proposed is that utterance prosody plays a crucial role in the access process. Continuous listening faces problems that are not present in visual recognition (reading) or in noncontinuous recognition (understanding isolated words). Aspects of utterance prosody offer a solution to these particular problems.
  • Cutler, A., Howard, D., & Patterson, K. E. (1989). Misplaced stress on prosody: A reply to Black and Byng. Cognitive Neuropsychology, 6, 67-83.

    Abstract

    The recent claim by Black and Byng (1986) that lexical access in reading is subject to prosodic constraints is examined and found to be unsupported. The evidence from impaired reading which Black and Byng report is based on poorly controlled stimulus materials and is inadequately analysed and reported. An alternative explanation of their findings is proposed, and new data are reported for which this alternative explanation can account but their model cannot. Finally, their proposal is shown to be theoretically unmotivated and in conflict with evidence from normal reading.
  • Cutler, A., & Butterfield, S. (1989). Natural speech cues to word segmentation under difficult listening conditions. In J. Tubach, & J. Mariani (Eds.), Proceedings of Eurospeech 89: European Conference on Speech Communication and Technology: Vol. 2 (pp. 372-375). Edinburgh: CEP Consultants.

    Abstract

    One of a listener's major tasks in understanding continuous speech is segmenting the speech signal into separate words. When listening conditions are difficult, speakers can help listeners by deliberately speaking more clearly. In three experiments, we examined how word boundaries are produced in deliberately clear speech. We found that speakers do indeed attempt to mark word boundaries; moreover, they differentiate between word boundaries in a way which suggests they are sensitive to listener needs. Application of heuristic segmentation strategies makes word boundaries before strong syllables easiest for listeners to perceive; but under difficult listening conditions speakers pay more attention to marking word boundaries before weak syllables, i.e. they mark those boundaries which are otherwise particularly hard to perceive.
  • Cutler, A. (1989). Straw modules [Commentary/Massaro: Speech perception]. Behavioral and Brain Sciences, 12, 760-762.
  • Cutler, A. (1989). The new Victorians. New Scientist, (1663), 66.
  • Patterson, R. D., & Cutler, A. (1989). Auditory preprocessing and recognition of speech. In A. Baddeley, & N. Bernsen (Eds.), Research directions in cognitive science: A european perspective: Vol. 1. Cognitive psychology (pp. 23-60). London: Erlbaum.
  • Smith, M. R., Cutler, A., Butterfield, S., & Nimmo-Smith, I. (1989). The perception of rhythm and word boundaries in noise-masked speech. Journal of Speech and Hearing Research, 32, 912-920.

    Abstract

    The present experiment tested the suggestion that human listeners may exploit durational information in speech to parse continuous utterances into words. Listeners were presented with six-syllable unpredictable utterances under noise-masking, and were required to judge between alternative word strings as to which best matched the rhythm of the masked utterances. For each utterance there were four alternative strings: (a) an exact rhythmic and word boundary match, (b) a rhythmic mismatch, and (c) two utterances with the same rhythm as the masked utterance, but different word boundary locations. Listeners were clearly able to perceive the rhythm of the masked utterances: The rhythmic mismatch was chosen significantly less often than any other alternative. Within the three rhythmically matched alternatives, the exact match was chosen significantly more often than either word boundary mismatch. Thus, listeners both perceived speech rhythm and used durational cues effectively to locate the position of word boundaries.
  • Butterfield, S., & Cutler, A. (1988). Segmentation errors by human listeners: Evidence for a prosodic segmentation strategy. In W. Ainsworth, & J. Holmes (Eds.), Proceedings of SPEECH ’88: Seventh Symposium of the Federation of Acoustic Societies of Europe: Vol. 3 (pp. 827-833). Edinburgh: Institute of Acoustics.
  • Cutler, A., Mehler, J., Norris, D., & Segui, J. (1988). Limits on bilingualism [Letters to Nature]. Nature, 340, 229-230. doi:10.1038/340229a0.

    Abstract

    SPEECH, in any language, is continuous; speakers provide few reliable cues to the boundaries of words, phrases, or other meaningful units. To understand speech, listeners must divide the continuous speech stream into portions that correspond to such units. This segmentation process is so basic to human language comprehension that psycholinguists long assumed that all speakers would do it in the same way. In previous research1,2, however, we reported that segmentation routines can be language-specific: speakers of French process spoken words syllable by syllable, but speakers of English do not. French has relatively clear syllable boundaries and syllable-based timing patterns, whereas English has relatively unclear syllable boundaries and stress-based timing; thus syllabic segmentation would work more efficiently in the comprehension of French than in the comprehension of English. Our present study suggests that at this level of language processing, there are limits to bilingualism: a bilingual speaker has one and only one basic language.
  • Cutler, A. (1988). The perfect speech error. In L. Hyman, & C. Li (Eds.), Language, speech and mind: Studies in honor of Victoria A. Fromkin (pp. 209-223). London: Croom Helm.
  • Cutler, A., & Norris, D. (1988). The role of strong syllables in segmentation for lexical access. Journal of Experimental Psychology: Human Perception and Performance, 14, 113-121. doi:10.1037/0096-1523.14.1.113.

    Abstract

    A model of speech segmentation in a stress language is proposed, according to which the occurrence of a strong syllable triggers segmentation of the speech signal, whereas occurrence of a weak syllable does not trigger segmentation. We report experiments in which listeners detected words embedded in nonsense bisyllables more slowly when the bisyllable had two strong syllables than when it had a strong and a weak syllable; mint was detected more slowly in mintayve than in mintesh. According to our proposed model, this result is an effect of segmentation: When the second syllable is strong, it is segmented from the first syllable, and successful detection of the embedded word therefore requires assembly of speech material across a segmentation position. Speech recognition models involving phonemic or syllabic recoding, or based on strictly left-to-right processes, do not predict this result. It is argued that segmentation at strong syllables in continuous speech recognition serves the purpose of detecting the most efficient locations at which to initiate lexical access. (C) 1988 by the American Psychological Association
  • Hawkins, J. A., & Cutler, A. (1988). Psycholinguistic factors in morphological asymmetry. In J. A. Hawkins (Ed.), Explaining language universals (pp. 280-317). Oxford: Blackwell.
  • Henderson, L., Coltheart, M., Cutler, A., & Vincent, N. (1988). Preface. Linguistics, 26(4), 519-520. doi:10.1515/ling.1988.26.4.519.
  • Mehta, G., & Cutler, A. (1988). Detection of target phonemes in spontaneous and read speech. Language and Speech, 31, 135-156.

    Abstract

    Although spontaneous speech occurs more frequently in most listeners’ experience than read speech, laboratory studies of human speech recognition typically use carefully controlled materials read from a script. The phonological and prosodic characteristics of spontaneous and read speech differ considerably, however, which suggests that laboratory results may not generalize to the recognition of spontaneous and read speech materials, and their response time to detect word-initial target phonemes was measured. Response were, overall, equally fast in each speech mode. However analysis of effects previously reported in phoneme detection studies revealed significant differences between speech modes. In read speech but not in spontaneous speech, later targets were detected more rapidly than earlier targets, and targets preceded by long words were detected more rapidly than targets preceded by short words. In contrast, in spontaneous speech but not in read speech, targets were detected more rapidly in accented than unaccented words and in strong than in weak syllables. An explanation for this pattern is offered in terms of characteristic prosodic differences between spontaneous and read speech. The results support claim from previous work that listeners pay great attention to prosodic information in the process of recognizing speech.
  • Norris, D., & Cutler, A. (1988). Speech recognition in French and English. MRC News, 39, 30-31.
  • Norris, D., & Cutler, A. (1988). The relative accessibility of phonemes and syllables. Perception and Psychophysics, 43, 541-550. Retrieved from http://www.psychonomic.org/search/view.cgi?id=8530.

    Abstract

    Previous research comparing detection times for syllables and for phonemes has consistently found that syllables are responded to faster than phonemes. This finding poses theoretical problems for strictly hierarchical models of speech recognition, in which smaller units should be able to be identified faster than larger units. However, inspection of the characteristics of previous experiments’stimuli reveals that subjects have been able to respond to syllables on the basis of only a partial analysis of the stimulus. In the present experiment, five groups of subjects listened to identical stimulus material. Phoneme and syllable monitoring under standard conditions was compared with monitoring under conditions in which near matches of target and stimulus occurred on no-response trials. In the latter case, when subjects were forced to analyze each stimulus fully, phonemes were detected faster than syllables.
  • Cutler, A. (1981). Degrees of transparency in word formation. Canadian Journal of Linguistics, 26, 73-77.
  • Cutler, A. (1981). Making up materials is a confounded nuisance, or: Will we able to run any psycholinguistic experiments at all in 1990? Cognition, 10, 65-70. doi:10.1016/0010-0277(81)90026-3.
  • Cutler, A., & Darwin, C. J. (1981). Phoneme-monitoring reaction time and preceding prosody: Effects of stop closure duration and of fundamental frequency. Perception and Psychophysics, 29, 217-224. Retrieved from http://www.psychonomic.org/search/view.cgi?id=12660.

    Abstract

    In an earlier study, it was shown that listeners can use prosodic cues that predict where sentence stress will fall; phoneme-monitoring RTs are faster when the preceding prosody indicates that the word bearing the target will be stressed. Two experiments which further investigate this effect are described. In the first, it is shown that the duration of the closure preceding the release of the target stop consonant burst does not affect the RT advantage for stressed words. In the second, it is shown that fundamental frequency variation is not a necessary component of the prosodic variation that produces the predicted-stress effect. It is argued that sentence processing involves a very flexible use of prosodic information.
  • Cutler, A. (1981). The cognitive reality of suprasegmental phonology. In T. Myers, J. Laver, & J. Anderson (Eds.), The cognitive representation of speech (pp. 399-400). Amsterdam: North-Holland.
  • Cutler, A. (1981). The reliability of speech error data. Linguistics, 19, 561-582.
  • Fodor, J. A., & Cutler, A. (1981). Semantic focus and sentence comprehension. Cognition, 7, 49-59. doi:10.1016/0010-0277(79)90010-6.

    Abstract

    Reaction time to detect a phoneme target in a sentence was found to be faster when the word in which the target occurred formed part of the semantic focus of the sentence. Focus was determined by asking a question before the sentence; that part of the sentence which comprised the answer to the sentence was assumed to be focussed. This procedure made it possible to vary position offocus within the sentence while holding all acoustic aspects of the sentence itself constant. It is argued that sentence understanding is facilitated by rapid identification of focussed information. Since focussed words are usually accented, it is further argued that the active search for accented words demonstrated in previous research should be interpreted as a search for semantic focus.
  • Garnham, A., Shillcock, R. C., Brown, G. D. A., Mill, A. I. D., & Cutler, A. (1981). Slips of the tongue in the London-Lund corpus of spontaneous conversation. Linguistics, 19, 805-817.

Share this page