Anne Cutler †

Publications

Displaying 1 - 17 of 17
  • Bruggeman, L., & Cutler, A. (2016). Lexical manipulation as a discovery tool for psycholinguistic research. In C. Carignan, & M. D. Tyler (Eds.), Proceedings of the 16th Australasian International Conference on Speech Science and Technology (SST2016) (pp. 313-316).
  • Ip, M., & Cutler, A. (2016). Cross-language data on five types of prosodic focus. In J. Barnes, A. Brugos, S. Shattuck-Hufnagel, & N. Veilleux (Eds.), Proceedings of Speech Prosody 2016 (pp. 330-334).

    Abstract

    To examine the relative roles of language-specific and language-universal mechanisms in the production of prosodic focus, we compared production of five different types of focus by native speakers of English and Mandarin. Two comparable dialogues were constructed for each language, with the same words appearing in focused and unfocused position; 24 speakers recorded each dialogue in each language. Duration, F0 (mean, maximum, range), and rms-intensity (mean, maximum) of all critical word tokens were measured. Across the different types of focus, cross-language differences were observed in the degree to which English versus Mandarin speakers use the different prosodic parameters to mark focus, suggesting that while prosody may be universally available for expressing focus, the means of its employment may be considerably language-specific
  • Jeske, J., Kember, H., & Cutler, A. (2016). Native and non-native English speakers' use of prosody to predict sentence endings. In Proceedings of the 16th Australasian International Conference on Speech Science and Technology (SST2016).
  • Kember, H., Choi, J., & Cutler, A. (2016). Processing advantages for focused words in Korean. In J. Barnes, A. Brugos, S. Shattuck-Hufnagel, & N. Veilleux (Eds.), Proceedings of Speech Prosody 2016 (pp. 702-705).

    Abstract

    In Korean, focus is expressed in accentual phrasing. To ascertain whether words focused in this manner enjoy a processing advantage analogous to that conferred by focus as expressed in, e.g, English and Dutch, we devised sentences with target words in one of four conditions: prosodic focus, syntactic focus, prosodic + syntactic focus, and no focus as a control. 32 native speakers of Korean listened to blocks of 10 sentences, then were presented visually with words and asked whether or not they had heard them. Overall, words with focus were recognised significantly faster and more accurately than unfocused words. In addition, words with syntactic focus or syntactic + prosodic focus were recognised faster than words with prosodic focus alone. As for other languages, Korean focus confers processing advantage on the words carrying it. While prosodic focus does provide an advantage, however, syntactic focus appears to provide the greater beneficial effect for recognition memory
  • Cutler, A., Kim, J., & Otake, T. (2006). On the limits of L1 influence on non-L1 listening: Evidence from Japanese perception of Korean. In P. Warren, & C. I. Watson (Eds.), Proceedings of the 11th Australian International Conference on Speech Science & Technology (pp. 106-111).

    Abstract

    Language-specific procedures which are efficient for listening to the L1 may be applied to non-native spoken input, often to the detriment of successful listening. However, such misapplications of L1-based listening do not always happen. We propose, based on the results from two experiments in which Japanese listeners detected target sequences in spoken Korean, that an L1 procedure is only triggered if requisite L1 features are present in the input.
  • Cutler, A., & Pasveer, D. (2006). Explaining cross-linguistic differences in effects of lexical stress on spoken-word recognition. In R. Hoffmann, & H. Mixdorff (Eds.), Speech Prosody 2006. Dresden: TUD press.

    Abstract

    Experiments have revealed differences across languages in listeners’ use of stress information in recognising spoken words. Previous comparisons of the vocabulary of Spanish and English had suggested that the explanation of this asymmetry might lie in the extent to which considering stress in spokenword recognition allows rejection of unwanted competition from words embedded in other words. This hypothesis was tested on the vocabularies of Dutch and German, for which word recognition results resemble those from Spanish more than those from English. The vocabulary statistics likewise revealed that in each language, the reduction of embeddings resulting from taking stress into account is more similar to the reduction achieved in Spanish than in English.
  • Cutler, A., Eisner, F., McQueen, J. M., & Norris, D. (2006). Coping with speaker-related variation via abstract phonemic categories. In Variation, detail and representation: 10th Conference on Laboratory Phonology (pp. 31-32).
  • Kuzla, C., Mitterer, H., Ernestus, M., & Cutler, A. (2006). Perceptual compensation for voice assimilation of German fricatives. In P. Warren, & I. Watson (Eds.), Proceedings of the 11th Australasian International Conference on Speech Science and Technology (pp. 394-399).

    Abstract

    In German, word-initial lax fricatives may be produced with substantially reduced glottal vibration after voiceless obstruents. This assimilation occurs more frequently and to a larger extent across prosodic word boundaries than across phrase boundaries. Assimilatory devoicing makes the fricatives more similar to their tense counterparts and could thus hinder word recognition. The present study investigates how listeners cope with assimilatory devoicing. Results of a cross-modal priming experiment indicate that listeners compensate for assimilation in appropriate contexts. Prosodic structure moderates compensation for assimilation: Compensation occurs especially after phrase boundaries, where devoiced fricatives are sufficiently long to be confused with their tense counterparts.
  • Allerhand, M., Butterfield, S., Cutler, A., & Patterson, R. (1992). Assessing syllable strength via an auditory model. In Proceedings of the Institute of Acoustics: Vol. 14 Part 6 (pp. 297-304). St. Albans, Herts: Institute of Acoustics.
  • Cutler, A., Kearns, R., Norris, D., & Scott, D. (1992). Listeners’ responses to extraneous signals coincident with English and French speech. In J. Pittam (Ed.), Proceedings of the 4th Australian International Conference on Speech Science and Technology (pp. 666-671). Canberra: Australian Speech Science and Technology Association.

    Abstract

    English and French listeners performed two tasks - click location and speeded click detection - with both English and French sentences, closely matched for syntactic and phonological structure. Clicks were located more accurately in open- than in closed-class words in both English and French; they were detected more rapidly in open- than in closed-class words in English, but not in French. The two listener groups produced the same pattern of responses, suggesting that higher-level linguistic processing was not involved in these tasks.
  • Cutler, A., & Robinson, T. (1992). Response time as a metric for comparison of speech recognition by humans and machines. In J. Ohala, T. Neary, & B. Derwing (Eds.), Proceedings of the Second International Conference on Spoken Language Processing: Vol. 1 (pp. 189-192). Alberta: University of Alberta.

    Abstract

    The performance of automatic speech recognition systems is usually assessed in terms of error rate. Human speech recognition produces few errors, but relative difficulty of processing can be assessed via response time techniques. We report the construction of a measure analogous to response time in a machine recognition system. This measure may be compared directly with human response times. We conducted a trial comparison of this type at the phoneme level, including both tense and lax vowels and a variety of consonant classes. The results suggested similarities between human and machine processing in the case of consonants, but differences in the case of vowels.
  • McQueen, J. M., & Cutler, A. (1992). Words within words: Lexical statistics and lexical access. In J. Ohala, T. Neary, & B. Derwing (Eds.), Proceedings of the Second International Conference on Spoken Language Processing: Vol. 1 (pp. 221-224). Alberta: University of Alberta.

    Abstract

    This paper presents lexical statistics on the pattern of occurrence of words embedded in other words. We report the results of an analysis of 25000 words, varying in length from two to six syllables, extracted from a phonetically-coded English dictionary (The Longman Dictionary of Contemporary English). Each syllable, and each string of syllables within each word was checked against the dictionary. Two analyses are presented: the first used a complete list of polysyllables, with look-up on the entire dictionary; the second used a sublist of content words, counting only embedded words which were themselves content words. The results have important implications for models of human speech recognition. The efficiency of these models depends, in different ways, on the number and location of words within words.
  • Norris, D., Van Ooijen, B., & Cutler, A. (1992). Speeded detection of vowels and steady-state consonants. In J. Ohala, T. Neary, & B. Derwing (Eds.), Proceedings of the Second International Conference on Spoken Language Processing; Vol. 2 (pp. 1055-1058). Alberta: University of Alberta.

    Abstract

    We report two experiments in which vowels and steady-state consonants served as targets in a speeded detection task. In the first experiment, two vowels were compared with one voiced and once unvoiced fricative. Response times (RTs) to the vowels were longer than to the fricatives. The error rate was higher for the consonants. Consonants in word-final position produced the shortest RTs, For the vowels, RT correlated negatively with target duration. In the second experiment, the same two vowel targets were compared with two nasals. This time there was no significant difference in RTs, but the error rate was still significantly higher for the consonants. Error rate and length correlated negatively for the vowels only. We conclude that RT differences between phonemes are independent of vocalic or consonantal status. Instead, we argue that the process of phoneme detection reflects more finely grained differences in acoustic/articulatory structure within the phonemic repertoire.
  • Cutler, A., & Butterfield, S. (1989). Natural speech cues to word segmentation under difficult listening conditions. In J. Tubach, & J. Mariani (Eds.), Proceedings of Eurospeech 89: European Conference on Speech Communication and Technology: Vol. 2 (pp. 372-375). Edinburgh: CEP Consultants.

    Abstract

    One of a listener's major tasks in understanding continuous speech is segmenting the speech signal into separate words. When listening conditions are difficult, speakers can help listeners by deliberately speaking more clearly. In three experiments, we examined how word boundaries are produced in deliberately clear speech. We found that speakers do indeed attempt to mark word boundaries; moreover, they differentiate between word boundaries in a way which suggests they are sensitive to listener needs. Application of heuristic segmentation strategies makes word boundaries before strong syllables easiest for listeners to perceive; but under difficult listening conditions speakers pay more attention to marking word boundaries before weak syllables, i.e. they mark those boundaries which are otherwise particularly hard to perceive.
  • Cutler, A. (1987). Components of prosodic effects in speech recognition. In Proceedings of the Eleventh International Congress of Phonetic Sciences: Vol. 1 (pp. 84-87). Tallinn: Academy of Sciences of the Estonian SSR, Institute of Language and Literature.

    Abstract

    Previous research has shown that listeners use the prosodic structure of utterances in a predictive fashion in sentence comprehension, to direct attention to accented words. Acoustically identical words spliced into sentence contexts arc responded to differently if the prosodic structure of the context is \ aricd: when the preceding prosody indicates that the word will he accented, responses are faster than when the preceding prosodv is inconsistent with accent occurring on that word. In the present series of experiments speech hybridisation techniques were first used to interchange the timing patterns within pairs of prosodic variants of utterances, independently of the pitch and intensity contours. The time-adjusted utterances could then serve as a basis lor the orthogonal manipulation of the three prosodic dimensions of pilch, intensity and rhythm. The overall pattern of results showed that when listeners use prosody to predict accent location, they do not simply rely on a single prosodic dimension, hut exploit the interaction between pitch, intensity and rhythm.
  • Cutler, A., & Carter, D. (1987). The prosodic structure of initial syllables in English. In J. Laver, & M. Jack (Eds.), Proceedings of the European Conference on Speech Technology: Vol. 1 (pp. 207-210). Edinburgh: IEE.
  • Cutler, A. (1983). Semantics, syntax and sentence accent. In M. Van den Broecke, & A. Cohen (Eds.), Proceedings of the Tenth International Congress of Phonetic Sciences (pp. 85-91). Dordrecht: Foris.

Share this page