Anne Cutler †

Publications

Displaying 1 - 54 of 54
  • Cutler, A., & Jesse, A. (2021). Word stress in speech perception. In J. S. Pardo, L. C. Nygaard, & D. B. Pisoni (Eds.), The handbook of speech perception (2nd ed., pp. 239-265). Chichester: Wiley.
  • Cutler, A., Aslin, R. N., Gervain, J., & Nespor, M. (Eds.). (2021). Special issue in honor of Jacques Mehler, Cognition's founding editor [Special Issue]. Cognition, 213.
  • Cutler, A., Aslin, R. N., Gervain, J., & Nespor, M. (2021). Special issue in honor of Jacques Mehler, Cognition's founding editor [preface]. Cognition, 213: 104786. doi:10.1016/j.cognition.2021.104786.
  • Kember, H., Choi, J., Yu, J., & Cutler, A. (2021). The processing of linguistic prominence. Language and Speech, 64(2), 413-436. doi:10.1177/0023830919880217.

    Abstract

    Prominence, the expression of informational weight within utterances, can be signaled by
    prosodic highlighting (head-prominence, as in English) or by position (as in Korean edge-prominence).
    Prominence confers processing advantages, even if conveyed only by discourse manipulations. Here
    we compared processing of prominence in English and Korean, using a task that indexes processing
    success, namely recognition memory. In each language, participants’ memory was tested for target
    words heard in sentences in which they were prominent due to prosody, position, both or neither.
    Prominence produced recall advantage, but the relative effects differed across language. For Korean
    listeners the positional advantage was greater, but for English listeners prosodic and syntactic
    prominence had equivalent and additive effects. In a further experiment semantic and phonological
    foils tested depth of processing of the recall targets. Both foil types were correctly rejected,
    suggesting that semantic processing had not reached the level at which word form was no longer
    available. Together the results suggest that prominence processing is primarily driven by universal
    effects of information structure; but language-specific differences in frequency of experience prompt
    different relative advantages of prominence signal types. Processing efficiency increases in each case,
    however, creating more accurate and more rapidly contactable memory representations.
  • Norris, D., & Cutler, A. (2021). More why, less how: What we need from models of cognition. Cognition, 213: 104688. doi:10.1016/j.cognition.2021.104688.

    Abstract

    Science regularly experiences periods in which simply describing the world is prioritised over attempting to explain it. Cognition, this journal, came into being some 45 years ago as an attempt to lay one such period to rest; without doubt, it has helped create the current cognitive science climate in which theory is decidedly welcome. Here we summarise the reasons why a theoretical approach is imperative in our field, and call attention to some potentially counter-productive trends in which cognitive models are concerned too exclusively with how processes work at the expense of why the processes exist in the first place and thus what the goal of modelling them must be.
  • Zhou, W., Broersma, M., & Cutler, A. (2021). Asymmetric memory for birth language perception versus production in young international adoptees. Cognition, 213: 104788. doi:10.1016/j.cognition.2021.104788.

    Abstract

    Adults who as children were adopted into a different linguistic community retain knowledge of their birth language. The possession (without awareness) of such knowledge is known to facilitate the (re)learning of birth-language speech patterns; this perceptual learning predicts such adults' production success as well, indicating that the retained linguistic knowledge is abstract in nature. Adoptees' acquisition of their adopted language is fast and complete; birth-language mastery disappears rapidly, although this latter process has been little studied. Here, 46 international adoptees from China aged four to 10 years, with Dutch as their new language, plus 47 matched non-adopted Dutch-native controls and 40 matched non-adopted Chinese controls, undertook across a two-week period 10 blocks of training in perceptually identifying Chinese speech contrasts (one segmental, one tonal) which were unlike any Dutch contrasts. Chinese controls easily accomplished all these tasks. The same participants also provided speech production data in an imitation task. In perception, adoptees and Dutch controls scored equivalently poorly at the outset of training; with training, the adoptees significantly improved while the Dutch controls did not. In production, adoptees' imitations both before and after training could be better identified, and received higher goodness ratings, than those of Dutch controls. The perception results confirm that birth-language knowledge is stored and can facilitate re-learning in post-adoption childhood; the production results suggest that although processing of phonological category detail appears to depend on access to the stored knowledge, general articulatory dimensions can at this age also still be remembered, and may facilitate spoken imitation.

    Additional information

    stimulus materials
  • Burchfield, L. A., Luk, S.-.-H.-K., Antoniou, M., & Cutler, A. (2017). Lexically guided perceptual learning in Mandarin Chinese. In Proceedings of Interspeech 2017 (pp. 576-580). doi:10.21437/Interspeech.2017-618.

    Abstract

    Lexically guided perceptual learni ng refers to the use of lexical knowledge to retune sp eech categories and thereby adapt to a novel talker’s pronunciation. This adaptation has been extensively documented, but primarily for segmental-based learning in English and Dutch. In languages with lexical tone, such as Mandarin Chinese, tonal categories can also be retuned in this way, but segmental category retuning had not been studied. We report two experiment s in which Mandarin Chinese listeners were exposed to an ambiguous mixture of [f] and [s] in lexical contexts favoring an interpretation as either [f] or [s]. Listeners were subsequently more likely to identify sounds along a continuum between [f] and [s], and to interpret minimal word pairs, in a manner consistent with this exposure. Thus lexically guided perceptual learning of segmental categories had indeed taken place, consistent with suggestions that such learning may be a universally available adaptation process
  • Choi, J., Cutler, A., & Broersma, M. (2017). Early development of abstract language knowledge: Evidence from perception-production transfer of birth-language memory. Royal Society Open Science, 4: 160660. doi:10.1098/rsos.160660.

    Abstract

    Children adopted early in life into another linguistic community typically forget their birth language but retain, unaware, relevant linguistic knowledge that may facilitate (re)learning of birth-language patterns. Understanding the nature of this knowledge can shed light on how language is acquired. Here, international adoptees from Korea with Dutch as their current language, and matched Dutch-native controls, provided speech production data on a Korean consonantal distinction unlike any Dutch distinctions, at the outset and end of an intensive perceptual training. The productions, elicited in a repetition task, were identified and rated by Korean listeners. Adoptees' production scores improved significantly more across the training period than control participants' scores, and, for adoptees only, relative production success correlated significantly with the rate of learning in perception (which had, as predicted, also surpassed that of the controls). Of the adoptee group, half had been adopted at 17 months or older (when talking would have begun), while half had been prelinguistic (under six months). The former group, with production experience, showed no advantage over the group without. Thus the adoptees' retained knowledge of Korean transferred from perception to production and appears to be abstract in nature rather than dependent on the amount of experience.
  • Choi, J., Broersma, M., & Cutler, A. (2017). Early phonology revealed by international adoptees' birth language retention. Proceedings of the National Academy of Sciences of the United States of America, 114(28), 7307-7312. doi:10.1073/pnas.1706405114.

    Abstract

    Until at least 6 mo of age, infants show good discrimination for familiar phonetic contrasts (i.e., those heard in the environmental language) and contrasts that are unfamiliar. Adult-like discrimination (significantly worse for nonnative than for native contrasts) appears only later, by 9–10 mo. This has been interpreted as indicating that infants have no knowledge of phonology until vocabulary development begins, after 6 mo of age. Recently, however, word recognition has been observed before age 6 mo, apparently decoupling the vocabulary and phonology acquisition processes. Here we show that phonological acquisition is also in progress before 6 mo of age. The evidence comes from retention of birth-language knowledge in international adoptees. In the largest ever such study, we recruited 29 adult Dutch speakers who had been adopted from Korea when young and had no conscious knowledge of Korean language at all. Half were adopted at age 3–5 mo (before native-specific discrimination develops) and half at 17 mo or older (after word learning has begun). In a short intensive training program, we observe that adoptees (compared with 29 matched controls) more rapidly learn tripartite Korean consonant distinctions without counterparts in their later-acquired Dutch, suggesting that the adoptees retained phonological knowledge about the Korean distinction. The advantage is equivalent for the younger-adopted and the older-adopted groups, and both groups not only acquire the tripartite distinction for the trained consonants but also generalize it to untrained consonants. Although infants younger than 6 mo can still discriminate unfamiliar phonetic distinctions, this finding indicates that native-language phonological knowledge is nonetheless being acquired at that age.
  • Cutler, A. (2017). Converging evidence for abstract phonological knowledge in speech processing. In G. Gunzelmann, A. Howes, T. Tenbrink, & E. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (CogSci 2017) (pp. 1447-1448). Austin, TX: Cognitive Science Society.

    Abstract

    The perceptual processing of speech is a constant interplay of multiple competing albeit convergent processes: acoustic input vs. higher-level representations, universal mechanisms vs. language-specific, veridical traces of speech experience vs. construction and activation of abstract representations. The present summary concerns the third of these issues. The ability to generalise across experience and to deal with resulting abstractions is the hallmark of human cognition, visible even in early infancy. In speech processing, abstract representations play a necessary role in both production and perception. New sorts of evidence are now informing our understanding of the breadth of this role.
  • Ip, M. H. K., & Cutler, A. (2017). Intonation facilitates prediction of focus even in the presence of lexical tones. In Proceedings of Interspeech 2017 (pp. 1218-1222). doi:10.21437/Interspeech.2017-264.

    Abstract

    In English and Dutch, listeners entrain to prosodic contours to predict where focus will fall in an utterance. However, is this strategy universally available, even in languages with different phonological systems? In a phoneme detection experiment, we examined whether prosodic entrainment is also found in Mandarin Chinese, a tone language, where in principle the use of pitch for lexical identity may take precedence over the use of pitch cues to salience. Consistent with the results from Germanic languages, response times were facilitated when preceding intonation predicted accent on the target-bearing word. Acoustic analyses revealed greater F0 range in the preceding intonation of the predicted-accent sentences. These findings have implications for how universal and language-specific mechanisms interact in the processing of salience.
  • Goudbeek, M., Smits, R., Cutler, A., & Swingley, D. (2017). Auditory and phonetic category formation. In H. Cohen, & C. Lefebvre (Eds.), Handbook of categorization in cognitive science (2nd revised ed.) (pp. 687-708). Amsterdam: Elsevier.
  • Kember, H., Grohe, A.-.-K., Zahner, K., Braun, B., Weber, A., & Cutler, A. (2017). Similar prosodic structure perceived differently in German and English. In Proceedings of Interspeech 2017 (pp. 1388-1392). doi:10.21437/Interspeech.2017-544.

    Abstract

    English and German have similar prosody, but their speakers realize some pitch falls (not rises) in subtly different ways. We here test for asymmetry in perception. An ABX discrimination task requiring F0 slope or duration judgements on isolated vowels revealed no cross-language difference in duration or F0 fall discrimination, but discrimination of rises (realized similarly in each language) was less accurate for English than for German listeners. This unexpected finding may reflect greater sensitivity to rising patterns by German listeners, or reduced sensitivity by English listeners as a result of extensive exposure to phrase-final rises (“uptalk”) in their language
  • Warner, N., & Cutler, A. (2017). Stress effects in vowel perception as a function of language-specific vocabulary patterns. Phonetica, 74, 81-106. doi:10.1159/000447428.

    Abstract

    Background/Aims: Evidence from spoken word recognition suggests that for English listeners, distinguishing full versus reduced vowels is important, but discerning stress differences involving the same full vowel (as in mu- from music or museum) is not. In Dutch, in contrast, the latter distinction is important. This difference arises from the relative frequency of unstressed full vowels in the two vocabularies. The goal of this paper is to determine how this difference in the lexicon influences the perception of stressed versus unstressed vowels. Methods: All possible sequences of two segments (diphones) in Dutch and in English were presented to native listeners in gated fragments. We recorded identification performance over time throughout the speech signal. The data were here analysed specifically for patterns in perception of stressed versus unstressed vowels. Results: The data reveal significantly larger stress effects (whereby unstressed vowels are harder to identify than stressed vowels) in English than in Dutch. Both language-specific and shared patterns appear regarding which vowels show stress effects. Conclusion: We explain the larger stress effect in English as reflecting the processing demands caused by the difference in use of unstressed vowels in the lexicon. The larger stress effect in English is due to relative inexperience with processing unstressed full vowels
  • Braun, B., Lemhöfer, K., & Cutler, A. (2008). English word stress as produced by English and Dutch speakers: The role of segmental and suprasegmental differences. In Proceedings of Interspeech 2008 (pp. 1953-1953).

    Abstract

    It has been claimed that Dutch listeners use suprasegmental cues (duration, spectral tilt) more than English listeners in distinguishing English word stress. We tested whether this asymmetry also holds in production, comparing the realization of English word stress by native English speakers and Dutch speakers. Results confirmed that English speakers centralize unstressed vowels more, while Dutch speakers of English make more use of suprasegmental differences.
  • Braun, B., Tagliapietra, L., & Cutler, A. (2008). Contrastive utterances make alternatives salient: Cross-modal priming evidence. In Proceedings of Interspeech 2008 (pp. 69-69).

    Abstract

    Sentences with contrastive intonation are assumed to presuppose contextual alternatives to the accented elements. Two cross-modal priming experiments tested in Dutch whether such contextual alternatives are automatically available to listeners. Contrastive associates – but not non- contrastive associates - were facilitated only when primes were produced in sentences with contrastive intonation, indicating that contrastive intonation makes unmentioned contextual alternatives immediately available. Possibly, contrastive contours trigger a “presupposition resolution mechanism” by which these alternatives become salient.
  • Broersma, M., & Cutler, A. (2008). Phantom word activation in L2. System, 36(1), 22-34. doi:10.1016/j.system.2007.11.003.

    Abstract

    L2 listening can involve the phantom activation of words which are not actually in the input. All spoken-word recognition involves multiple concurrent activation of word candidates, with selection of the correct words achieved by a process of competition between them. L2 listening involves more such activation than L1 listening, and we report two studies illustrating this. First, in a lexical decision study, L2 listeners accepted (but L1 listeners did not accept) spoken non-words such as groof or flide as real English words. Second, a priming study demonstrated that the same spoken non-words made recognition of the real words groove, flight easier for L2 (but not L1) listeners, suggesting that, for the L2 listeners only, these real words had been activated by the spoken non-word input. We propose that further understanding of the activation and competition process in L2 lexical processing could lead to new understanding of L2 listening difficulty.
  • Cutler, A. (2008). The abstract representations in speech processing. Quarterly Journal of Experimental Psychology, 61(11), 1601-1619. doi:10.1080/13803390802218542.

    Abstract

    Speech processing by human listeners derives meaning from acoustic input via intermediate steps involving abstract representations of what has been heard. Recent results from several lines of research are here brought together to shed light on the nature and role of these representations. In spoken-word recognition, representations of phonological form and of conceptual content are dissociable. This follows from the independence of patterns of priming for a word's form and its meaning. The nature of the phonological-form representations is determined not only by acoustic-phonetic input but also by other sources of information, including metalinguistic knowledge. This follows from evidence that listeners can store two forms as different without showing any evidence of being able to detect the difference in question when they listen to speech. The lexical representations are in turn separate from prelexical representations, which are also abstract in nature. This follows from evidence that perceptual learning about speaker-specific phoneme realization, induced on the basis of a few words, generalizes across the whole lexicon to inform the recognition of all words containing the same phoneme. The efficiency of human speech processing has its basis in the rapid execution of operations over abstract representations.
  • Cutler, A., McQueen, J. M., Butterfield, S., & Norris, D. (2008). Prelexically-driven perceptual retuning of phoneme boundaries. In Proceedings of Interspeech 2008 (pp. 2056-2056).

    Abstract

    Listeners heard an ambiguous /f-s/ in nonword contexts where only one of /f/ or /s/ was legal (e.g., frul/*srul or *fnud/snud). In later categorisation of a phonetic continuum from /f/ to /s/, their category boundaries had shifted; hearing -rul led to expanded /f/ categories, -nud expanded /s/. Thus phonotactic sequence information alone induces perceptual retuning of phoneme category boundaries; lexical access is not required.
  • Cutler, A., Garcia Lecumberri, M. L., & Cooke, M. (2008). Consonant identification in noise by native and non-native listeners: Effects of local context. Journal of the Acoustical Society of America, 124(2), 1264-1268. doi:10.1121/1.2946707.

    Abstract

    Speech recognition in noise is harder in second (L2) than first languages (L1). This could be because noise disrupts speech processing more in L2 than L1, or because L1 listeners recover better though disruption is equivalent. Two similar prior studies produced discrepant results: Equivalent noise effects for L1 and L2 (Dutch) listeners, versus larger effects for L2 (Spanish) than L1. To explain this, the latter experiment was presented to listeners from the former population. Larger noise effects on consonant identification emerged for L2 (Dutch) than L1 listeners, suggesting that task factors rather than L2 population differences underlie the results discrepancy.
  • Goudbeek, M., Cutler, A., & Smits, R. (2008). Supervised and unsupervised learning of multidimensionally varying nonnative speech categories. Speech Communication, 50(2), 109-125. doi:10.1016/j.specom.2007.07.003.

    Abstract

    The acquisition of novel phonetic categories is hypothesized to be affected by the distributional properties of the input, the relation of the new categories to the native phonology, and the availability of supervision (feedback). These factors were examined in four experiments in which listeners were presented with novel categories based on vowels of Dutch. Distribution was varied such that the categorization depended on the single dimension duration, the single dimension frequency, or both dimensions at once. Listeners were clearly sensitive to the distributional information, but unidimensional contrasts proved easier to learn than multidimensional. The native phonology was varied by comparing Spanish versus American English listeners. Spanish listeners found categorization by frequency easier than categorization by duration, but this was not true of American listeners, whose native vowel system makes more use of duration-based distinctions. Finally, feedback was either available or not; this comparison showed supervised learning to be significantly superior to unsupervised learning.
  • Kim, J., Davis, C., & Cutler, A. (2008). Perceptual tests of rhythmic similarity: II. Syllable rhythm. Language and Speech, 51(4), 343-359. doi:10.1177/0023830908099069.

    Abstract

    To segment continuous speech into its component words, listeners make use of language rhythm; because rhythm differs across languages, so do the segmentation procedures which listeners use. For each of stress-, syllable-and mora-based rhythmic structure, perceptual experiments have led to the discovery of corresponding segmentation procedures. In the case of mora-based rhythm, similar segmentation has been demonstrated in the otherwise unrelated languages Japanese and Telugu; segmentation based on syllable rhythm, however, has been previously demonstrated only for European languages from the Romance family. We here report two target detection experiments in which Korean listeners, presented with speech in Korean and in French, displayed patterns of segmentation like those previously observed in analogous experiments with French listeners. The Korean listeners' accuracy in detecting word-initial target fragments in either language was significantly higher when the fragments corresponded exactly to a syllable in the input than when the fragments were smaller or larger than a syllable. We conclude that Korean and French listeners can call on similar procedures for segmenting speech, and we further propose that perceptual tests of speech segmentation provide a valuable accompaniment to acoustic analyses for establishing languages' rhythmic class membership.
  • Kooijman, V., Johnson, E. K., & Cutler, A. (2008). Reflections on reflections of infant word recognition. In A. D. Friederici, & G. Thierry (Eds.), Early language development: Bridging brain and behaviour (pp. 91-114). Amsterdam: Benjamins.
  • Cutler, A., Sebastian-Galles, N., Soler-Vilageliu, O., & Van Ooijen, B. (2000). Constraints of vowels and consonants on lexical selection: Cross-linguistic comparisons. Memory & Cognition, 28, 746-755.

    Abstract

    Languages differ in the constitution of their phonemic repertoire and in the relative distinctiveness of phonemes within the repertoire. In the present study, we asked whether such differences constrain spoken-word recognition, via two word reconstruction experiments, in which listeners turned non-words into real words by changing single sounds. The experiments were carried out in Dutch (which has a relatively balanced vowel-consonant ratio and many similar vowels) and in Spanish (which has many more consonants than vowels and high distinctiveness among the vowels). Both Dutch and Spanish listeners responded significantly faster and more accurately when required to change vowels as opposed to consonants; when allowed to change any phoneme, they more often altered vowels than consonants. Vowel information thus appears to constrain lexical selection less tightly (allow more potential candidates) than does consonant information, independent of language-specific phoneme repertoire and of relative distinctiveness of vowels.
  • Cutler, A., & Van de Weijer, J. (2000). De ontdekking van de eerste woorden. Stem-, Spraak- en Taalpathologie, 9, 245-259.

    Abstract

    Spraak is continu, er zijn geen betrouwbare signalen waardoor de luisteraar weet waar het ene woord eindigt en het volgende begint. Voor volwassen luisteraars is het segmenteren van gesproken taal in afzonderlijke woorden dus niet onproblematisch, maar voor een kind dat nog geen woordenschat bezit, vormt de continuïteit van spraak een nog grotere uitdaging. Desalniettemin produceren de meeste kinderen hun eerste herkenbare woorden rond het begin van het tweede levensjaar. Aan deze vroege spraakproducties gaat een formidabele perceptuele prestatie vooraf. Tijdens het eerste levensjaar - met name gedurende de tweede helft - ontwikkelt de spraakperceptie zich van een algemeen fonetisch discriminatievermogen tot een selectieve gevoeligheid voor de fonologische contrasten die in de moedertaal voorkomen. Recent onderzoek heeft verder aangetoond dat kinderen, lang voordat ze ook maar een enkel woord kunnen zeggen, in staat zijn woorden die kenmerkend zijn voor hun moedertaal te onderscheiden van woorden die dat niet zijn. Bovendien kunnen ze woorden die eerst in isolatie werden aangeboden herkennen in een continue spraakcontext. Het dagelijkse taalaanbod aan een kind van deze leeftijd maakt het in zekere zin niet gemakkelijk, bijvoorbeeld doordat de meeste woorden niet in isolatie voorkomen. Toch wordt het kind ook wel houvast geboden, onder andere doordat het woordgebruik beperkt is.
  • Cutler, A. (2000). How the ear comes to hear. In New Trends in Modern Linguistics [Part of Annual catalogue series] (pp. 6-10). Tokyo, Japan: Maruzen Publishers.
  • Cutler, A. (2000). Hoe het woord het oor verovert. In Voordrachten uitgesproken tijdens de uitreiking van de SPINOZA-premies op 15 februari 2000 (pp. 29-41). The Hague, The Netherlands: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).
  • Cutler, A., McQueen, J. M., & Zondervan, R. (2000). Proceedings of SWAP (Workshop on Spoken Word Access Processes). Nijmegen: MPI for Psycholinguistics.
  • Cutler, A. (2000). Real words, phantom words and impossible words. In D. Burnham, S. Luksaneeyanawin, C. Davis, & M. Lafourcade (Eds.), Interdisciplinary approaches to language processing: The international conference on human and machine processing of language and speech (pp. 32-42). Bangkok: NECTEC.
  • Cutler, A., & Koster, M. (2000). Stress and lexical activation in Dutch. In B. Yuan, T. Huang, & X. Tang (Eds.), Proceedings of the Sixth International Conference on Spoken Language Processing: Vol. 1 (pp. 593-596). Beijing: China Military Friendship Publish.

    Abstract

    Dutch listeners were slower to make judgements about the semantic relatedness between a spoken target word (e.g. atLEET, 'athlete') and a previously presented visual prime word (e.g. SPORT 'sport') when the spoken word was mis-stressed. The adverse effect of mis-stressing confirms the role of stress information in lexical recognition in Dutch. However, although the erroneous stress pattern was always initially compatible with a competing word (e.g. ATlas, 'atlas'), mis-stressed words did not produced high false alarm rates in unrelated pairs (e.g. SPORT - atLAS). This suggests that stress information did not completely rule out segmentally matching but suprasegmentally mismatching words, a finding consistent with spoken-word recognition models involving multiple activation and inter-word competition.
  • Cutler, A., Norris, D., & McQueen, J. M. (2000). Tracking TRACE’s troubles. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 63-66). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    Simulations explored the inability of the TRACE model of spoken-word recognition to model the effects on human listening of acoustic-phonetic mismatches in word forms. The source of TRACE's failure lay not in its interactive connectivity, not in the presence of interword competition, and not in the use of phonemic representations, but in the need for continuously optimised interpretation of the input. When an analogue of TRACE was allowed to cycle to asymptote on every slice of input, an acceptable simulation of the subcategorical mismatch data was achieved. Even then, however, the simulation was not as close as that produced by the Merge model.
  • Houston, D. M., Jusczyk, P. W., Kuijpers, C., Coolen, R., & Cutler, A. (2000). Cross-language word segmentation by 9-month-olds. Psychonomic Bulletin & Review, 7, 504-509.

    Abstract

    Dutch-learning and English-learning 9-month-olds were tested, using the Headturn Preference Procedure, for their ability to segment Dutch words with strong/weak stress patterns from fluent Dutch speech. This prosodic pattern is highly typical for words of both languages. The infants were familiarized with pairs of words and then tested on four passages, two that included the familiarized words and two that did not. Both the Dutch- and the English-learning infants gave evidence of segmenting the targets from the passages, to an equivalent degree. Thus, English-learning infants are able to extract words from fluent speech in a language that is phonetically different from English. We discuss the possibility that this cross-language segmentation ability is aided by the similarity of the typical rhythmic structure of Dutch and English words.
  • Johnson, E. K., Jusczyk, P. W., Cutler, A., & Norris, D. (2000). The development of word recognition: The use of the possible-word constraint by 12-month-olds. In L. Gleitman, & A. Joshi (Eds.), Proceedings of CogSci 2000 (pp. 1034). London: Erlbaum.
  • McQueen, J. M., Cutler, A., & Norris, D. (2000). Positive and negative influences of the lexicon on phonemic decision-making. In B. Yuan, T. Huang, & X. Tang (Eds.), Proceedings of the Sixth International Conference on Spoken Language Processing: Vol. 3 (pp. 778-781). Beijing: China Military Friendship Publish.

    Abstract

    Lexical knowledge influences how human listeners make decisions about speech sounds. Positive lexical effects (faster responses to target sounds in words than in nonwords) are robust across several laboratory tasks, while negative effects (slower responses to targets in more word-like nonwords than in less word-like nonwords) have been found in phonetic decision tasks but not phoneme monitoring tasks. The present experiments tested whether negative lexical effects are therefore a task-specific consequence of the forced choice required in phonetic decision. We compared phoneme monitoring and phonetic decision performance using the same Dutch materials in each task. In both experiments there were positive lexical effects, but no negative lexical effects. We observe that in all studies showing negative lexical effects, the materials were made by cross-splicing, which meant that they contained perceptual evidence supporting the lexically-consistent phonemes. Lexical knowledge seems to influence phonemic decision-making only when there is evidence for the lexically-consistent phoneme in the speech signal.
  • McQueen, J. M., Cutler, A., & Norris, D. (2000). Why Merge really is autonomous and parsimonious. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 47-50). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    We briefly describe the Merge model of phonemic decision-making, and, in the light of general arguments about the possible role of feedback in spoken-word recognition, defend Merge's feedforward structure. Merge not only accounts adequately for the data, without invoking feedback connections, but does so in a parsimonious manner.
  • Norris, D., McQueen, J. M., & Cutler, A. (2000). Feedback on feedback on feedback: It’s feedforward. (Response to commentators). Behavioral and Brain Sciences, 23, 352-370.

    Abstract

    The central thesis of the target article was that feedback is never necessary in spoken word recognition. The commentaries present no new data and no new theoretical arguments which lead us to revise this position. In this response we begin by clarifying some terminological issues which have lead to a number of significant misunderstandings. We provide some new arguments to support our case that the feedforward model Merge is indeed more parsimonious than the interactive alternatives, and that it provides a more convincing account of the data than alternative models. Finally, we extend the arguments to deal with new issues raised by the commentators such as infant speech perception and neural architecture.
  • Norris, D., McQueen, J. M., & Cutler, A. (2000). Merging information in speech recognition: Feedback is never necessary. Behavioral and Brain Sciences, 23, 299-325.

    Abstract

    Top-down feedback does not benefit speech recognition; on the contrary, it can hinder it. No experimental data imply that feedback loops are required for speech recognition. Feedback is accordingly unnecessary and spoken word recognition is modular. To defend this thesis, we analyse lexical involvement in phonemic decision making. TRACE (McClelland & Elman 1986), a model with feedback from the lexicon to prelexical processes, is unable to account for all the available data on phonemic decision making. The modular Race model (Cutler & Norris 1979) is likewise challenged by some recent results, however. We therefore present a new modular model of phonemic decision making, the Merge model. In Merge, information flows from prelexical processes to the lexicon without feedback. Because phonemic decisions are based on the merging of prelexical and lexical information, Merge correctly predicts lexical involvement in phonemic decisions in both words and nonwords. Computer simulations show how Merge is able to account for the data through a process of competition between lexical hypotheses. We discuss the issue of feedback in other areas of language processing and conclude that modular models are particularly well suited to the problems and constraints of speech recognition.
  • Norris, D., Cutler, A., McQueen, J. M., Butterfield, S., & Kearns, R. K. (2000). Language-universal constraints on the segmentation of English. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 43-46). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    Two word-spotting experiments are reported that examine whether the Possible-Word Constraint (PWC) [1] is a language-specific or language-universal strategy for the segmentation of continuous speech. The PWC disfavours parses which leave an impossible residue between the end of a candidate word and a known boundary. The experiments examined cases where the residue was either a CV syllable with a lax vowel, or a CVC syllable with a schwa. Although neither syllable context is a possible word in English, word-spotting in both contexts was easier than with a context consisting of a single consonant. The PWC appears to be language-universal rather than language-specific.
  • Norris, D., Cutler, A., & McQueen, J. M. (2000). The optimal architecture for simulating spoken-word recognition. In C. Davis, T. Van Gelder, & R. Wales (Eds.), Cognitive Science in Australia, 2000: Proceedings of the Fifth Biennial Conference of the Australasian Cognitive Science Society. Adelaide: Causal Productions.

    Abstract

    Simulations explored the inability of the TRACE model of spoken-word recognition to model the effects on human listening of subcategorical mismatch in word forms. The source of TRACE's failure lay not in interactive connectivity, not in the presence of inter-word competition, and not in the use of phonemic representations, but in the need for continuously optimised interpretation of the input. When an analogue of TRACE was allowed to cycle to asymptote on every slice of input, an acceptable simulation of the subcategorical mismatch data was achieved. Even then, however, the simulation was not as close as that produced by the Merge model, which has inter-word competition, phonemic representations and continuous optimisation (but no interactive connectivity).
  • Otake, T., & Cutler, A. (2000). A set of Japanese word cohorts rated for relative familiarity. In B. Yuan, T. Huang, & X. Tang (Eds.), Proceedings of the Sixth International Conference on Spoken Language Processing: Vol. 3 (pp. 766-769). Beijing: China Military Friendship Publish.

    Abstract

    A database is presented of relative familiarity ratings for 24 sets of Japanese words, each set comprising words overlapping in the initial portions. These ratings are useful for the generation of material sets for research in the recognition of spoken words.
  • Cutler, A. (1989). Auditory lexical access: Where do we start? In W. Marslen-Wilson (Ed.), Lexical representation and process (pp. 342-356). Cambridge, MA: MIT Press.

    Abstract

    The lexicon, considered as a component of the process of recognizing speech, is a device that accepts a sound image as input and outputs meaning. Lexical access is the process of formulating an appropriate input and mapping it onto an entry in the lexicon's store of sound images matched with their meanings. This chapter addresses the problems of auditory lexical access from continuous speech. The central argument to be proposed is that utterance prosody plays a crucial role in the access process. Continuous listening faces problems that are not present in visual recognition (reading) or in noncontinuous recognition (understanding isolated words). Aspects of utterance prosody offer a solution to these particular problems.
  • Cutler, A., Howard, D., & Patterson, K. E. (1989). Misplaced stress on prosody: A reply to Black and Byng. Cognitive Neuropsychology, 6, 67-83.

    Abstract

    The recent claim by Black and Byng (1986) that lexical access in reading is subject to prosodic constraints is examined and found to be unsupported. The evidence from impaired reading which Black and Byng report is based on poorly controlled stimulus materials and is inadequately analysed and reported. An alternative explanation of their findings is proposed, and new data are reported for which this alternative explanation can account but their model cannot. Finally, their proposal is shown to be theoretically unmotivated and in conflict with evidence from normal reading.
  • Cutler, A., & Butterfield, S. (1989). Natural speech cues to word segmentation under difficult listening conditions. In J. Tubach, & J. Mariani (Eds.), Proceedings of Eurospeech 89: European Conference on Speech Communication and Technology: Vol. 2 (pp. 372-375). Edinburgh: CEP Consultants.

    Abstract

    One of a listener's major tasks in understanding continuous speech is segmenting the speech signal into separate words. When listening conditions are difficult, speakers can help listeners by deliberately speaking more clearly. In three experiments, we examined how word boundaries are produced in deliberately clear speech. We found that speakers do indeed attempt to mark word boundaries; moreover, they differentiate between word boundaries in a way which suggests they are sensitive to listener needs. Application of heuristic segmentation strategies makes word boundaries before strong syllables easiest for listeners to perceive; but under difficult listening conditions speakers pay more attention to marking word boundaries before weak syllables, i.e. they mark those boundaries which are otherwise particularly hard to perceive.
  • Cutler, A. (1989). Straw modules [Commentary/Massaro: Speech perception]. Behavioral and Brain Sciences, 12, 760-762.
  • Cutler, A. (1989). The new Victorians. New Scientist, (1663), 66.
  • Patterson, R. D., & Cutler, A. (1989). Auditory preprocessing and recognition of speech. In A. Baddeley, & N. Bernsen (Eds.), Research directions in cognitive science: A european perspective: Vol. 1. Cognitive psychology (pp. 23-60). London: Erlbaum.
  • Smith, M. R., Cutler, A., Butterfield, S., & Nimmo-Smith, I. (1989). The perception of rhythm and word boundaries in noise-masked speech. Journal of Speech and Hearing Research, 32, 912-920.

    Abstract

    The present experiment tested the suggestion that human listeners may exploit durational information in speech to parse continuous utterances into words. Listeners were presented with six-syllable unpredictable utterances under noise-masking, and were required to judge between alternative word strings as to which best matched the rhythm of the masked utterances. For each utterance there were four alternative strings: (a) an exact rhythmic and word boundary match, (b) a rhythmic mismatch, and (c) two utterances with the same rhythm as the masked utterance, but different word boundary locations. Listeners were clearly able to perceive the rhythm of the masked utterances: The rhythmic mismatch was chosen significantly less often than any other alternative. Within the three rhythmically matched alternatives, the exact match was chosen significantly more often than either word boundary mismatch. Thus, listeners both perceived speech rhythm and used durational cues effectively to locate the position of word boundaries.
  • Cutler, A. (1981). Degrees of transparency in word formation. Canadian Journal of Linguistics, 26, 73-77.
  • Cutler, A. (1981). Making up materials is a confounded nuisance, or: Will we able to run any psycholinguistic experiments at all in 1990? Cognition, 10, 65-70. doi:10.1016/0010-0277(81)90026-3.
  • Cutler, A., & Darwin, C. J. (1981). Phoneme-monitoring reaction time and preceding prosody: Effects of stop closure duration and of fundamental frequency. Perception and Psychophysics, 29, 217-224. Retrieved from http://www.psychonomic.org/search/view.cgi?id=12660.

    Abstract

    In an earlier study, it was shown that listeners can use prosodic cues that predict where sentence stress will fall; phoneme-monitoring RTs are faster when the preceding prosody indicates that the word bearing the target will be stressed. Two experiments which further investigate this effect are described. In the first, it is shown that the duration of the closure preceding the release of the target stop consonant burst does not affect the RT advantage for stressed words. In the second, it is shown that fundamental frequency variation is not a necessary component of the prosodic variation that produces the predicted-stress effect. It is argued that sentence processing involves a very flexible use of prosodic information.
  • Cutler, A. (1981). The cognitive reality of suprasegmental phonology. In T. Myers, J. Laver, & J. Anderson (Eds.), The cognitive representation of speech (pp. 399-400). Amsterdam: North-Holland.
  • Cutler, A. (1981). The reliability of speech error data. Linguistics, 19, 561-582.
  • Fodor, J. A., & Cutler, A. (1981). Semantic focus and sentence comprehension. Cognition, 7, 49-59. doi:10.1016/0010-0277(79)90010-6.

    Abstract

    Reaction time to detect a phoneme target in a sentence was found to be faster when the word in which the target occurred formed part of the semantic focus of the sentence. Focus was determined by asking a question before the sentence; that part of the sentence which comprised the answer to the sentence was assumed to be focussed. This procedure made it possible to vary position offocus within the sentence while holding all acoustic aspects of the sentence itself constant. It is argued that sentence understanding is facilitated by rapid identification of focussed information. Since focussed words are usually accented, it is further argued that the active search for accented words demonstrated in previous research should be interpreted as a search for semantic focus.
  • Garnham, A., Shillcock, R. C., Brown, G. D. A., Mill, A. I. D., & Cutler, A. (1981). Slips of the tongue in the London-Lund corpus of spontaneous conversation. Linguistics, 19, 805-817.

Share this page