Anne Cutler

Publications

Displaying 1 - 46 of 46
  • Choi, J., Broersma, M., & Cutler, A. (2018). Phonetic learning is not enhanced by sequential exposure to more than one language. Linguistic Research, 35(3), 567-581. doi:10.17250/khisli.35.3.201812.006.

    Abstract

    Several studies have documented that international adoptees, who in early years have experienced a change from a language used in their birth country to a new language in an adoptive country, benefit from the limited early exposure to the birth language when relearning that language’s sounds later in life. The adoptees’ relearning advantages have been argued to be conferred by lasting birth-language knowledge obtained from the early exposure. However, it is also plausible to assume that the advantages may arise from adoptees’ superior ability to learn language sounds in general, as a result of their unusual linguistic experience, i.e., exposure to multiple languages in sequence early in life. If this is the case, then the adoptees’ relearning benefits should generalize to previously unheard language sounds, rather than be limited to their birth-language sounds. In the present study, adult Korean adoptees in the Netherlands and matched Dutch-native controls were trained on identifying a Japanese length distinction to which they had never been exposed before. The adoptees and Dutch controls did not differ on any test carried out before, during, or after the training, indicating that observed adoptee advantages for birth-language relearning do not generalize to novel, previously unheard language sounds. The finding thus fails to support the suggestion that birth-language relearning advantages may arise from enhanced ability to learn language sounds in general conferred by early experience in multiple languages. Rather, our finding supports the original contention that such advantages involve memory traces obtained before adoption
  • Ip, M. H. K., & Cutler, A. (2018). Asymmetric efficiency of juncture perception in L1 and L2. In K. Klessa, J. Bachan, A. Wagner, M. Karpiński, & D. Śledziński (Eds.), Proceedings of Speech Prosody 2018 (pp. 289-296). Baixas, France: ISCA. doi:10.21437/SpeechProsody.2018-59.

    Abstract

    In two experiments, Mandarin listeners resolved potential syntactic ambiguities in spoken utterances in (a) their native language (L1) and (b) English which they had learned as a second language (L2). A new disambiguation task was used, requiring speeded responses to select the correct meaning for structurally ambiguous sentences. Importantly, the ambiguities used in the study are identical in Mandarin and in English, and production data show that prosodic disambiguation of this type of ambiguity is also realised very similarly in the two languages. The perceptual results here showed however that listeners’ response patterns differed for L1 and L2, although there was a significant increase in similarity between the two response patterns with increasing exposure to the L2. Thus identical ambiguity and comparable disambiguation patterns in L1 and L2 do not lead to immediate application of the appropriate L1 listening strategy to L2; instead, it appears that such a strategy may have to be learned anew for the L2.
  • Ip, M. H. K., & Cutler, A. (2018). Cue equivalence in prosodic entrainment for focus detection. In J. Epps, J. Wolfe, J. Smith, & C. Jones (Eds.), Proceedings of the 17th Australasian International Conference on Speech Science and Technology (pp. 153-156).

    Abstract

    Using a phoneme detection task, the present series of experiments examines whether listeners can entrain to different combinations of prosodic cues to predict where focus will fall in an utterance. The stimuli were recorded by four female native speakers of Australian English who happened to have used different prosodic cues to produce sentences with prosodic focus: a combination of duration cues, mean and maximum F0, F0 range, and longer pre-target interval before the focused word onset, only mean F0 cues, only pre-target interval, and only duration cues. Results revealed that listeners can entrain in almost every condition except for where duration was the only reliable cue. Our findings suggest that listeners are flexible in the cues they use for focus processing.
  • Cutler, A., Burchfield, L. A., & Antoniou, M. (2018). Factors affecting talker adaptation in a second language. In J. Epps, J. Wolfe, J. Smith, & C. Jones (Eds.), Proceedings of the 17th Australasian International Conference on Speech Science and Technology (pp. 33-36).

    Abstract

    Listeners adapt rapidly to previously unheard talkers by adjusting phoneme categories using lexical knowledge, in a process termed lexically-guided perceptual learning. Although this is firmly established for listening in the native language (L1), perceptual flexibility in second languages (L2) is as yet less well understood. We report two experiments examining L1 and L2 perceptual learning, the first in Mandarin-English late bilinguals, the second in Australian learners of Mandarin. Both studies showed stronger learning in L1; in L2, however, learning appeared for the English-L1 group but not for the Mandarin-L1 group. Phonological mapping differences from the L1 to the L2 are suggested as the reason for this result.
  • Cutler, A., & Farrell, J. (2018). Listening in first and second language. In J. I. Liontas (Ed.), The TESOL encyclopedia of language teaching. New York: Wiley. doi:10.1002/9781118784235.eelt0583.

    Abstract

    Listeners' recognition of spoken language involves complex decoding processes: The continuous speech stream must be segmented into its component words, and words must be recognized despite great variability in their pronunciation (due to talker differences, or to influence of phonetic context, or to speech register) and despite competition from many spuriously present forms supported by the speech signal. L1 listeners deal more readily with all levels of this complexity than L2 listeners. Fortunately, the decoding processes necessary for competent L2 listening can be taught in the classroom. Evidence-based methodologies targeted at the development of efficient speech decoding include teaching of minimal pairs, of phonotactic constraints, and of reduction processes, as well as the use of dictation and L2 video captions.
  • Johnson, E. K., Bruggeman, L., & Cutler, A. (2018). Abstraction and the (misnamed) language familiarity effect. Cognitive Science, 42, 633-645. doi:10.1111/cogs.12520.

    Abstract

    Talkers are recognized more accurately if they are speaking the listeners’ native language rather than an unfamiliar language. This “language familiarity effect” has been shown not to depend upon comprehension and must instead involve language sound patterns. We further examine the level of sound-pattern processing involved, by comparing talker recognition in foreign languages versus two varieties of English, by (a) English speakers of one variety, (b) English speakers of the other variety, and (c) non-native listeners (more familiar with one of the varieties). All listener groups performed better with native than foreign speech, but no effect of language variety appeared: Native listeners discriminated talkers equally well in each, with the native variety never outdoing the other variety, and non-native listeners discriminated talkers equally poorly in each, irrespective of the variety's familiarity. The results suggest that this talker recognition effect rests not on simple familiarity, but on an abstract level of phonological processing
  • Kidd, E., Junge, C., Spokes, T., Morrison, L., & Cutler, A. (2018). Individual differences in infant speech segmentation: Achieving the lexical shift. Infancy, 23(6), 770-794. doi:10.1111/infa.12256.

    Abstract

    We report a large‐scale electrophysiological study of infant speech segmentation, in which over 100 English‐acquiring 9‐month‐olds were exposed to unfamiliar bisyllabic words embedded in sentences (e.g., He saw a wild eagle up there), after which their brain responses to either the just‐familiarized word (eagle) or a control word (coral) were recorded. When initial exposure occurs in continuous speech, as here, past studies have reported that even somewhat older infants do not reliably recognize target words, but that successful segmentation varies across children. Here, we both confirm and further uncover the nature of this variation. The segmentation response systematically varied across individuals and was related to their vocabulary development. About one‐third of the group showed a left‐frontally located relative negativity in response to familiar versus control targets, which has previously been described as a mature response. Another third showed a similarly located positive‐going reaction (a previously described immature response), and the remaining third formed an intermediate grouping that was primarily characterized by an initial response delay. A fine‐grained group‐level analysis suggested that a developmental shift to a lexical mode of processing occurs toward the end of the first year, with variation across individual infants in the exact timing of this shift.

    Additional information

    supporting information
  • Norris, D., McQueen, J. M., & Cutler, A. (2018). Commentary on “Interaction in spoken word recognition models". Frontiers in Psychology, 9: 1568. doi:10.3389/fpsyg.2018.01568.
  • Burnham, D., Ambikairajah, E., Arciuli, J., Bennamoun, M., Best, C. T., Bird, S., Butcher, A. R., Cassidy, S., Chetty, G., Cox, F. M., Cutler, A., Dale, R., Epps, J. R., Fletcher, J. M., Goecke, R., Grayden, D. B., Hajek, J. T., Ingram, J. C., Ishihara, S., Kemp, N. and 10 moreBurnham, D., Ambikairajah, E., Arciuli, J., Bennamoun, M., Best, C. T., Bird, S., Butcher, A. R., Cassidy, S., Chetty, G., Cox, F. M., Cutler, A., Dale, R., Epps, J. R., Fletcher, J. M., Goecke, R., Grayden, D. B., Hajek, J. T., Ingram, J. C., Ishihara, S., Kemp, N., Kinoshita, Y., Kuratate, T., Lewis, T. W., Loakes, D. E., Onslow, M., Powers, D. M., Rose, P., Togneri, R., Tran, D., & Wagner, M. (2009). A blueprint for a comprehensive Australian English auditory-visual speech corpus. In M. Haugh, K. Burridge, J. Mulder, & P. Peters (Eds.), Selected proceedings of the 2008 HCSNet Workshop on Designing the Australian National Corpus (pp. 96-107). Somerville, MA: Cascadilla Proceedings Project.

    Abstract

    Large auditory-visual (AV) speech corpora are the grist of modern research in speech science, but no such corpus exists for Australian English. This is unfortunate, for speech science is the brains behind speech technology and applications such as text-to-speech (TTS) synthesis, automatic speech recognition (ASR), speaker recognition and forensic identification, talking heads, and hearing prostheses. Advances in these research areas in Australia require a large corpus of Australian English. Here the authors describe a blueprint for building the Big Australian Speech Corpus (the Big ASC), a corpus of over 1,100 speakers from urban and rural Australia, including speakers of non-indigenous, indigenous, ethnocultural, and disordered forms of Australian English, each of whom would be sampled on three occasions in a range of speech tasks designed by the researchers who would be using the corpus.
  • Cutler, A. (2009). Greater sensitivity to prosodic goodness in non-native than in native listeners. Journal of the Acoustical Society of America, 125, 3522-3525. doi:10.1121/1.3117434.

    Abstract

    English listeners largely disregard suprasegmental cues to stress in recognizing words. Evidence for this includes the demonstration of Fear et al. [J. Acoust. Soc. Am. 97, 1893–1904 (1995)] that cross-splicings are tolerated between stressed and unstressed full vowels (e.g., au- of autumn, automata). Dutch listeners, however, do exploit suprasegmental stress cues in recognizing native-language words. In this study, Dutch listeners were presented with English materials from the study of Fear et al. Acceptability ratings by these listeners revealed sensitivity to suprasegmental mismatch, in particular, in replacements of unstressed full vowels by higher-stressed vowels, thus evincing greater sensitivity to prosodic goodness than had been shown by the original native listener group.
  • Cutler, A., Davis, C., & Kim, J. (2009). Non-automaticity of use of orthographic knowledge in phoneme evaluation. In Proceedings of the 10th Annual Conference of the International Speech Communication Association (Interspeech 2009) (pp. 380-383). Causal Productions Pty Ltd.

    Abstract

    Two phoneme goodness rating experiments addressed the role of orthographic knowledge in the evaluation of speech sounds. Ratings for the best tokens of /s/ were higher in words spelled with S (e.g., bless) than in words where /s/ was spelled with C (e.g., voice). This difference did not appear for analogous nonwords for which every lexical neighbour had either S or C spelling (pless, floice). Models of phonemic processing incorporating obligatory influence of lexical information in phonemic processing cannot explain this dissociation; the data are consistent with models in which phonemic decisions are not subject to necessary top-down lexical influence.
  • Cutler, A. (2009). Psycholinguistics in our time. In P. Rabbitt (Ed.), Inside psychology: A science over 50 years (pp. 91-101). Oxford: Oxford University Press.
  • Cutler, A., Otake, T., & McQueen, J. M. (2009). Vowel devoicing and the perception of spoken Japanese words. Journal of the Acoustical Society of America, 125(3), 1693-1703. doi:10.1121/1.3075556.

    Abstract

    Three experiments, in which Japanese listeners detected Japanese words embedded in nonsense sequences, examined the perceptual consequences of vowel devoicing in that language. Since vowelless sequences disrupt speech segmentation [Norris et al. (1997). Cognit. Psychol. 34, 191– 243], devoicing is potentially problematic for perception. Words in initial position in nonsense sequences were detected more easily when followed by a sequence containing a vowel than by a vowelless segment (with or without further context), and vowelless segments that were potential devoicing environments were no easier than those not allowing devoicing. Thus asa, “morning,” was easier in asau or asazu than in all of asap, asapdo, asaf, or asafte, despite the fact that the /f/ in the latter two is a possible realization of fu, with devoiced [u]. Japanese listeners thus do not treat devoicing contexts as if they always contain vowels. Words in final position in nonsense sequences, however, produced a different pattern: here, preceding vowelless contexts allowing devoicing impeded word detection less strongly (so, sake was detected less accurately, but not less rapidly, in nyaksake—possibly arising from nyakusake—than in nyagusake). This is consistent with listeners treating consonant sequences as potential realizations of parts of existing lexical candidates wherever possible.
  • Kooijman, V., Hagoort, P., & Cutler, A. (2009). Prosodic structure in early word segmentation: ERP evidence from Dutch ten-month-olds. Infancy, 14, 591 -612. doi:10.1080/15250000903263957.

    Abstract

    Recognizing word boundaries in continuous speech requires detailed knowledge of the native language. In the first year of life, infants acquire considerable word segmentation abilities. Infants at this early stage in word segmentation rely to a large extent on the metrical pattern of their native language, at least in stress-based languages. In Dutch and English (both languages with a preferred trochaic stress pattern), segmentation of strong-weak words develops rapidly between 7 and 10 months of age. Nevertheless, trochaic languages contain not only strong-weak words but also words with a weak-strong stress pattern. In this article, we present electrophysiological evidence of the beginnings of weak-strong word segmentation in Dutch 10-month-olds. At this age, the ability to combine different cues for efficient word segmentation does not yet seem to be completely developed. We provide evidence that Dutch infants still largely rely on strong syllables, even for the segmentation of weak-strong words.
  • Tyler, M., & Cutler, A. (2009). Cross-language differences in cue use for speech segmentation. Journal of the Acoustical Society of America, 126, 367-376. doi:10.1121/1.3129127.

    Abstract

    Two artificial-language learning experiments directly compared English, French, and Dutch listeners’ use of suprasegmental cues for continuous-speech segmentation. In both experiments, listeners heard unbroken sequences of consonant-vowel syllables, composed of recurring three- and four-syllable “words.” These words were demarcated by(a) no cue other than transitional probabilities induced by their recurrence, (b) a consistent left-edge cue, or (c) a consistent right-edge cue. Experiment 1 examined a vowel lengthening cue. All three listener groups benefited from this cue in right-edge position; none benefited from it in left-edge position. Experiment 2 examined a pitch-movement cue. English listeners used this cue in left-edge position, French listeners used it in right-edge position, and Dutch listeners used it in both positions. These findings are interpreted as evidence of both language-universal and language-specific effects. Final lengthening is a language-universal effect expressing a more general (non-linguistic) mechanism. Pitch movement expresses prominence which has characteristically different placements across languages: typically at right edges in French, but at left edges in English and Dutch. Finally, stress realization in English versus Dutch encourages greater attention to suprasegmental variation by Dutch than by English listeners, allowing Dutch listeners to benefit from an informative pitch-movement cue even in an uncharacteristic position.
  • Costa, A., Cutler, A., & Sebastian-Galles, N. (1998). Effects of phoneme repertoire on phoneme decision. Perception and Psychophysics, 60, 1022-1031.

    Abstract

    In three experiments, listeners detected vowel or consonant targets in lists of CV syllables constructed from five vowels and five consonants. Responses were faster in a predictable context (e.g., listening for a vowel target in a list of syllables all beginning with the same consonant) than in an unpredictable context (e.g., listening for a vowel target in a list of syllables beginning with different consonants). In Experiment 1, the listeners’ native language was Dutch, in which vowel and consonant repertoires are similar in size. The difference between predictable and unpredictable contexts was comparable for vowel and consonant targets. In Experiments 2 and 3, the listeners’ native language was Spanish, which has four times as many consonants as vowels; here effects of an unpredictable consonant context on vowel detection were significantly greater than effects of an unpredictable vowel context on consonant detection. This finding suggests that listeners’ processing of phonemes takes into account the constitution of their language’s phonemic repertoire and the implications that this has for contextual variability.
  • Cutler, A., & Otake, T. (1998). Assimilation of place in Japanese and Dutch. In R. Mannell, & J. Robert-Ribes (Eds.), Proceedings of the Fifth International Conference on Spoken Language Processing: vol. 5 (pp. 1751-1754). Sydney: ICLSP.

    Abstract

    Assimilation of place of articulation across a nasal and a following stop consonant is obligatory in Japanese, but not in Dutch. In four experiments the processing of assimilated forms by speakers of Japanese and Dutch was compared, using a task in which listeners blended pseudo-word pairs such as ranga-serupa. An assimilated blend of this pair would be rampa, an unassimilated blend rangpa. Japanese listeners produced significantly more assimilated than unassimilated forms, both with pseudo-Japanese and pseudo-Dutch materials, while Dutch listeners produced significantly more unassimilated than assimilated forms in each materials set. This suggests that Japanese listeners, whose native-language phonology involves obligatory assimilation constraints, represent the assimilated nasals in nasal-stop sequences as unmarked for place of articulation, while Dutch listeners, who are accustomed to hearing unassimilated forms, represent the same nasal segments as marked for place of articulation.
  • Cutler, A. (1998). How listeners find the right words. In Proceedings of the Sixteenth International Congress on Acoustics: Vol. 2 (pp. 1377-1380). Melville, NY: Acoustical Society of America.

    Abstract

    Languages contain tens of thousands of words, but these are constructed from a tiny handful of phonetic elements. Consequently, words resemble one another, or can be embedded within one another, a coup stick snot with standing. me process of spoken-word recognition by human listeners involves activation of multiple word candidates consistent with the input, and direct competition between activated candidate words. Further, human listeners are sensitive, at an early, prelexical, stage of speeeh processing, to constraints on what could potentially be a word of the language.
  • Cutler, A., Treiman, R., & Van Ooijen, B. (1998). Orthografik inkoncistensy ephekts in foneme detektion? In R. Mannell, & J. Robert-Ribes (Eds.), Proceedings of the Fifth International Conference on Spoken Language Processing: Vol. 6 (pp. 2783-2786). Sydney: ICSLP.

    Abstract

    The phoneme detection task is widely used in spoken word recognition research. Alphabetically literate participants, however, are more used to explicit representations of letters than of phonemes. The present study explored whether phoneme detection is sensitive to how target phonemes are, or may be, orthographically realised. Listeners detected the target sounds [b,m,t,f,s,k] in word-initial position in sequences of isolated English words. Response times were faster to the targets [b,m,t], which have consistent word-initial spelling, than to the targets [f,s,k], which are inconsistently spelled, but only when listeners’ attention was drawn to spelling by the presence in the experiment of many irregularly spelled fillers. Within the inconsistent targets [f,s,k], there was no significant difference between responses to targets in words with majority and minority spellings. We conclude that performance in the phoneme detection task is not necessarily sensitive to orthographic effects, but that salient orthographic manipulation can induce such sensitivity.
  • Cutler, A. (1998). Prosodic structure and word recognition. In A. D. Friederici (Ed.), Language comprehension: A biological perspective (pp. 41-70). Heidelberg: Springer.
  • Cutler, A. (1998). The recognition of spoken words with variable representations. In D. Duez (Ed.), Proceedings of the ESCA Workshop on Sound Patterns of Spontaneous Speech (pp. 83-92). Aix-en-Provence: Université de Aix-en-Provence.
  • Kuijpers, C. T., Coolen, R., Houston, D., & Cutler, A. (1998). Using the head-turning technique to explore cross-linguistic performance differences. In C. Rovee-Collier, L. Lipsitt, & H. Hayne (Eds.), Advances in infancy research: Vol. 12 (pp. 205-220). Stamford: Ablex.
  • McQueen, J. M., & Cutler, A. (1998). Morphology in word recognition. In A. M. Zwicky, & A. Spencer (Eds.), The handbook of morphology (pp. 406-427). Oxford: Blackwell.
  • McQueen, J. M., & Cutler, A. (1998). Spotting (different kinds of) words in (different kinds of) context. In R. Mannell, & J. Robert-Ribes (Eds.), Proceedings of the Fifth International Conference on Spoken Language Processing: Vol. 6 (pp. 2791-2794). Sydney: ICSLP.

    Abstract

    The results of a word-spotting experiment are presented in which Dutch listeners tried to spot different types of bisyllabic Dutch words embedded in different types of nonsense contexts. Embedded verbs were not reliably harder to spot than embedded nouns; this suggests that nouns and verbs are recognised via the same basic processes. Iambic words were no harder to spot than trochaic words, suggesting that trochaic words are not in principle easier to recognise than iambic words. Words were harder to spot in consonantal contexts (i.e., contexts which themselves could not be words) than in longer contexts which contained at least one vowel (i.e., contexts which, though not words, were possible words of Dutch). A control experiment showed that this difference was not due to acoustic differences between the words in each context. The results support the claim that spoken-word recognition is sensitive to the viability of sound sequences as possible words.
  • Allerhand, M., Butterfield, S., Cutler, A., & Patterson, R. (1992). Assessing syllable strength via an auditory model. In Proceedings of the Institute of Acoustics: Vol. 14 Part 6 (pp. 297-304). St. Albans, Herts: Institute of Acoustics.
  • Cutler, A. (1992). Cross-linguistic differences in speech segmentation. MRC News, 56, 8-9.
  • Cutler, A., & Norris, D. (1992). Detection of vowels and consonants with minimal acoustic variation. Speech Communication, 11, 101-108. doi:10.1016/0167-6393(92)90004-Q.

    Abstract

    Previous research has shown that, in a phoneme detection task, vowels produce longer reaction times than consonants, suggesting that they are harder to perceive. One possible explanation for this difference is based upon their respective acoustic/articulatory characteristics. Another way of accounting for the findings would be to relate them to the differential functioning of vowels and consonants in the syllabic structure of words. In this experiment, we examined the second possibility. Targets were two pairs of phonemes, each containing a vowel and a consonant with similar phonetic characteristics. Subjects heard lists of English words had to press a response key upon detecting the occurrence of a pre-specified target. This time, the phonemes which functioned as vowels in syllabic structure yielded shorter reaction times than those which functioned as consonants. This rules out an explanation for response time difference between vowels and consonants in terms of function in syllable structure. Instead, we propose that consonantal and vocalic segments differ with respect to variability of tokens, both in the acoustic realisation of targets and in the representation of targets by listeners.
  • Cutler, A., Kearns, R., Norris, D., & Scott, D. (1992). Listeners’ responses to extraneous signals coincident with English and French speech. In J. Pittam (Ed.), Proceedings of the 4th Australian International Conference on Speech Science and Technology (pp. 666-671). Canberra: Australian Speech Science and Technology Association.

    Abstract

    English and French listeners performed two tasks - click location and speeded click detection - with both English and French sentences, closely matched for syntactic and phonological structure. Clicks were located more accurately in open- than in closed-class words in both English and French; they were detected more rapidly in open- than in closed-class words in English, but not in French. The two listener groups produced the same pattern of responses, suggesting that higher-level linguistic processing was not involved in these tasks.
  • Cutler, A. (1992). Proceedings with confidence. New Scientist, (1825), 54.
  • Cutler, A. (1992). Processing constraints of the native phonological repertoire on the native language. In Y. Tohkura, E. Vatikiotis-Bateson, & Y. Sagisaka (Eds.), Speech perception, production and linguistic structure (pp. 275-278). Tokyo: Ohmsha.
  • Cutler, A., & Butterfield, S. (1992). Rhythmic cues to speech segmentation: Evidence from juncture misperception. Journal of Memory and Language, 31, 218-236. doi:10.1016/0749-596X(92)90012-M.

    Abstract

    Segmentation of continuous speech into its component words is a nontrivial task for listeners. Previous work has suggested that listeners develop heuristic segmentation procedures based on experience with the structure of their language; for English, the heuristic is that strong syllables (containing full vowels) are most likely to be the initial syllables of lexical words, whereas weak syllables (containing central, or reduced, vowels) are nonword-initial, or, if word-initial, are grammatical words. This hypothesis is here tested against natural and laboratory-induced missegmentations of continuous speech. Precisely the expected pattern is found: listeners erroneously insert boundaries before strong syllables but delete them before weak syllables; boundaries inserted before strong syllables produce lexical words, while boundaries inserted before weak syllables produce grammatical words.
  • Cutler, A., & Robinson, T. (1992). Response time as a metric for comparison of speech recognition by humans and machines. In J. Ohala, T. Neary, & B. Derwing (Eds.), Proceedings of the Second International Conference on Spoken Language Processing: Vol. 1 (pp. 189-192). Alberta: University of Alberta.

    Abstract

    The performance of automatic speech recognition systems is usually assessed in terms of error rate. Human speech recognition produces few errors, but relative difficulty of processing can be assessed via response time techniques. We report the construction of a measure analogous to response time in a machine recognition system. This measure may be compared directly with human response times. We conducted a trial comparison of this type at the phoneme level, including both tense and lax vowels and a variety of consonant classes. The results suggested similarities between human and machine processing in the case of consonants, but differences in the case of vowels.
  • Cutler, A. (1992). Psychology and the segment. In G. Docherty, & D. Ladd (Eds.), Papers in laboratory phonology II: Gesture, segment, prosody (pp. 290-295). Cambridge: Cambridge University Press.
  • Cutler, A., Mehler, J., Norris, D., & Segui, J. (1992). The monolingual nature of speech segmentation by bilinguals. Cognitive Psychology, 24, 381-410.

    Abstract

    Monolingual French speakers employ a syllable-based procedure in speech segmentation; monolingual English speakers use a stress-based segmentation procedure and do not use the syllable-based procedure. In the present study French-English bilinguals participated in segmentation experiments with English and French materials. Their results as a group did not simply mimic the performance of English monolinguals with English language materials and of French monolinguals with French language materials. Instead, the bilinguals formed two groups, defined by forced choice of a dominant language. Only the French-dominant group showed syllabic segmentation and only with French language materials. The English-dominant group showed no syllabic segmentation in either language. However, the English-dominant group showed stress-based segmentation with English language materials; the French-dominant group did not. We argue that rhythmically based segmentation procedures are mutually exclusive, as a consequence of which speech segmentation by bilinguals is, in one respect at least, functionally monolingual.
  • Cutler, A. (1992). The production and perception of word boundaries. In Y. Tohkura, E. Vatikiotis-Bateson, & Y. Sagisaka (Eds.), Speech perception, production and linguistic structure (pp. 419-425). Tokyo: Ohsma.
  • Cutler, A. (1992). The perception of speech: Psycholinguistic aspects. In W. Bright (Ed.), International encyclopedia of language: Vol. 3 (pp. 181-183). New York: Oxford University Press.
  • Cutler, A. (1992). Why not abolish psycholinguistics? In W. Dressler, H. Luschützky, O. Pfeiffer, & J. Rennison (Eds.), Phonologica 1988 (pp. 77-87). Cambridge: Cambridge University Press.
  • McQueen, J. M., & Cutler, A. (1992). Words within words: Lexical statistics and lexical access. In J. Ohala, T. Neary, & B. Derwing (Eds.), Proceedings of the Second International Conference on Spoken Language Processing: Vol. 1 (pp. 221-224). Alberta: University of Alberta.

    Abstract

    This paper presents lexical statistics on the pattern of occurrence of words embedded in other words. We report the results of an analysis of 25000 words, varying in length from two to six syllables, extracted from a phonetically-coded English dictionary (The Longman Dictionary of Contemporary English). Each syllable, and each string of syllables within each word was checked against the dictionary. Two analyses are presented: the first used a complete list of polysyllables, with look-up on the entire dictionary; the second used a sublist of content words, counting only embedded words which were themselves content words. The results have important implications for models of human speech recognition. The efficiency of these models depends, in different ways, on the number and location of words within words.
  • Norris, D., Van Ooijen, B., & Cutler, A. (1992). Speeded detection of vowels and steady-state consonants. In J. Ohala, T. Neary, & B. Derwing (Eds.), Proceedings of the Second International Conference on Spoken Language Processing; Vol. 2 (pp. 1055-1058). Alberta: University of Alberta.

    Abstract

    We report two experiments in which vowels and steady-state consonants served as targets in a speeded detection task. In the first experiment, two vowels were compared with one voiced and once unvoiced fricative. Response times (RTs) to the vowels were longer than to the fricatives. The error rate was higher for the consonants. Consonants in word-final position produced the shortest RTs, For the vowels, RT correlated negatively with target duration. In the second experiment, the same two vowel targets were compared with two nasals. This time there was no significant difference in RTs, but the error rate was still significantly higher for the consonants. Error rate and length correlated negatively for the vowels only. We conclude that RT differences between phonemes are independent of vocalic or consonantal status. Instead, we argue that the process of phoneme detection reflects more finely grained differences in acoustic/articulatory structure within the phonemic repertoire.
  • Cutler, A., Mehler, J., Norris, D., & Segui, J. (1983). A language-specific comprehension strategy [Letters to Nature]. Nature, 304, 159-160. doi:10.1038/304159a0.

    Abstract

    Infants acquire whatever language is spoken in the environment into which they are born. The mental capability of the newborn child is not biased in any way towards the acquisition of one human language rather than another. Because psychologists who attempt to model the process of language comprehension are interested in the structure of the human mind, rather than in the properties of individual languages, strategies which they incorporate in their models are presumed to be universal, not language-specific. In other words, strategies of comprehension are presumed to be characteristic of the human language processing system, rather than, say, the French, English, or Igbo language processing systems. We report here, however, on a comprehension strategy which appears to be used by native speakers of French but not by native speakers of English.
  • Cutler, A. (1983). Lexical complexity and sentence processing. In G. B. Flores d'Arcais, & R. J. Jarvella (Eds.), The process of language understanding (pp. 43-79). Chichester, Sussex: Wiley.
  • Cutler, A. (1983). Semantics, syntax and sentence accent. In M. Van den Broecke, & A. Cohen (Eds.), Proceedings of the Tenth International Congress of Phonetic Sciences (pp. 85-91). Dordrecht: Foris.
  • Cutler, A., & Ladd, D. R. (Eds.). (1983). Prosody: Models and measurements. Heidelberg: Springer.
  • Cutler, A. (1983). Speakers’ conceptions of the functions of prosody. In A. Cutler, & D. R. Ladd (Eds.), Prosody: Models and measurements (pp. 79-91). Heidelberg: Springer.
  • Ladd, D. R., & Cutler, A. (1983). Models and measurements in the study of prosody. In A. Cutler, & D. R. Ladd (Eds.), Prosody: Models and measurements (pp. 1-10). Heidelberg: Springer.
  • Levelt, W. J. M., & Cutler, A. (1983). Prosodic marking in speech repair. Journal of semantics, 2, 205-217. doi:10.1093/semant/2.2.205.

    Abstract

    Spontaneous self-corrections in speech pose a communication problem; the speaker must make clear to the listener not only that the original Utterance was faulty, but where it was faulty and how the fault is to be corrected. Prosodic marking of corrections - making the prosody of the repair noticeably different from that of the original utterance - offers a resource which the speaker can exploit to provide the listener with such information. A corpus of more than 400 spontaneous speech repairs was analysed, and the prosodic characteristics compared with the syntactic and semantic characteristics of each repair. Prosodic marking showed no relationship at all with the syntactic characteristics of repairs. Instead, marking was associated with certain semantic factors: repairs were marked when the original utterance had been actually erroneous, rather than simply less appropriate than the repair; and repairs tended to be marked more often when the set of items encompassing the error and the repair was small rather than when it was large. These findings lend further weight to the characterization of accent as essentially semantic in function.

Share this page