Anne Cutler

Publications

Displaying 1 - 11 of 11
  • McQueen, J. M., Norris, D., & Cutler, A. (2001). Can lexical knowledge modulate prelexical representations over time? In R. Smits, J. Kingston, T. Neary, & R. Zondervan (Eds.), Proceedings of the workshop on Speech Recognition as Pattern Classification (SPRAAC) (pp. 145-150). Nijmegen: Max Planck Institute for Psycholinguistics.

    Abstract

    The results of a study on perceptual learning are reported. Dutch subjects made lexical decisions on a list of words and nonwords. Embedded in the list were either [f]- or [s]-final words in which the final fricative had been replaced by an ambiguous sound, midway between [f] and [s]. One group of listeners heard ambiguous [f]- final Dutch words like [kara?] (based on karaf, carafe) and unambiguous [s]-final words (e.g., karkas, carcase). A second group heard the reverse (e.g., ambiguous [karka?] and unambiguous karaf). After this training phase, listeners labelled ambiguous fricatives on an [f]- [s] continuum. The subjects who had heard [?] in [f]- final words categorised these fricatives as [f] reliably more often than those who had heard [?] in [s]-final words. These results suggest that speech recognition is dynamic: the system adjusts to the constraints of each particular listening situation. The lexicon can provide this adjustment process with a training signal.
  • Moore, R. K., & Cutler, A. (2001). Constraints on theories of human vs. machine recognition of speech. In R. Smits, J. Kingston, T. Neary, & R. Zondervan (Eds.), Proceedings of the workshop on Speech Recognition as Pattern Classification (SPRAAC) (pp. 145-150). Nijmegen: Max Planck Institute for Psycholinguistics.

    Abstract

    The central issues in the study of speech recognition by human listeners (HSR) and of automatic speech recognition (ASR) are clearly comparable; nevertheless the research communities that concern themselves with ASR and HSR are largely distinct. This paper compares the research objectives of the two fields, and attempts to draw informative lessons from one to the other.
  • Otake, T., & Cutler, A. (2001). Recognition of (almost) spoken words: Evidence from word play in Japanese. In P. Dalsgaard (Ed.), Proceedings of EUROSPEECH 2001 (pp. 465-468).

    Abstract

    Current models of spoken-word recognition assume automatic activation of multiple candidate words fully or partially compatible with the speech input. We propose that listeners make use of this concurrent activation in word play such as punning. Distortion in punning should ideally involve no more than a minimal contrastive deviation between two words, namely a phoneme. Moreover, we propose that this metric of similarity does not presuppose phonemic awareness on the part of the punster. We support these claims with an analysis of modern and traditional puns in Japanese (in which phonemic awareness in language users is not encouraged by alphabetic orthography). For both data sets, the results support the predictions. Punning draws on basic processes of spokenword recognition, common across languages.
  • Warner, N., Jongman, A., Mucke, D., & Cutler, A. (2001). The phonological status of schwa insertion in Dutch: An EMA study. In B. Maassen, W. Hulstijn, R. Kent, H. Peters, & P. v. Lieshout (Eds.), Speech motor control in normal and disordered speech: 4th International Speech Motor Conference (pp. 86-89). Nijmegen: Vantilt.

    Abstract

    Articulatory data are used to address the question of whether Dutch schwa insertion is a phonological or a phonetic process. By investigating tongue tip raising and dorsal lowering, we show that /l/ when it appears before inserted schwa is a light /l/, just as /l/ before an underlying schwa is, and unlike the dark /l/ before a consonant in non-insertion productions of the same words. The fact that inserted schwa can condition the light/dark /l/ alternation shows that schwa insertion involves the phonological insertion of a segment rather than phonetic adjustments to articulations.
  • Allerhand, M., Butterfield, S., Cutler, A., & Patterson, R. (1992). Assessing syllable strength via an auditory model. In Proceedings of the Institute of Acoustics: Vol. 14 Part 6 (pp. 297-304). St. Albans, Herts: Institute of Acoustics.
  • Cutler, A., Kearns, R., Norris, D., & Scott, D. (1992). Listeners’ responses to extraneous signals coincident with English and French speech. In J. Pittam (Ed.), Proceedings of the 4th Australian International Conference on Speech Science and Technology (pp. 666-671). Canberra: Australian Speech Science and Technology Association.

    Abstract

    English and French listeners performed two tasks - click location and speeded click detection - with both English and French sentences, closely matched for syntactic and phonological structure. Clicks were located more accurately in open- than in closed-class words in both English and French; they were detected more rapidly in open- than in closed-class words in English, but not in French. The two listener groups produced the same pattern of responses, suggesting that higher-level linguistic processing was not involved in these tasks.
  • Cutler, A., & Robinson, T. (1992). Response time as a metric for comparison of speech recognition by humans and machines. In J. Ohala, T. Neary, & B. Derwing (Eds.), Proceedings of the Second International Conference on Spoken Language Processing: Vol. 1 (pp. 189-192). Alberta: University of Alberta.

    Abstract

    The performance of automatic speech recognition systems is usually assessed in terms of error rate. Human speech recognition produces few errors, but relative difficulty of processing can be assessed via response time techniques. We report the construction of a measure analogous to response time in a machine recognition system. This measure may be compared directly with human response times. We conducted a trial comparison of this type at the phoneme level, including both tense and lax vowels and a variety of consonant classes. The results suggested similarities between human and machine processing in the case of consonants, but differences in the case of vowels.
  • McQueen, J. M., & Cutler, A. (1992). Words within words: Lexical statistics and lexical access. In J. Ohala, T. Neary, & B. Derwing (Eds.), Proceedings of the Second International Conference on Spoken Language Processing: Vol. 1 (pp. 221-224). Alberta: University of Alberta.

    Abstract

    This paper presents lexical statistics on the pattern of occurrence of words embedded in other words. We report the results of an analysis of 25000 words, varying in length from two to six syllables, extracted from a phonetically-coded English dictionary (The Longman Dictionary of Contemporary English). Each syllable, and each string of syllables within each word was checked against the dictionary. Two analyses are presented: the first used a complete list of polysyllables, with look-up on the entire dictionary; the second used a sublist of content words, counting only embedded words which were themselves content words. The results have important implications for models of human speech recognition. The efficiency of these models depends, in different ways, on the number and location of words within words.
  • Norris, D., Van Ooijen, B., & Cutler, A. (1992). Speeded detection of vowels and steady-state consonants. In J. Ohala, T. Neary, & B. Derwing (Eds.), Proceedings of the Second International Conference on Spoken Language Processing; Vol. 2 (pp. 1055-1058). Alberta: University of Alberta.

    Abstract

    We report two experiments in which vowels and steady-state consonants served as targets in a speeded detection task. In the first experiment, two vowels were compared with one voiced and once unvoiced fricative. Response times (RTs) to the vowels were longer than to the fricatives. The error rate was higher for the consonants. Consonants in word-final position produced the shortest RTs, For the vowels, RT correlated negatively with target duration. In the second experiment, the same two vowel targets were compared with two nasals. This time there was no significant difference in RTs, but the error rate was still significantly higher for the consonants. Error rate and length correlated negatively for the vowels only. We conclude that RT differences between phonemes are independent of vocalic or consonantal status. Instead, we argue that the process of phoneme detection reflects more finely grained differences in acoustic/articulatory structure within the phonemic repertoire.
  • Butterfield, S., & Cutler, A. (1988). Segmentation errors by human listeners: Evidence for a prosodic segmentation strategy. In W. Ainsworth, & J. Holmes (Eds.), Proceedings of SPEECH ’88: Seventh Symposium of the Federation of Acoustic Societies of Europe: Vol. 3 (pp. 827-833). Edinburgh: Institute of Acoustics.
  • Cutler, A. (1983). Semantics, syntax and sentence accent. In M. Van den Broecke, & A. Cohen (Eds.), Proceedings of the Tenth International Congress of Phonetic Sciences (pp. 85-91). Dordrecht: Foris.

Share this page