Anne Cutler †

Publications

Displaying 1 - 36 of 36
  • Cutler, A., & Bruggeman, L. (2013). Vocabulary structure and spoken-word recognition: Evidence from French reveals the source of embedding asymmetry. In Proceedings of INTERSPEECH: 14th Annual Conference of the International Speech Communication Association (pp. 2812-2816).

    Abstract

    Vocabularies contain hundreds of thousands of words built from only a handful of phonemes, so that inevitably longer words tend to contain shorter ones. In many languages (but not all) such embedded words occur more often word-initially than word-finally, and this asymmetry, if present, has farreaching consequences for spoken-word recognition. Prior research had ascribed the asymmetry to suffixing or to effects of stress (in particular, final syllables containing the vowel schwa). Analyses of the standard French vocabulary here reveal an effect of suffixing, as predicted by this account, and further analyses of an artificial variety of French reveal that extensive final schwa has an independent and additive effect in promoting the embedding asymmetry.
  • Johnson, E. K., Lahey, M., Ernestus, M., & Cutler, A. (2013). A multimodal corpus of speech to infant and adult listeners. Journal of the Acoustical Society of America, 134, EL534-EL540. doi:10.1121/1.4828977.

    Abstract

    An audio and video corpus of speech addressed to 28 11-month-olds is described. The corpus allows comparisons between adult speech directed towards infants, familiar adults and unfamiliar adult addressees, as well as of caregivers’ word teaching strategies across word classes. Summary data show that infant-directed speech differed more from speech to unfamiliar than familiar adults; that word teaching strategies for nominals versus verbs and adjectives differed; that mothers mostly addressed infants with multi-word utterances; and that infants’ vocabulary size was unrelated to speech rate, but correlated positively with predominance of continuous caregiver speech (not of isolated words) in the input.
  • Kooijman, V., Junge, C., Johnson, E. K., Hagoort, P., & Cutler, A. (2013). Predictive brain signals of linguistic development. Frontiers in Psychology, 4: 25. doi:10.3389/fpsyg.2013.00025.

    Abstract

    The ability to extract word forms from continuous speech is a prerequisite for constructing a vocabulary and emerges in the first year of life. Electrophysiological (ERP) studies of speech segmentation by 9- to 12-month-old listeners in several languages have found a left-localized negativity linked to word onset as a marker of word detection. We report an ERP study showing significant evidence of speech segmentation in Dutch-learning 7-month-olds. In contrast to the left-localized negative effect reported with older infants, the observed overall mean effect had a positive polarity. Inspection of individual results revealed two participant sub-groups: a majority showing a positive-going response, and a minority showing the left negativity observed in older age groups. We retested participants at age three, on vocabulary comprehension and word and sentence production. On every test, children who at 7 months had shown the negativity associated with segmentation of words from speech outperformed those who had produced positive-going brain responses to the same input. The earlier that infants show the left-localized brain responses typically indicating detection of words in speech, the better their early childhood language skills.
  • Otake, T., & Cutler, A. (2013). Lexical selection in action: Evidence from spontaneous punning. Language and Speech, 56(4), 555-573. doi:10.1177/0023830913478933.

    Abstract

    Analysis of a corpus of spontaneously produced Japanese puns from a single speaker over a two-year period provides a view of how a punster selects a source word for a pun and transforms it into another word for humorous effect. The pun-making process is driven by a principle of similarity: the source word should as far as possible be preserved (in terms of segmental sequence) in the pun. This renders homophones (English example: band–banned) the pun type of choice, with part–whole relationships of embedding (cap–capture), and mutations of the source word (peas–bees) rather less favored. Similarity also governs mutations in that single-phoneme substitutions outnumber larger changes, and in phoneme substitutions, subphonemic features tend to be preserved. The process of spontaneous punning thus applies, on line, the same similarity criteria as govern explicit similarity judgments and offline decisions about pun success (e.g., for inclusion in published collections). Finally, the process of spoken-word recognition is word-play-friendly in that it involves multiple word-form activation and competition, which, coupled with known techniques in use in difficult listening conditions, enables listeners to generate most pun types as offshoots of normal listening procedures.
  • Van der Zande, P., Jesse, A., & Cutler, A. (2013). Lexically guided retuning of visual phonetic categories. Journal of the Acoustical Society of America, 134, 562-571. doi:10.1121/1.4807814.

    Abstract

    Listeners retune the boundaries between phonetic categories to adjust to individual speakers' productions. Lexical information, for example, indicates what an unusual sound is supposed to be, and boundary retuning then enables the speaker's sound to be included in the appropriate auditory phonetic category. In this study, it was investigated whether lexical knowledge that is known to guide the retuning of auditory phonetic categories, can also retune visual phonetic categories. In Experiment 1, exposure to a visual idiosyncrasy in ambiguous audiovisually presented target words in a lexical decision task indeed resulted in retuning of the visual category boundary based on the disambiguating lexical context. In Experiment 2 it was tested whether lexical information retunes visual categories directly, or indirectly through the generalization from retuned auditory phonetic categories. Here, participants were exposed to auditory-only versions of the same ambiguous target words as in Experiment 1. Auditory phonetic categories were retuned by lexical knowledge, but no shifts were observed for the visual phonetic categories. Lexical knowledge can therefore guide retuning of visual phonetic categories, but lexically guided retuning of auditory phonetic categories is not generalized to visual categories. Rather, listeners adjust auditory and visual phonetic categories to talker idiosyncrasies separately.
  • Costa, A., Cutler, A., & Sebastian-Galles, N. (1998). Effects of phoneme repertoire on phoneme decision. Perception and Psychophysics, 60, 1022-1031.

    Abstract

    In three experiments, listeners detected vowel or consonant targets in lists of CV syllables constructed from five vowels and five consonants. Responses were faster in a predictable context (e.g., listening for a vowel target in a list of syllables all beginning with the same consonant) than in an unpredictable context (e.g., listening for a vowel target in a list of syllables beginning with different consonants). In Experiment 1, the listeners’ native language was Dutch, in which vowel and consonant repertoires are similar in size. The difference between predictable and unpredictable contexts was comparable for vowel and consonant targets. In Experiments 2 and 3, the listeners’ native language was Spanish, which has four times as many consonants as vowels; here effects of an unpredictable consonant context on vowel detection were significantly greater than effects of an unpredictable vowel context on consonant detection. This finding suggests that listeners’ processing of phonemes takes into account the constitution of their language’s phonemic repertoire and the implications that this has for contextual variability.
  • Cutler, A., & Otake, T. (1998). Assimilation of place in Japanese and Dutch. In R. Mannell, & J. Robert-Ribes (Eds.), Proceedings of the Fifth International Conference on Spoken Language Processing: vol. 5 (pp. 1751-1754). Sydney: ICLSP.

    Abstract

    Assimilation of place of articulation across a nasal and a following stop consonant is obligatory in Japanese, but not in Dutch. In four experiments the processing of assimilated forms by speakers of Japanese and Dutch was compared, using a task in which listeners blended pseudo-word pairs such as ranga-serupa. An assimilated blend of this pair would be rampa, an unassimilated blend rangpa. Japanese listeners produced significantly more assimilated than unassimilated forms, both with pseudo-Japanese and pseudo-Dutch materials, while Dutch listeners produced significantly more unassimilated than assimilated forms in each materials set. This suggests that Japanese listeners, whose native-language phonology involves obligatory assimilation constraints, represent the assimilated nasals in nasal-stop sequences as unmarked for place of articulation, while Dutch listeners, who are accustomed to hearing unassimilated forms, represent the same nasal segments as marked for place of articulation.
  • Cutler, A. (1998). How listeners find the right words. In Proceedings of the Sixteenth International Congress on Acoustics: Vol. 2 (pp. 1377-1380). Melville, NY: Acoustical Society of America.

    Abstract

    Languages contain tens of thousands of words, but these are constructed from a tiny handful of phonetic elements. Consequently, words resemble one another, or can be embedded within one another, a coup stick snot with standing. me process of spoken-word recognition by human listeners involves activation of multiple word candidates consistent with the input, and direct competition between activated candidate words. Further, human listeners are sensitive, at an early, prelexical, stage of speeeh processing, to constraints on what could potentially be a word of the language.
  • Cutler, A., Treiman, R., & Van Ooijen, B. (1998). Orthografik inkoncistensy ephekts in foneme detektion? In R. Mannell, & J. Robert-Ribes (Eds.), Proceedings of the Fifth International Conference on Spoken Language Processing: Vol. 6 (pp. 2783-2786). Sydney: ICSLP.

    Abstract

    The phoneme detection task is widely used in spoken word recognition research. Alphabetically literate participants, however, are more used to explicit representations of letters than of phonemes. The present study explored whether phoneme detection is sensitive to how target phonemes are, or may be, orthographically realised. Listeners detected the target sounds [b,m,t,f,s,k] in word-initial position in sequences of isolated English words. Response times were faster to the targets [b,m,t], which have consistent word-initial spelling, than to the targets [f,s,k], which are inconsistently spelled, but only when listeners’ attention was drawn to spelling by the presence in the experiment of many irregularly spelled fillers. Within the inconsistent targets [f,s,k], there was no significant difference between responses to targets in words with majority and minority spellings. We conclude that performance in the phoneme detection task is not necessarily sensitive to orthographic effects, but that salient orthographic manipulation can induce such sensitivity.
  • Cutler, A. (1998). Prosodic structure and word recognition. In A. D. Friederici (Ed.), Language comprehension: A biological perspective (pp. 41-70). Heidelberg: Springer.
  • Cutler, A. (1998). The recognition of spoken words with variable representations. In D. Duez (Ed.), Proceedings of the ESCA Workshop on Sound Patterns of Spontaneous Speech (pp. 83-92). Aix-en-Provence: Université de Aix-en-Provence.
  • Kuijpers, C. T., Coolen, R., Houston, D., & Cutler, A. (1998). Using the head-turning technique to explore cross-linguistic performance differences. In C. Rovee-Collier, L. Lipsitt, & H. Hayne (Eds.), Advances in infancy research: Vol. 12 (pp. 205-220). Stamford: Ablex.
  • McQueen, J. M., & Cutler, A. (1998). Morphology in word recognition. In A. M. Zwicky, & A. Spencer (Eds.), The handbook of morphology (pp. 406-427). Oxford: Blackwell.
  • McQueen, J. M., & Cutler, A. (1998). Spotting (different kinds of) words in (different kinds of) context. In R. Mannell, & J. Robert-Ribes (Eds.), Proceedings of the Fifth International Conference on Spoken Language Processing: Vol. 6 (pp. 2791-2794). Sydney: ICSLP.

    Abstract

    The results of a word-spotting experiment are presented in which Dutch listeners tried to spot different types of bisyllabic Dutch words embedded in different types of nonsense contexts. Embedded verbs were not reliably harder to spot than embedded nouns; this suggests that nouns and verbs are recognised via the same basic processes. Iambic words were no harder to spot than trochaic words, suggesting that trochaic words are not in principle easier to recognise than iambic words. Words were harder to spot in consonantal contexts (i.e., contexts which themselves could not be words) than in longer contexts which contained at least one vowel (i.e., contexts which, though not words, were possible words of Dutch). A control experiment showed that this difference was not due to acoustic differences between the words in each context. The results support the claim that spoken-word recognition is sensitive to the viability of sound sequences as possible words.
  • Allerhand, M., Butterfield, S., Cutler, A., & Patterson, R. (1992). Assessing syllable strength via an auditory model. In Proceedings of the Institute of Acoustics: Vol. 14 Part 6 (pp. 297-304). St. Albans, Herts: Institute of Acoustics.
  • Cutler, A. (1992). Cross-linguistic differences in speech segmentation. MRC News, 56, 8-9.
  • Cutler, A., & Norris, D. (1992). Detection of vowels and consonants with minimal acoustic variation. Speech Communication, 11, 101-108. doi:10.1016/0167-6393(92)90004-Q.

    Abstract

    Previous research has shown that, in a phoneme detection task, vowels produce longer reaction times than consonants, suggesting that they are harder to perceive. One possible explanation for this difference is based upon their respective acoustic/articulatory characteristics. Another way of accounting for the findings would be to relate them to the differential functioning of vowels and consonants in the syllabic structure of words. In this experiment, we examined the second possibility. Targets were two pairs of phonemes, each containing a vowel and a consonant with similar phonetic characteristics. Subjects heard lists of English words had to press a response key upon detecting the occurrence of a pre-specified target. This time, the phonemes which functioned as vowels in syllabic structure yielded shorter reaction times than those which functioned as consonants. This rules out an explanation for response time difference between vowels and consonants in terms of function in syllable structure. Instead, we propose that consonantal and vocalic segments differ with respect to variability of tokens, both in the acoustic realisation of targets and in the representation of targets by listeners.
  • Cutler, A., Kearns, R., Norris, D., & Scott, D. (1992). Listeners’ responses to extraneous signals coincident with English and French speech. In J. Pittam (Ed.), Proceedings of the 4th Australian International Conference on Speech Science and Technology (pp. 666-671). Canberra: Australian Speech Science and Technology Association.

    Abstract

    English and French listeners performed two tasks - click location and speeded click detection - with both English and French sentences, closely matched for syntactic and phonological structure. Clicks were located more accurately in open- than in closed-class words in both English and French; they were detected more rapidly in open- than in closed-class words in English, but not in French. The two listener groups produced the same pattern of responses, suggesting that higher-level linguistic processing was not involved in these tasks.
  • Cutler, A. (1992). Proceedings with confidence. New Scientist, (1825), 54.
  • Cutler, A. (1992). Processing constraints of the native phonological repertoire on the native language. In Y. Tohkura, E. Vatikiotis-Bateson, & Y. Sagisaka (Eds.), Speech perception, production and linguistic structure (pp. 275-278). Tokyo: Ohmsha.
  • Cutler, A. (1992). Psychology and the segment. In G. Docherty, & D. Ladd (Eds.), Papers in laboratory phonology II: Gesture, segment, prosody (pp. 290-295). Cambridge: Cambridge University Press.
  • Cutler, A., & Robinson, T. (1992). Response time as a metric for comparison of speech recognition by humans and machines. In J. Ohala, T. Neary, & B. Derwing (Eds.), Proceedings of the Second International Conference on Spoken Language Processing: Vol. 1 (pp. 189-192). Alberta: University of Alberta.

    Abstract

    The performance of automatic speech recognition systems is usually assessed in terms of error rate. Human speech recognition produces few errors, but relative difficulty of processing can be assessed via response time techniques. We report the construction of a measure analogous to response time in a machine recognition system. This measure may be compared directly with human response times. We conducted a trial comparison of this type at the phoneme level, including both tense and lax vowels and a variety of consonant classes. The results suggested similarities between human and machine processing in the case of consonants, but differences in the case of vowels.
  • Cutler, A., & Butterfield, S. (1992). Rhythmic cues to speech segmentation: Evidence from juncture misperception. Journal of Memory and Language, 31, 218-236. doi:10.1016/0749-596X(92)90012-M.

    Abstract

    Segmentation of continuous speech into its component words is a nontrivial task for listeners. Previous work has suggested that listeners develop heuristic segmentation procedures based on experience with the structure of their language; for English, the heuristic is that strong syllables (containing full vowels) are most likely to be the initial syllables of lexical words, whereas weak syllables (containing central, or reduced, vowels) are nonword-initial, or, if word-initial, are grammatical words. This hypothesis is here tested against natural and laboratory-induced missegmentations of continuous speech. Precisely the expected pattern is found: listeners erroneously insert boundaries before strong syllables but delete them before weak syllables; boundaries inserted before strong syllables produce lexical words, while boundaries inserted before weak syllables produce grammatical words.
  • Cutler, A. (1992). The perception of speech: Psycholinguistic aspects. In W. Bright (Ed.), International encyclopedia of language: Vol. 3 (pp. 181-183). New York: Oxford University Press.
  • Cutler, A. (1992). The production and perception of word boundaries. In Y. Tohkura, E. Vatikiotis-Bateson, & Y. Sagisaka (Eds.), Speech perception, production and linguistic structure (pp. 419-425). Tokyo: Ohsma.
  • Cutler, A., Mehler, J., Norris, D., & Segui, J. (1992). The monolingual nature of speech segmentation by bilinguals. Cognitive Psychology, 24, 381-410.

    Abstract

    Monolingual French speakers employ a syllable-based procedure in speech segmentation; monolingual English speakers use a stress-based segmentation procedure and do not use the syllable-based procedure. In the present study French-English bilinguals participated in segmentation experiments with English and French materials. Their results as a group did not simply mimic the performance of English monolinguals with English language materials and of French monolinguals with French language materials. Instead, the bilinguals formed two groups, defined by forced choice of a dominant language. Only the French-dominant group showed syllabic segmentation and only with French language materials. The English-dominant group showed no syllabic segmentation in either language. However, the English-dominant group showed stress-based segmentation with English language materials; the French-dominant group did not. We argue that rhythmically based segmentation procedures are mutually exclusive, as a consequence of which speech segmentation by bilinguals is, in one respect at least, functionally monolingual.
  • Cutler, A. (1992). Why not abolish psycholinguistics? In W. Dressler, H. Luschützky, O. Pfeiffer, & J. Rennison (Eds.), Phonologica 1988 (pp. 77-87). Cambridge: Cambridge University Press.
  • McQueen, J. M., & Cutler, A. (1992). Words within words: Lexical statistics and lexical access. In J. Ohala, T. Neary, & B. Derwing (Eds.), Proceedings of the Second International Conference on Spoken Language Processing: Vol. 1 (pp. 221-224). Alberta: University of Alberta.

    Abstract

    This paper presents lexical statistics on the pattern of occurrence of words embedded in other words. We report the results of an analysis of 25000 words, varying in length from two to six syllables, extracted from a phonetically-coded English dictionary (The Longman Dictionary of Contemporary English). Each syllable, and each string of syllables within each word was checked against the dictionary. Two analyses are presented: the first used a complete list of polysyllables, with look-up on the entire dictionary; the second used a sublist of content words, counting only embedded words which were themselves content words. The results have important implications for models of human speech recognition. The efficiency of these models depends, in different ways, on the number and location of words within words.
  • Norris, D., Van Ooijen, B., & Cutler, A. (1992). Speeded detection of vowels and steady-state consonants. In J. Ohala, T. Neary, & B. Derwing (Eds.), Proceedings of the Second International Conference on Spoken Language Processing; Vol. 2 (pp. 1055-1058). Alberta: University of Alberta.

    Abstract

    We report two experiments in which vowels and steady-state consonants served as targets in a speeded detection task. In the first experiment, two vowels were compared with one voiced and once unvoiced fricative. Response times (RTs) to the vowels were longer than to the fricatives. The error rate was higher for the consonants. Consonants in word-final position produced the shortest RTs, For the vowels, RT correlated negatively with target duration. In the second experiment, the same two vowel targets were compared with two nasals. This time there was no significant difference in RTs, but the error rate was still significantly higher for the consonants. Error rate and length correlated negatively for the vowels only. We conclude that RT differences between phonemes are independent of vocalic or consonantal status. Instead, we argue that the process of phoneme detection reflects more finely grained differences in acoustic/articulatory structure within the phonemic repertoire.
  • Cutler, A., Mehler, J., Norris, D., & Segui, J. (1983). A language-specific comprehension strategy [Letters to Nature]. Nature, 304, 159-160. doi:10.1038/304159a0.

    Abstract

    Infants acquire whatever language is spoken in the environment into which they are born. The mental capability of the newborn child is not biased in any way towards the acquisition of one human language rather than another. Because psychologists who attempt to model the process of language comprehension are interested in the structure of the human mind, rather than in the properties of individual languages, strategies which they incorporate in their models are presumed to be universal, not language-specific. In other words, strategies of comprehension are presumed to be characteristic of the human language processing system, rather than, say, the French, English, or Igbo language processing systems. We report here, however, on a comprehension strategy which appears to be used by native speakers of French but not by native speakers of English.
  • Cutler, A. (1983). Lexical complexity and sentence processing. In G. B. Flores d'Arcais, & R. J. Jarvella (Eds.), The process of language understanding (pp. 43-79). Chichester, Sussex: Wiley.
  • Cutler, A., & Ladd, D. R. (Eds.). (1983). Prosody: Models and measurements. Heidelberg: Springer.
  • Cutler, A. (1983). Semantics, syntax and sentence accent. In M. Van den Broecke, & A. Cohen (Eds.), Proceedings of the Tenth International Congress of Phonetic Sciences (pp. 85-91). Dordrecht: Foris.
  • Cutler, A. (1983). Speakers’ conceptions of the functions of prosody. In A. Cutler, & D. R. Ladd (Eds.), Prosody: Models and measurements (pp. 79-91). Heidelberg: Springer.
  • Ladd, D. R., & Cutler, A. (1983). Models and measurements in the study of prosody. In A. Cutler, & D. R. Ladd (Eds.), Prosody: Models and measurements (pp. 1-10). Heidelberg: Springer.
  • Levelt, W. J. M., & Cutler, A. (1983). Prosodic marking in speech repair. Journal of semantics, 2, 205-217. doi:10.1093/semant/2.2.205.

    Abstract

    Spontaneous self-corrections in speech pose a communication problem; the speaker must make clear to the listener not only that the original Utterance was faulty, but where it was faulty and how the fault is to be corrected. Prosodic marking of corrections - making the prosody of the repair noticeably different from that of the original utterance - offers a resource which the speaker can exploit to provide the listener with such information. A corpus of more than 400 spontaneous speech repairs was analysed, and the prosodic characteristics compared with the syntactic and semantic characteristics of each repair. Prosodic marking showed no relationship at all with the syntactic characteristics of repairs. Instead, marking was associated with certain semantic factors: repairs were marked when the original utterance had been actually erroneous, rather than simply less appropriate than the repair; and repairs tended to be marked more often when the set of items encompassing the error and the repair was small rather than when it was large. These findings lend further weight to the characterization of accent as essentially semantic in function.

Share this page